Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Data
3.1. Study Area and Soil Samples
3.2. Environmental and Remote Sensing Data
4. Methodology
4.1. Models Built for Each Depth Interval (A1)
4.1.1. Machine Learning Models
4.1.2. Machine Learning Predictions Aggregated to 0–30 cm
4.2. The Generalized Additive Model for 3D SOC Mapping (A2)
4.2.1. The Generalized Additive Model
4.2.2. Strategies for Depth Assignment
4.3. Three-Dimensional Machine Learning Models for Mapping SOC (A3)
4.4. Model Optimization, Evaluation, and Performance Metrics
4.4.1. Model Optimization and Evaluation
4.4.2. Model Performance Metrics
5. Results
5.1. Descriptive Statistics of SOC Percentage Measurements
5.2. Model Performance and Comparisons
5.3. The Impact of RaCA Samples on Prediction Performance
6. Discussion
6.1. Model Selection and Depth Strategies
6.2. Variable Importance
6.3. Legacy Soil Samples to Improve Model Performance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sampling Date | Sampling Date | Sampling Date | Sampling Date | Sampling Date |
---|---|---|---|---|
2010-11-03 | 2011-02-08 | 2010-10-14 | 2011-04-06 | 2011-06-22 |
2010-10-27 | 2010-11-01 | 2011-08-17 | 2011-04-01 | 2011-04-12 |
2021-04-06 | 2022-04-15 | 2010-11-02 | 2020-11-04 | 2010-11-18 |
2020-05-01 | 2011-02-17 | 2011-06-06 | 2011-03-31 | 2011-05-03 |
2011-06-14 | 2010-11-19 | 2021-04-01 | 2011-05-16 | 2021-03-30 |
2011-03-25 | 2010-11-09 | 2011-02-22 | 2011-04-07 | 2011-06-01 |
2010-12-02 | 2011-05-19 | 2011-07-01 | 2010-09-21 | 2010-11-05 |
2010-12-07 | 2011-04-25 | 2011-06-30 | 2011-04-18 | 2011-03-08 |
2010-09-30 | 2011-03-23 | 2010-10-29 | 2011-03-22 | 2011-03-14 |
2022-05-26 | 2011-08-09 | 2011-05-02 | 2011-05-04 | 2011-04-14 |
2011-01-12 | 2011-06-08 | 2022-04-13 | 2011-04-28 | 2011-02-02 |
2011-05-10 | 2011-03-07 | 2020-11-05 | 2011-03-11 | 2010-11-17 |
2010-10-12 | 2011-01-04 | 2011-06-29 | 2011-05-17 | 2011-04-13 |
2022-07-20 | 2010-10-22 | 2020-11-12 | 2021-04-23 | 2011-08-03 |
2021-10-13 | 2010-10-18 | 2010-09-03 | 2011-03-30 | 2010-12-14 |
2010-10-06 | 2010-10-21 | 2010-12-06 | 2011-09-21 | 2011-06-15 |
2011-06-07 | 2010-10-05 | 2010-11-22 | 2011-06-02 | 2010-09-28 |
2011-05-06 | 2010-11-04 | 2021-04-19 | 2010-10-28 | 2020-11-17 |
2020-05-12 | 2020-04-15 | 2020-11-03 | 2021-11-08 | 2022-06-09 |
2020-05-07 | 2021-03-31 | 2011-05-24 | 2011-04-11 | 2020-11-25 |
2022-04-25 | 2021-04-08 | 2010-10-15 | 2020-11-20 | 2020-11-26 |
2022-06-10 | 2022-04-22 | 2020-11-18 | 2022-04-18 | 2021-04-02 |
2020-11-06 | 2022-04-08 | 2021-04-21 | 2020-11-23 | 2011-06-20 |
2020-11-07 | 2021-10-16 | 2011-04-20 | 2020-12-02 | 2021-10-23 |
2011-04-04 | 2011-02-15 | 2011-04-15 | 2010-11-23 | 2011-04-27 |
2011-07-08 | 2011-01-06 | 2010-11-10 | 2010-12-13 | 2010-10-26 |
2011-04-26 | 2011-03-28 | 2011-05-23 | 2011-03-01 | 2011-09-08 |
2010-11-16 | 2011-05-25 | 2010-12-08 | 2011-02-16 | 2011-03-24 |
2011-05-26 | 2011-04-21 | 2011-09-02 | 2011-05-31 | 2011-03-29 |
2011-08-10 | 2011-03-21 | 2011-06-09 | 2011-07-12 | 2010-09-29 |
2011-05-11 | 2010-12-10 | 2011-05-09 | 2010-12-16 | 2010-10-25 |
2011-06-28 | 2010-09-22 | 2011-03-18 | 2010-10-20 | 2011-02-10 |
2011-08-01 | 2011-08-08 | 2010-11-12 | 2011-09-27 | 2011-04-22 |
2010-10-07 | 2010-12-15 | 2011-07-06 | 2011-02-18 | 2010-09-27 |
2011-06-03 | 2011-07-22 | 2010-12-09 | 2011-01-24 | 2011-07-27 |
2011-03-02 | 2010-10-19 | 2011-02-03 | 2010-11-08 | 2010-11-30 |
2011-09-19 | 2010-11-15 | 2011-06-23 | 2010-11-29 | 2010-12-03 |
2011-02-23 | 2010-10-13 | 2011-11-18 | 2011-11-03 | 2010-12-22 |
2011-01-26 | 2011-05-20 | 2011-03-10 | 2011-09-12 | 2011-07-29 |
2011-01-20 | 2011-01-05 | 2011-03-15 | 2011-05-05 | 2011-05-18 |
2011-02-11 | 2011-01-27 | 2011-07-18 | 2010-09-16 | 2011-03-09 |
2011-09-20 | 2011-03-17 | 2011-07-28 | 2011-06-13 | 2010-10-03 |
2011-07-13 | 2011-06-17 | 2011-07-20 | 2011-06-10 | 2011-07-26 |
2010-12-21 | 2011-02-04 | 2011-02-24 | 2011-02-07 | 2011-01-07 |
2011-12-07 | 2010-12-01 | 2011-10-03 | 2011-05-12 | 2011-04-19 |
2021-04-07 | 2020-04-18 | 2010-12-28 | 2011-09-23 | 2010-12-27 |
2011-07-07 | 2011-09-26 | 2011-03-03 | 2010-08-25 | 2011-10-14 |
2011-05-29 | 2020-04-27 | 2010-08-30 | 2011-04-05 | 2011-06-21 |
2011-09-29 | 2011-03-04 | 2011-07-11 | 2011-01-28 | 2011-01-11 |
2011-06-16 | 2022-05-24 | 2010-09-14 | 2011-03-16 | 2011-08-29 |
2011-06-24 | 2011-05-22 | 2010-07-21 | 2011-10-11 | 2011-06-12 |
2021-04-05 | 2021-04-22 | 2011-09-22 | 2022-06-01 | 2021-11-18 |
2011-08-22 | 2010-10-08 | 2011-04-29 | 2011-02-28 | 2011-01-13 |
2022-04-09 | 2020-11-19 | 2020-05-03 | 2011-08-30 | 2011-01-03 |
2011-05-13 | 2011-08-02 | 2011-12-05 | 2010-10-01 | 2011-06-11 |
2011-01-19 | 2011-02-14 | 2011-08-18 | 2011-11-01 | 2011-07-14 |
2010-11-11 | 2010-09-15 | 2011-02-09 | 2010-12-29 | 2010-10-09 |
2020-04-30 | 2022-04-24 | 2020-11-02 | 2011-10-06 | 2022-05-25 |
2021-04-09 | 2020-05-16 | 2022-07-19 | 2020-11-15 | 2020-12-01 |
2011-08-04 | 2011-07-15 | 2011-09-01 | 2011-01-25 | 2011-01-31 |
2010-09-23 | 2010-12-20 | 2010-10-04 | 2011-04-02 | 2022-04-11 |
2011-07-25 | 2011-07-21 | 2011-07-19 | 2011-04-16 | 2010-09-20 |
2011-08-24 | 2011-01-21 | 2021-05-05 | 2020-10-30 | 2020-11-27 |
2011-02-01 | 2011-08-05 | 2021-11-20 | 2021-11-19 | 2021-11-01 |
2022-04-04 | 2020-05-11 | 2022-04-10 | 2020-12-09 | 2020-04-22 |
2021-11-04 | 2020-11-30 | 2020-05-21 | 2021-10-22 | 2021-04-10 |
2020-04-20 | 2020-04-23 | 2020-04-24 |
Data Type | Variable Name | Spatial Resolution |
---|---|---|
Long-term physical climate proxies | BIO1 (mean annual temperature) | ~1 km |
BIO6 (precipitation of wettest quarter) | ||
BIO17 (precipitation of the driest quarter) | ||
Short-term physical climate and weather data | Soil moisture | 0.2° |
Mean air temperature | ||
Potential evapotranspiration | ||
Transpiration | ||
Maximum air temperature | ||
Minimum air temperature, | ||
Shortwave radiation net flux | ||
Sensible heat flux | ||
Precipitation | ||
Water runoff | ||
Topographic and edaphic information | 3DEP evaluation | 10 m |
SoilGrids gridded clay content | 250 m | |
SoilGrids gridded sand content | ||
SoilGrids gridded silt content | ||
Remote sensing data | Sentinel-1 SAR imagery (VH and VV) | 20 m |
Sentinel-2 Blue (B2, 458–533 nm) | 10 m | |
Sentinel-2 Green (B3, 543–578 nm) | 10 m | |
Sentinel-2 Red (B4, 650–680 nm) | 10 m | |
Sentinel-2 Near-Infrared (NIR, B8, 785–900 nm) | 10 m | |
Sentienl-2 Shortwave Infrared 1 (SWIR-1, B11, 1565–1655 nm) | 20 m | |
Sentinel-2 Shortwave Infrared 2 (SWIR-2, B12, 2100–2280 nm) bands | 20 m | |
Sentinel-2 spectral indices listed in Appendix A Table A3 | 10–20 m | |
MODIS 8-day LST composite product (MOD11A2) | 1 km | |
SMAP L3 daily product | 9 km |
Spectral Indices | Equation | Source |
---|---|---|
Normalized difference vegetation index (NDVI) | [71] | |
Soil adjusted vegetation index (SAVI) | [72] | |
Soil adjusted total vegetation index (SATVI) | [73] | |
Bare Soil Index (BSI) | [74] | |
Normalized burn ratio (NBR2) | [75] | |
Normalized difference tillage index (NDTI) | [76] | |
Brightness index (BI) | [77] | |
Land surface water index (LSWI) | [78] | |
Tasseled cap brightness | [79] | |
Tasseled cap greenness | ||
Tasseled cap wetness |
Appendix B
- Step 1: The model is trained on the initial set of features, and the importance of each feature is determined.
- Step 2: The least important feature(s) are removed from the current set of features.
- Step 3: The model is then re-trained on the reduced set of features, and the process is repeated.
Type | Cross-Validation | Testing (0–30 cm) | ||
---|---|---|---|---|
RMSE (%) | r2 | RMSE (%) | r2 | |
A3-XGB-D3 | 0.30 | 0.63 | 0.31 | 0.43 |
References
- Billings, S.A.; Lajtha, K.; Malhotra, A.; Berhe, A.A.; Graaff, M.-A.; Earl, S.; Fraterrigo, J.; Georgiou, K.; Grandy, S.; Hobbie, S.E.; et al. Soil Organic Carbon Is Not Just for Soil Scientists: Measurement Recommendations for Diverse Practitioners. Ecol. Appl. 2021, 31, e02290. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration. Phil. Trans. R. Soc. B 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil Organic Carbon Stock as an Indicator for Monitoring Land and Soil Degradation in Relation to U Nited N Ations’ S Ustainable D Evelopment G Oals. Land Degrad Dev 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a Global-Scale Soil Climate Mitigation Strategy. Nat Commun 2020, 11, 5427. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put More Carbon in Soils to Meet Paris Climate Pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef]
- Ramifehiarivo, N.; Chevallier, T.; Defrance, D.; Brossard, M.; Chotte, J.-L. Framing the Future of the Koronivia Joint Work on Agriculture from Science-Based Evidence. A Review. Agron. Sustain. Dev. 2022, 42, 102. [Google Scholar] [CrossRef]
- Rietra, R.; Lesschen, J.; Porre, R. Recarbonizing Global Soils: A Technical Manual of Recommended Management Practices: Volume 3-Cropland, Grassland, Integrated Systems and Farming Approaches-Practices Overview; FAO: Rome, Italy, 2021. [Google Scholar]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Bannockburn, IL, USA, 2006. [Google Scholar]
- Smith, P.; Soussana, J.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 118, pp. 1–47. ISBN 978-0-12-405942-9. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Florinsky, I.V. The Dokuchaev Hypothesis as a Basis for Predictive Digital Soil Mapping (on the 125th Anniversary of Its Publication). Eurasian Soil Sc. 2012, 45, 445–451. [Google Scholar] [CrossRef]
- Lacoste, M.; Minasny, B.; McBratney, A.; Michot, D.; Viaud, V.; Walter, C. High Resolution 3D Mapping of Soil Organic Carbon in a Heterogeneous Agricultural Landscape. Geoderma 2014, 213, 296–311. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island—Digital Soil Mapping Using Random Forests Analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Coull, M.C. Mapping Soil Carbon Stocks across Scotland Using a Neural Network Model. Geoderma 2016, 262, 187–198. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Deep Learning for Digital Soil Mapping. SOIL 2019, 5, 79–89. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 125, pp. 93–134. ISBN 978-0-12-800137-0. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Mendonça-Santos, M.L.; Odeh, I.O.A.; Guyon, B. Prediction and Digital Mapping of Soil Carbon Storage in the Lower Namoi Valley. Soil Res. 2006, 44, 233. [Google Scholar] [CrossRef]
- Veronesi, F.; Corstanje, R.; Mayr, T. Landscape Scale Estimation of Soil Carbon Stock Using 3D Modelling. Sci. Total Environ. 2014, 487, 578–586. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A. National Scale 3D Modelling of Soil Organic Carbon Stocks with Uncertainty Propagation—An Example from Scotland. Geoderma 2014, 232–234, 284–299. [Google Scholar] [CrossRef]
- Sothe, C.; Gonsamo, A.; Arabian, J.; Snider, J. Large Scale Mapping of Soil Organic Carbon Concentration with 3D Machine Learning and Satellite Observations. Geoderma 2022, 405, 115402. [Google Scholar] [CrossRef]
- Liu, F.; Rossiter, D.G.; Song, X.-D.; Zhang, G.-L.; Yang, R.-M.; Zhao, Y.-G.; Li, D.-C.; Ju, B. A Similarity-Based Method for Three-Dimensional Prediction of Soil Organic Matter Concentration. Geoderma 2016, 263, 254–263. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; McBratney, A.B.; Laslett, G.M. Modelling Soil Attribute Depth Functions with Equal-Area Quadratic Smoothing Splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Rentschler, T.; Werban, U.; Ahner, M.; Behrens, T.; Gries, P.; Scholten, T.; Teuber, S.; Schmidt, K. 3D Mapping of Soil Organic Carbon Content and Soil Moisture with Multiple Geophysical Sensors and Machine Learning. Vadose Zone J. 2020, 19, e20062. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef]
- Orton, T.G.; Pringle, M.J.; Bishop, T.F.A.; Menzies, N.W.; Dang, Y.P. Increment-Averaged Kriging for 3-D Modelling and Mapping Soil Properties: Combining Machine Learning and Geostatistical Methods. Geoderma 2020, 361, 114094. [Google Scholar] [CrossRef]
- Orton, T.G.; Pringle, M.J.; Bishop, T.F.A. A One-Step Approach for Modelling and Mapping Soil Properties Based on Profile Data Sampled over Varying Depth Intervals. Geoderma 2016, 262, 174–186. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Aitkenhead, M.; Coull, M. Mapping Soil Profile Depth, Bulk Density and Carbon Stock in Scotland Using Remote Sensing and Spatial Covariates. Eur. J. Soil Sci. 2020, 71, 553–567. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; McBratney, A.; Poggio, L.; Fajardo, M. Predicting Soil Properties in 3D: Should Depth Be a Covariate? Geoderma 2021, 383, 114794. [Google Scholar] [CrossRef]
- Nauman, T.W.; Duniway, M.C. Relative Prediction Intervals Reveal Larger Uncertainty in 3D Approaches to Predictive Digital Soil Mapping of Soil Properties with Legacy Data. Geoderma 2019, 347, 170–184. [Google Scholar] [CrossRef]
- Minasny, B.; Stockmann, U.; Hartemink, A.E.; McBratney, A.B. Measuring and Modelling Soil Depth Functions. In Digital Soil Morphometrics; Hartemink, A.E., Minasny, B., Eds.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 225–240. ISBN 978-3-319-28294-7. [Google Scholar]
- Aldana Jague, E.; Sommer, M.; Saby, N.P.A.; Cornelis, J.-T.; Van Wesemael, B.; Van Oost, K. High Resolution Characterization of the Soil Organic Carbon Depth Profile in a Soil Landscape Affected by Erosion. Soil Tillage Res. 2016, 156, 185–193. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Slater, B.; Calhoun, F.; Liu, D.; Van Meirvenne, M. Predicting Soil Organic Carbon Stock Using Profile Depth Distribution Functions and Ordinary Kriging. Soil Sci. Soc. Am. J. 2009, 73, 614–621. [Google Scholar] [CrossRef]
- Malone, B.P.; Odgers, N.P.; Stockmann, U.; Minasny, B.; McBratney, A.B. Digital Mapping of Soil Classes and Continuous Soil Properties. In Pedometrics; McBratney, A.B., Minasny, B., Stockmann, U., Eds.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 373–413. ISBN 978-3-319-63437-1. [Google Scholar]
- Chen, C.; Hu, K.; Li, H.; Yun, A.; Li, B. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function. PLoS ONE 2015, 10, e0129038. [Google Scholar] [CrossRef]
- Bradford, M.A.; Carey, C.J.; Atwood, L.; Bossio, D.; Fenichel, E.P.; Gennet, S.; Fargione, J.; Fisher, J.R.B.; Fuller, E.; Kane, D.A.; et al. Soil Carbon Science for Policy and Practice. Nat. Sustain. 2019, 2, 1070–1072. [Google Scholar] [CrossRef]
- Gillenwater, M.; Broekhoff, D.; Trexler, M.; Hyman, J.; Fowler, R. Policing the Voluntary Carbon Market. Nat. Clim. Change 2007, 1, 85–87. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Rabenhorst, M.C. Determination of Organic and Carbonate Carbon in Calcareous Soils Using Dry Combustion. Soil Sci. Soc. Am. J. 1988, 52, 965–968. [Google Scholar] [CrossRef]
- Wills, S.; Loecke, T.; Sequeira, C.; Teachman, G.; Grunwald, S.; West, L.T. Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates. In Soil Carbon; Hartemink, A.E., McSweeney, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 95–104. ISBN 978-3-319-04083-7. [Google Scholar]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution. Soil Sci. Soc. Am. J. 2018, 82, 186–201. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A Global Map of Mangrove Forest Soil Carbon at 30 m Spatial Resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Stoker, J.; Miller, B. The Accuracy and Consistency of 3D Elevation Program Data: A Systematic Analysis. Remote Sens. 2022, 14, 940. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Warsaw, Poland, 2017; p. 3. [Google Scholar]
- Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O.; et al. Cloud Mask Intercomparison eXercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and Driving Factors of Biomass Carbon and Soil Organic Carbon Stock in the Indian Himalayan Region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; PMLR: London, UK, 2017; pp. 528–536. [Google Scholar]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Kimes, D.S.; Nelson, R.F.; Manry, M.T.; Fung, A.K. Review Article: Attributes of Neural Networks for Extracting Continuous Vegetation Variables from Optical and Radar Measurements. Int. J. Remote Sens. 1998, 19, 2639–2663. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1, 297–318. [Google Scholar] [CrossRef]
- Augustin, N.H.; Musio, M.; von Wilpert, K.; Kublin, E.; Wood, S.N.; Schumacher, M. Modeling Spatiotemporal Forest Health Monitoring Data. J. Am. Stat. Assoc. 2009, 104, 899–911. [Google Scholar] [CrossRef]
- Hounkpatin, K.O.L.; Stendahl, J.; Lundblad, M.; Karltun, E. Predicting the Spatial Distribution of Soil Organic Carbon Stock in Swedish Forests Using a Group of Covariates and Site-Specific Data. SOIL 2021, 7, 377–398. [Google Scholar] [CrossRef]
- Karunaratne, S.B.; Bishop, T.F.A.; Odeh, I.O.A.; Baldock, J.A.; Marchant, B.P. Estimating Change in Soil Organic Carbon Using Legacy Data as the Baseline: Issues, Approaches and Lessons to Learn. Soil Res. 2014, 52, 349. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Chabala, L.M.; Sichinga, S.; Lark, R.M. Accessing and Assessing Legacy Soil Information, an Example from Two Provinces of Zambia. Geoderma 2022, 420, 115874. [Google Scholar] [CrossRef]
- Odeh, I.O.; Leenaars, J.; Hartemink, A.; Amapu, I. The Challenges of Collating Legacy Data for Digital Mapping of Nigerian Soils. Digit Soil Assess. Beyond 2012, 453–458. [Google Scholar]
- Schillaci, C.; Acutis, M.; Vesely, F.; Saia, S. A Simple Pipeline for the Assessment of Legacy Soil Datasets: An Example and Test with Soil Organic Carbon from a Highly Variable Area. Catena 2019, 175, 110–122. [Google Scholar] [CrossRef]
- Zádorová, T.; Skála, J.; Žížala, D.; Vaněk, A.; Penížek, V. Harmonization of a Large-Scale National Soil Database with the World Reference Base for Soil Resources 2014. Geoderma 2021, 384, 114819. [Google Scholar] [CrossRef]
- Borovicka, T.; Jirina Jr, M.; Kordik, P.; Jirina, M. Selecting Representative Data Sets. Adv. Data Min. Knowl. Discov. Appl. 2012, 12, 43–70. [Google Scholar]
- Lodder, P. To Impute or Not Impute: That’s the Question. In Advising on Research Methods: Selected Topics 2013; Johannes van Kessel Publishing: Huizen, The Netherlands, 2013; pp. 1–7. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Carolyn Watson, M.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote Sensing for Grassland Management in the Arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E. Rogier De Jong Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A Powerful Data Mining Procedure to Retrieve Soil Spectral Reflectance from Satellite Images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Marques, M.J.; Alvarez, A.; Carral, P.; Sastre, B.; Bienes, R. The Use of Remote Sensing to Detect the Consequences of Erosion in Gypsiferous Soils. Int. Soil Water Conserv. Res. 2020, 8, 383–392. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Shi, T.; Xu, H. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4038–4048. [Google Scholar] [CrossRef]
Model Type | Explanation | Are Surface and Subsurface SOC Measurements Needed at the Same Location? | Is There Vertical Independence of SOC Predictions among Depth Intervals? | Is a Surface SOC Value Required to Predict at Depth? | Input Variables |
---|---|---|---|---|---|
A1 | Models built for individual depth intervals | No | Yes | Yes | Environmental and remote sensing covariates at each interval |
A2 | Geostatistical model in 3D | Yes | No | Yes | Depth + Environmental/remote sensing variables |
A3 | Depth as a model feature in machine learning | No | No | No | Depth + Environmental/remote sensing variables |
A4 | A function to explain soil attributes by depth | Yes | No | Yes | Environmental and remote sensing variables |
Type | Cross-Validations | Testing (0–30 cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE (%) | ME (%) | RMSE (%) | r2 | MEC | MAE (%) | ME (%) | RMSE (%) | r2 | MEC | b0 | b1 | |
A1-ANN | 0.26/0.25 | 0.00/0.00 | 0.34/0.36 | 0.58/0.46 | 0.57/0.44 | 0.29 | −0.03 | 0.33 | 0.17 | 0.11 | −0.99 | 1.92 |
A1-RF | 0.23/0.23 | 0.00/−0.02 | 0.32/0.34 | 0.64/0.49 | 0.64/0.49 | 0.34 | −0.25 | 0.33 | 0.31 | −0.11 | −0.02 | 0.80 |
A1-XGB | 0.24/0.24 | 0.00/0.00 | 0.33/0.34 | 0.62/0.49 | 0.62/0.49 | 0.25 | −0.10 | 0.31 | 0.39 | 0.31 | 0.12 | 0.85 |
A2-D1 | 0.26 | 0.00 | 0.35 | 0.61 | 0.61 | 0.56 | 0.54 | 0.32 | 0.34 | −1.91 | 0.76 | 0.49 |
A2-D2 | 0.24 | 0.00 | 0.32 | 0.68 | 0.68 | 0.54 | 0.45 | 0.35 | 0.22 | −1.64 | 0.95 | 0.48 |
A2-D3 | 0.27 | 0.00 | 0.37 | 0.55 | 0.54 | 0.35 | 0.13 | 0.34 | 0.28 | −0.15 | 0.76 | 0.48 |
A3-ANN-D1 | 0.25 | 0.01 | 0.33 | 0.64 | 0.63 | 0.55 | 0.52 | 0.36 | 0.16 | −1.69 | 0.87 | 0.57 |
A3-RF-D1 | 0.24 | 0.00 | 0.33 | 0.65 | 0.64 | 0.27 | −0.07 | 0.32 | 0.33 | 0.30 | −0.05 | 0.47 |
A3-XGB-D1 | 0.24 | 0.00 | 0.33 | 0.65 | 0.64 | 0.58 | 0.53 | 0.35 | 0.21 | −2.04 | 0.99 | 0.43 |
A3-ANN-D2 | 0.21 | 0.00 | 0.32 | 0.74 | 0.74 | 0.50 | 0.42 | 0.36 | 0.16 | −1.24 | 0.98 | 0.39 |
A3-RF-D2 | 0.22 | 0.00 | 0.30 | 0.94 | 0.93 | 0.29 | 0.13 | 0.35 | 0.22 | 0.08 | 0.47 | 0.73 |
A3-XGB-D2 | 0.24 | 0.00 | 0.28 | 0.89 | 0.89 | 0.35 | 0.22 | 0.33 | 0.31 | −0.22 | 0.74 | 0.54 |
A3-ANN-D3 | 0.24 | 0.00 | 0.33 | 0.65 | 0.66 | 0.46 | −0.77 | 0.35 | 0.21 | −6.8 | 0.91 | 0.20 |
A3-RF-D3 | 0.21 | 0.00 | 0.35 | 0.58 | 0.58 | 0.27 | −0.09 | 0.33 | 0.29 | 0.22 | −0.20 | 1.08 |
A3-XGB-D3 | 0.20 | 0.00 | 0.23 | 0.72 | 0.72 | 0.25 | 0.06 | 0.29 | 0.48 | 0.36 | 0.13 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, P.; Clanton, C.; Demuth, K.M.; Goodman, V.; Griffith, L.; Khim-Young, M.; Maddalena, J.; LaMarca, K.; Wright, L.A.; Schurman, D.W.; et al. Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning. Remote Sens. 2024, 16, 2217. https://doi.org/10.3390/rs16122217
Fu P, Clanton C, Demuth KM, Goodman V, Griffith L, Khim-Young M, Maddalena J, LaMarca K, Wright LA, Schurman DW, et al. Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning. Remote Sensing. 2024; 16(12):2217. https://doi.org/10.3390/rs16122217
Chicago/Turabian StyleFu, Peng, Christian Clanton, Kirk M. Demuth, Verena Goodman, Lauren Griffith, Mage Khim-Young, Julia Maddalena, Kenny LaMarca, Logan A. Wright, David W. Schurman, and et al. 2024. "Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning" Remote Sensing 16, no. 12: 2217. https://doi.org/10.3390/rs16122217
APA StyleFu, P., Clanton, C., Demuth, K. M., Goodman, V., Griffith, L., Khim-Young, M., Maddalena, J., LaMarca, K., Wright, L. A., Schurman, D. W., & Kellner, J. R. (2024). Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning. Remote Sensing, 16(12), 2217. https://doi.org/10.3390/rs16122217