A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images
Abstract
:1. Introduction
2. Background
3. Fully Supervised Methods for Road Extraction
3.1. Methods Based on Patch-CNNs
3.2. Methods Based on Encoder–Decoder
3.2.1. Methods Based on FCNs
3.2.2. Methods Based on UNet
3.2.3. Methods Based on FPNs
3.2.4. Methods Based on SegNet
3.2.5. Methods Based on LinkNet
3.2.6. Methods Based on DeepLab
3.3. Methods Based on GAN
3.4. Methods Based on Graph
3.4.1. Methods Based on Graph Representation
3.4.2. Methods Based on Iterative Detection
3.4.3. Methods Based on Polygon Boundary
3.5. Methods Based on Transformer
3.6. Methods Based on Mamba
3.7. Comparison of Six Models Based on Fully-Supervised Learning Methods
4. Semi-Supervised Methods for Road Extraction
4.1. Methods Based on Less Labeled Data
4.2. Methods Based on Weak Labeled Data
5. Unsupervised Methods for Road Extraction
5.1. Methods Based on Models with Fewer Parameters
5.2. Methods Based on Large Remote Sensing Models
6. Metrics
6.1. Accuracy
6.2. Precision
6.3. Recall
6.4. F1 Score
6.5. IoU
6.6. mIoU
6.7. APLS
6.8. ECM
6.9. CC
7. Datasets
7.1. Massachusetts
7.2. DeepGlobe
7.3. SpaceNet
7.4. CHN6-CUG
8. Discussion
9. Conclusions
- Multi-modal Data FusionAs technology continues to progress, the effective fusion of multi-modal data from different sensors, such as remote sensing images, LiDAR images, and videos, is becoming a focal point of current research. The integration of multi-modal data not only offers a wealth of information but also addresses the limitations of relying on a single data source, leading to a better capture of road features. For example, LiDAR data can provide highly accurate terrain information, while high-definition video data are capable of capturing dynamic changes on the roads. The combination of various data modalities allows for more precise identification of road positions, shapes, and features, thus improving the robustness and generalization of road extraction models.
- Semi-supervised Networks or Unsupervised NetworksCurrently, most road extraction methods are based on fully supervised models, which rely on manually annotated datasets. This process is time-consuming, labor-intensive, and the annotated data are often limited in size, leading to potential performance issues when applied to other datasets. Therefore, the exploration of semi-supervised and unsupervised approaches, which aim to understand the internal structure of data or facilitate adaptive training without human annotation, remains a prominent research focus. Presently, methods based on GAN can automatically generate data annotations to bridge the gap between synthetic and real images, making it a significant direction for future research.
- Adaptive Modeling in Complex ScenariosThe adaptability of road extraction models on remote sensing images is crucial when encountering complex scenarios. This adaptability enables models to effectively extract road information in diverse environments, including urban settings with building occlusions, tree cover, and uneven lighting conditions. By learning and understanding complex scenes, models can adapt to different geographical environments and remote sensing images conditions, thereby improving the accuracy and robustness of road extraction. Techniques such as multi-modal data fusion, data augmentation, and adversarial training can be employed to continuously enhance model structures and algorithms, enabling them to better adapt to various challenges and changes.
- Lightweight NetworksMany road extraction methods, such as Graph-based and Transformer-based approaches, encounter challenges related to large computational requirements. Therefore, designing lightweight networks is necessary. Lightweight networks can significantly reduce model parameters and computational complexity while maintaining high accuracy. Leveraging knowledge distillation techniques, key knowledge about road features can be extracted from large and complex models and transferred to lightweight networks, enabling them to learn effective road feature representations.
Funding
Data Availability Statement
Conflicts of Interest
References
- Qian, D.; Wang, Y.; Zhang, X.; Zhao, D. Rationality Evaluation of Urban Road Network Plan Based on the EW-TOPSIS Method. In Proceedings of the 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Beihai, China, 16–17 January 2021; pp. 840–844. [Google Scholar]
- Liu, H.; Wang, Y. The apply of urban design in the detailed planning of residential areas. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 4164–4166. [Google Scholar]
- Qi, H.; Shi, J.; Chen, J.; Chi, C.; Shan, H. Research on the Complete Design, Construction and Management of Urban Road in Dalian City under the Concept of “People-Oriented Traffic”. In Proceedings of the 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 15–17 May 2020; pp. 457–460. [Google Scholar]
- Cruz, G.G.L.; Litonjua, A.; Juan, A.N.P.S.; Libatique, N.J.; Tan, M.I.L.; Honrado, J.L.E. Motorcycle and Vehicle Detection for Applications in Road Safety and Traffic Monitoring Systems. In Proceedings of the 2022 IEEE Global Humanitarian Technology Conference (GHTC), Santa Clara, CA, USA, 8–11 September 2022; pp. 102–105. [Google Scholar]
- Shao, Z.; Zheng, J.; Yue, G.; Yang, Y. Road Traffic Assignment Algorithm Based on Computer Vision. In Proceedings of the 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS), Kalaburagi, India, 24–25 November 2023; pp. 1–5. [Google Scholar]
- Seid, S.; Zennaro, M.; Libsie, M.; Pietrosemoli, E.; Manzoni, P. A Low Cost Edge Computing and LoRaWAN Real Time Video Analytics for Road Traffic Monitoring. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 17–19 December 2020; pp. 762–767. [Google Scholar]
- Wu, J.; Han, X.; Zhou, Y.; Yue, P.; Wang, X.; Lu, J.; Jiang, W.; Li, J.; Tang, H.; Wang, F.; et al. Disaster Monitoring and Emergency Response Services in China. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3473–3476. [Google Scholar]
- Huang, Y.; Wei, H.; Yang, J.; Wu, M. Damaged Road Extraction Based on Simulated Post-Disaster Remote Sensing Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4684–4687. [Google Scholar]
- Wang, J.; Qin, Q.; Zhao, J.; Ye, X.; Qin, X.; Yang, X.; Wang, J.; Zheng, X.; Sun, Y. A knowledge-based method for road damage detection using high-resolution remote sensing image. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3564–3567. [Google Scholar]
- Xu, Y.; Liu, S.; Peng, Y. Research and design of environmental monitoring and road lighting system based on the Internet of things. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 1073–1078. [Google Scholar]
- Wan, Y.; Hu, X.; Zhong, Y.; Ma, A.; Wei, L.; Zhang, L. Tailings Reservoir Disaster and Environmental Monitoring Using the UAV-ground Hyperspectral Joint Observation and Processing: A Case of Study in Xinjiang, the Belt and Road. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9713–9716. [Google Scholar]
- Dong, L. The Research on Model Framework of the Trunk Road Network Operation and Environmental Monitoring. In Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Hormese, J.; Saravanan, C. Automated road extraction from high resolution satellite images. Procedia Technol. 2016, 24, 1460–1467. [Google Scholar] [CrossRef]
- Nidamanuri, R.R. Hyperspectral discrimination of tea plant varieties using machine learning, and spectral matching methods. Remote Sens. Appl. Soc. Environ. 2020, 19, 100350. [Google Scholar] [CrossRef]
- Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A review of road extraction from remote sensing images. J. Traffic Transp. Eng. (Engl. Ed.) 2016, 3, 271–282. [Google Scholar] [CrossRef]
- Lian, R.; Wang, W.; Mustafa, N.; Huang, L. Road extraction methods in high-resolution remote sensing images: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5489–5507. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, L.; Luo, Y.; Li, D.; Junior, J.M.; Gonçalves, W.N.; Nurunnabi, A.A.M.; Li, J.; Wang, C.; Li, D. Road extraction in remote sensing data: A survey. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102833. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep learning approaches applied to remote sensing datasets for road extraction: A state-of-the-art review. Remote Sens. 2020, 12, 1444. [Google Scholar] [CrossRef]
- Pruthi, J.; Dhingra, S. A Review of Research on Road Feature Extraction Through Remote Sensing Images Based on Deep Learning Algorithms. In Proceedings of the 2023 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT), Dehradun, India, 8–9 September 2023; pp. 1–5. [Google Scholar]
- Liu, P.; Wang, Q.; Yang, G.; Li, L.; Zhang, H. Survey of road extraction methods in remote sensing images based on deep learning. PFG- Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 135–159. [Google Scholar] [CrossRef]
- Mo, S.; Shi, Y.; Yuan, Q.; Li, M. A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images. Sensors 2024, 24, 1708. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Popescu, A.A.; Gavat, I.; Datcu, M. Contextual Descriptors for Scene Classes in Very High Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 80–84. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Wu, Y. Road network extraction in high-resolution SAR images based CNN features. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1664–1667. [Google Scholar]
- Saito, S.; Yamashita, T.; Aoki, Y. Multiple object extraction from aerial imagery with convolutional neural networks. Electron. Imaging 2016, 28, 010402-1–010402-9. [Google Scholar] [CrossRef]
- Sun, G.; Yan, H. Ultra-High Resolution Image Segmentation with Efficient Multi-Scale Collective Fusion. In Proceedings of the 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP), Suzhou, China, 13–16 December 2022; pp. 1–5. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Wei, Y.; Wang, Z.; Xu, M. Road Structure Refined CNN for Road Extraction in Aerial Image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 709–713. [Google Scholar] [CrossRef]
- Henry, C.; Azimi, S.M.; Merkle, N. Road Segmentation in SAR Satellite Images With Deep Fully Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1867–1871. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Li, C.; Wu, J.; Tang, X.; Jiao, L. Fully Convolutional Network-Based Ensemble Method for Road Extraction From Aerial Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1777–1781. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Qiao, M.; Cheng, X.; Li, Z.; Luo, H.; Song, D.; Li, D.; Hu, S.; Li, R.; et al. Robust Deep Neural Networks for Road Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6182–6197. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Liu, C.; Yang, Y.; Yang, S.; Zhang, Z. A Modified Convolutional Neural Network with Transfer Learning for Road Extraction from Remote Sensing Imagery. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 4263–4267. [Google Scholar]
- Babaali, K.O.; Zigh, E.; Djebbouri, M.; Chergui, O. A new approach for road extraction using data augmentation and semantic segmentation. Indones. J. Electr. Eng. Comput. Sci. 2022, 28, 1493–1501. [Google Scholar]
- Kestur, R.; Farooq, S.; Abdal, R.; Mehraj, E.; Narasipura, O.; Mudigere, M. UFCN: A fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 2018, 12, 016020. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xia, M.; Wang, X.; Liu, Y. RoadNet: Learning to Comprehensively Analyze Road Networks in Complex Urban Scenes From High-Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2043–2056. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Ding, L.; Bruzzone, L. DiResNet: Direction-Aware Residual Network for Road Extraction in VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10243–10254. [Google Scholar] [CrossRef]
- Qi, Y.; He, Y.; Qi, X.; Zhang, Y.; Yang, G. Dynamic Snake Convolution Based on Topological Geometric Constraints for Tubular Structure Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 6070–6079. [Google Scholar]
- Li, Y.; Guo, L.; Rao, J.; Xu, L.; Jin, S. Road Segmentation Based on Hybrid Convolutional Network for High-Resolution Visible Remote Sensing Image. IEEE Geosci. Remote Sens. Lett. 2019, 16, 613–617. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Wang, L.; Zhong, Y.; Guan, Q.; Lu, X.; Zhang, L.; Li, D. A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 353–365. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, D.; Yang, Y.; Zhang, J.; Chen, Z. Road Extraction From Satellite Imagery by Road Context and Full-Stage Feature. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Gao, L.; Song, W.; Dai, J.; Chen, Y. Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network. Remote Sens. 2019, 11, 552. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, F.; Wu, P.; Wang, B.; Yang, H.; Wu, Y. Automatic Road Extraction from High-Resolution Remote Sensing Images Using a Method Based on Densely Connected Spatial Feature-Enhanced Pyramid. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3–17. [Google Scholar] [CrossRef]
- Hong, Z.; Ming, D.; Zhou, K.; Guo, Y.; Lu, T. Road Extraction From a High Spatial Resolution Remote Sensing Image Based on Richer Convolutional Features. IEEE Access 2018, 6, 46988–47000. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 2018, 10, 1461. [Google Scholar] [CrossRef]
- Dong, S.; Chen, Z. Block Multi-Dimensional Attention for Road Segmentation in Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Xiao, D.; Yin, L.; Fu, Y. Open-Pit Mine Road Extraction From High-Resolution Remote Sensing Images Using RATT-UNet. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, G.; Zhang, R. RADANet: Road Augmented Deformable Attention Network for Road Extraction From Complex High-Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Mei, J.; Li, R.J.; Gao, W.; Cheng, M.M. CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery. IEEE Trans. Image Process. 2021, 30, 8540–8552. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, H. Modulation Learning on Fourier-Domain for Road Extraction From Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Patil, P.S.; Holambe, R.; Waghmare, L. An Attention Augmented Convolution-based Tiny-Residual UNet for Road Extraction. IEEE Trans. Artif. Intell. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Li, W.; Alexandropoulos, G.C.; Yu, J.; Ge, D.; Xiang, W. DDU-Net: Dual-Decoder-U-Net for Road Extraction Using High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, K.; Tan, Y.; Wang, X.; Zhu, R.; Zhang, L. AD-RoadNet: An Auxiliary-Decoding Road Extraction Network Improving Connectivity While Preserving Multiscale Road Details. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8049–8062. [Google Scholar] [CrossRef]
- Sun, S.; Yang, Z.; Ma, T. Lightweight Remote Sensing Road Detection Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Sultonov, F.; Park, J.H.; Yun, S.; Lim, D.W.; Kang, J.M. Mixer U-Net: An improved automatic road extraction from UAV imagery. Appl. Sci. 2022, 12, 1953. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Liu, G.; Lin, Y.; Liu, Q. LOANet: A lightweight network using object attention for extracting buildings and roads from UAV aerial remote sensing images. PeerJ Comput. Sci. 2023, 9, e1467. [Google Scholar] [CrossRef]
- Hao, S.; Wang, W.; Salzmann, M. Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2448–2460. [Google Scholar] [CrossRef]
- Ge, Z.; Zhao, Y.; Wang, J.; Wang, D.; Si, Q. Deep Feature-Review Transmit Network of Contour-Enhanced Road Extraction From Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Qiu, L.; Yu, D.; Zhang, C.; Zhang, X. A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Z.; Du, B.; Dong, Y. A Deep Cross-Modal Fusion Network for Road Extraction With High-Resolution Imagery and LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, Y.; Xu, S.; Wang, H.; Xiang, S.; Pan, C. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322–3337. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Gao, X.; Sun, X.; Zhang, Y.; Yan, M.; Xu, G.; Sun, H.; Jiao, J.; Fu, K. An End-to-End Neural Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network. IEEE Access 2018, 6, 39401–39414. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Panboonyuen, T.; Vateekul, P.; Jitkajornwanich, K.; Lawawirojwong, S. An enhanced deep convolutional encoder-decoder network for road segmentation on aerial imagery. In Proceedings of the Recent Advances in Information and Communication Technology 2017: Proceedings of the 13th International Conference on Computing and Information Technology (IC2IT), Bangkok, Thailand, 6–7 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 191–201. [Google Scholar]
- Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields. Remote Sens. 2017, 9, 680. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, Z.; Chen, L.; Li, G. DANet: A Semantic Segmentation Network for Remote Sensing of Roads Based on Dual-ASPP Structure. Electronics 2023, 12, 3243. [Google Scholar] [CrossRef]
- Akhtar, N.; Mandloi, M. DenseResSegnet: A Dense Residual Segnet for Road Detection Using Remote Sensing Images. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 182–186. [Google Scholar]
- Li, Y.; Peng, B.; Fan, K.; Yuan, L.; Tong, L.; He, L. New Neural Network and an Image Postprocessing Method for High Resolution Satellite Imagery Road Extraction. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3935–3938. [Google Scholar]
- Xie, Y.; Miao, F.; Zhou, K.; Peng, J. HsgNet: A road extraction network based on global perception of high-order spatial information. ISPRS Int. J. Geo-Inf. 2019, 8, 571. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, J.; Liang, C.; Jing, Y. Spd-Linknet: Upgraded D-Linknet with Strip Pooling for Road Extraction. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2190–2193. [Google Scholar]
- Wang, Q.; Bai, H.; He, C.; Cheng, J. Fe-LinkNet: Enhanced D-LinkNet with Attention and Dense Connection for Road Extraction in High-Resolution Remote Sensing Images. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3043–3046. [Google Scholar]
- Lu, X.; Zhong, Y.; Zheng, Z. A Novel Global-Aware Deep Network for Road Detection of Very High Resolution Remote Sensing Imagery. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2579–2582. [Google Scholar]
- Jie, Y.; He, H.; Xing, K.; Yue, A.; Tan, W.; Yue, C.; Jiang, C.; Chen, X. MECA-Net: A MultiScale feature encoding and long-range context-aware network for road extraction from remote sensing images. Remote Sens. 2022, 14, 5342. [Google Scholar] [CrossRef]
- Wu, K.Y.; Wang, X.; Zhou, J.J.; Wang, X.F.; Fan, Y.P.; Yao, M. An Improved D-Linknet Method for Road Extraction from High Resolution Remote Sensing Images. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; pp. 175–180. [Google Scholar]
- Wang, Y.; Seo, J.; Jeon, T. NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Sun, T.; Di, Z.; Che, P.; Liu, C.; Wang, Y. Leveraging crowdsourced GPS data for road extraction from aerial imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7509–7518. [Google Scholar]
- Liu, L.; Yang, Z.; Li, G.; Wang, K.; Chen, T.; Lin, L. Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust Road Extraction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3308–3322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Q.; Zhong, Y.; Guan, Q.; Zhang, L.; Li, D. A Modified D-Linknet with Transfer Learning for Road Extraction from High-Resolution Remote Sensing. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1817–1820. [Google Scholar]
- Wu, K.; Cai, F. Dual Attention D-LinkNet for Road Segmentation in Remote Sensing Images. In Proceedings of the 2022 IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), Chongqing, China, 8–11 July 2022; pp. 304–307. [Google Scholar]
- Ai, J.; Hou, S.; Wu, M.; Chen, B.; Yan, H. MPGSE-D-LinkNet: Multiple-Parameters-Guided Squeeze-and-Excitation Integrated D-LinkNet for Road Extraction in Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Hu, J.; Gao, J.; Yuan, Y.; Chanussot, J.; Wang, Q. LGNet: Location-Guided Network for Road Extraction From Satellite Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Gu, Z.; Wu, T.; Ahmed, Y.A.E. RUW-Net: A Dual Codec Network for Road Extraction From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1550–1564. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Lin, Y.; Xu, D.; Wang, N.; Shi, Z.; Chen, Q. Road extraction from very-high-resolution remote sensing images via a nested SE-Deeplab model. Remote Sens. 2020, 12, 2985. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Yang, C.; Wang, Z. An Ensemble Wasserstein Generative Adversarial Network Method for Road Extraction From High Resolution Remote Sensing Images in Rural Areas. IEEE Access 2020, 8, 174317–174324. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Sharma, G.; Maulud, K.N.A.; Alamri, A. Improving Road Semantic Segmentation Using Generative Adversarial Network. IEEE Access 2021, 9, 64381–64392. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Zang, Y.; Wang, C.; Li, J.; Li, X. Topology-aware road network extraction via multi-supervised generative adversarial networks. Remote Sens. 2019, 11, 1017. [Google Scholar] [CrossRef]
- Máttyus, G.; Luo, W.; Urtasun, R. Deeproadmapper: Extracting road topology from aerial images. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3438–3446. [Google Scholar]
- Zao, Y.; Zou, Z.; Shi, Z. Topology-Guided Road Graph Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Gao, S.H.; Li, X.Y.; Cheng, M.M.; Ren, B. Vecroad: Point-based iterative graph exploration for road graphs extraction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8910–8918. [Google Scholar]
- Lian, R.; Huang, L. DeepWindow: Sliding Window Based on Deep Learning for Road Extraction From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1905–1916. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Y.; Liu, M. icurb: Imitation learning-based detection of road curbs using aerial images for autonomous driving. IEEE Robot. Autom. Lett. 2021, 6, 1097–1104. [Google Scholar] [CrossRef]
- Castrejon, L.; Kundu, K.; Urtasun, R.; Fidler, S. Annotating object instances with a polygon-rnn. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5230–5238. [Google Scholar]
- Hu, Y.; Wang, Z.; Huang, Z.; Liu, Y. PolyRoad: Polyline Transformer for Topological Road-Boundary Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Liu, W.; Gao, S.; Zhang, C.; Yang, B. RoadCT: A Hybrid CNN-Transformer Network for Road Extraction From Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Meng, Q.; Zhou, D.; Zhang, X.; Yang, Z.; Chen, Z. Road Extraction from Remote Sensing Images via Channel Attention and Multi-Layer Axial Transformer. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5504705. [Google Scholar] [CrossRef]
- Yuan, Z.; Mou, L.; Hua, Y.; Zhu, X.X. RRSIS: Referring Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Pun, M.O. Rs3mamba: Visual state space model for remote sensing images semantic segmentation. arXiv 2024, arXiv:2404.02457. [Google Scholar]
- Zhu, Q.; Cai, Y.; Fang, Y.; Yang, Y.; Chen, C.; Fan, L.; Nguyen, A. Samba: Semantic segmentation of remotely sensed images with state space model. arXiv 2024, arXiv:2404.01705. [Google Scholar]
- Cheng, G.; Zhu, F.; Xiang, S.; Pan, C. Road Centerline Extraction via Semisupervised Segmentation and Multidirection Nonmaximum Suppression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 545–549. [Google Scholar] [CrossRef]
- Bonafilia, D.; Gill, J.; Basu, S.; Yang, D. Building high resolution maps for humanitarian aid and development with weakly-and semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 1–9. [Google Scholar]
- Hu, A.; Chen, S.; Wu, L.; Xie, Z.; Qiu, Q.; Xu, Y. WSGAN: An improved generative adversarial network for remote sensing image road network extraction by weakly supervised processing. Remote Sens. 2021, 13, 2506. [Google Scholar] [CrossRef]
- Hetang, C.; Xue, H.; Le, C.; Yue, T.; Wang, W.; He, Y. Segment Anything Model for Road Network Graph Extraction. arXiv 2024, arXiv:2403.16051. [Google Scholar]
- Zhang, Q.; Zhang, J.; Liu, W.; Tao, D. Category anchor-guided unsupervised domain adaptation for semantic segmentation. Adv. Neural Inf. Process. Syst. 2019, 32, 433–443. [Google Scholar]
- He, S.; Bastani, F.; Jagwani, S.; Alizadeh, M.; Balakrishnan, H.; Chawla, S.; Elshrif, M.M.; Madden, S.; Sadeghi, M.A. Sat2graph: Road graph extraction through graph-tensor encoding. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part XXIV 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–67. [Google Scholar]
- Ren, Y.; Yu, Y.; Guan, H. DA-CapsUNet: A dual-attention capsule U-Net for road extraction from remote sensing imagery. Remote Sens. 2020, 12, 2866. [Google Scholar] [CrossRef]
- Wu, S.; Du, C.; Chen, H.; Xu, Y.; Guo, N.; Jing, N. Road extraction from very high resolution images using weakly labeled OpenStreetMap centerline. ISPRS Int. J. Geo-Inf. 2019, 8, 478. [Google Scholar] [CrossRef]
- Chen, W.; Wu, A.N.; Biljecki, F. Classification of urban morphology with deep learning: Application on urban vitality. Comput. Environ. Urban Syst. 2021, 90, 101706. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D.; Wu, B.; Yan, L.; Li, R. LEGION-Based Automatic Road Extraction From Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4528–4538. [Google Scholar] [CrossRef]
- Fu, C.; Chen, Y.; Tong, L.; Jia, M.; Tan, L.; Ji, X. Road damage information extraction using high-resolution SAR imagery. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1836–1838. [Google Scholar]
- Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, W.; Zhong, B.; Li, J.; Du, J.; Wang, C. Corse-to-Fine Road Extraction Based on Local Dirichlet Mixture Models and Multiscale-High-Order Deep Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4283–4293. [Google Scholar] [CrossRef]
- Li, P.; Zang, Y.; Wang, C.; Li, J.; Cheng, M.; Luo, L.; Yu, Y. Road network extraction via deep learning and line integral convolution. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1599–1602. [Google Scholar]
- Liu, R.; Miao, Q.; Song, J.; Quan, Y.; Li, Y.; Xu, P.; Dai, J. Multiscale road centerlines extraction from high-resolution aerial imagery. Neurocomputing 2019, 329, 384–396. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Cui, W.; Jiang, H. Fully convolutional networks for building and road extraction: Preliminary results. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1591–1594. [Google Scholar]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef]
- Varia, N.; Dokania, A.; Senthilnath, J. DeepExt: A Convolution Neural Network for Road Extraction using RGB images captured by UAV. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1890–1895. [Google Scholar]
- Chen, J.; Yang, L.; Wang, H.; Zhu, J.; Sun, G.; Dai, X.; Deng, M.; Shi, Y. Road extraction from high-resolution remote sensing images via local and global context reasoning. Remote Sens. 2023, 15, 4177. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, G.; Wang, J.; Lha, D. A Multiple Feature Fully Convolutional Network for Road Extraction From High-Resolution Remote Sensing Image Over Mountainous Areas. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1600–1604. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, M.; Zhang, B. A Generic FCN-Based Approach for the Road-Network Extraction From VHR Remote Sensing Images—Using OpenStreetMap as Benchmarks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2662–2673. [Google Scholar] [CrossRef]
- Lu, X.; Zhong, Y.; Zheng, Z.; Chen, D.; Su, Y.; Ma, A.; Zhang, L. Cascaded Multi-Task Road Extraction Network for Road Surface, Centerline, and Edge Extraction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, K.; Ji, S. Simultaneous Road Surface and Centerline Extraction From Large-Scale Remote Sensing Images Using CNN-Based Segmentation and Tracing. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8919–8931. [Google Scholar] [CrossRef]
- Mosinska, A.; Marquez-Neila, P.; Koziński, M.; Fua, P. Beyond the pixel-wise loss for topology-aware delineation. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3136–3145. [Google Scholar]
- He, H.; Yang, D.; Wang, S.; Wang, S.; Li, Y. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss. Remote Sens. 2019, 11, 1015. [Google Scholar] [CrossRef]
- Constantin, A.; Ding, J.J.; Lee, Y.C. Accurate Road Detection from Satellite Images Using Modified U-Net. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 423–426. [Google Scholar]
- Buslaev, A.; Seferbekov, S.; Iglovikov, V.; Shvets, A. Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 207–210. [Google Scholar]
- Xin, J.; Zhang, X.; Zhang, Z.; Fang, W. Road extraction of high-resolution remote sensing images derived from DenseUNet. Remote Sens. 2019, 11, 2499. [Google Scholar] [CrossRef]
- Tan, X.; Xiao, Z.; Wan, Q.; Shao, W. Scale Sensitive Neural Network for Road Segmentation in High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 533–537. [Google Scholar] [CrossRef]
- Hu, L.; Niu, C.; Ren, S.; Dong, M.; Zheng, C.; Zhang, W.; Liang, J. Discriminative Context-Aware Network for Target Extraction in Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 700–715. [Google Scholar] [CrossRef]
- Doshi, J. Residual Inception Skip Network for Binary Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 206–2063. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Wang, G.; Yang, W.; Ning, K.; Peng, J. DFC-UNet: A U-Net-Based Method for Road Extraction From Remote Sensing Images Using Densely Connected Features. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Akhtarmanesh, A.; Abbasi-Moghadam, D.; Sharifi, A.; Yadkouri, M.H.; Tariq, A.; Lu, L. Road Extraction From Satellite Images Using Attention-Assisted UNet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1126–1136. [Google Scholar] [CrossRef]
- Wang, R.; Wei, H.; Wang, A.; Chen, J.W.; Huo, C.; Niu, Y. Robust Road Detection on High-Resolution Remote Sensing Images with Occlusion by a Dual-Decoded UNet. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5716–5719. [Google Scholar]
- Xu, Y.; Feng, Y.; Xie, Z.; Hu, A.; Zhang, X. A Research on Extracting Road Network from High Resolution Remote Sensing Imagery. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–4. [Google Scholar]
- Fan, J.; Yang, Z. Deep Residual Network Based Road Detection Algorithm for Remote Sensing Images. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 1723–1726. [Google Scholar]
- Shao, C.; Li, H.; Shen, H. MCTN-Net: A Multiclass Transportation Network Extraction Method Combining Orientation and Semantic Features. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Ruan, S.; Han, H.; Xiong, K.; Yuan, H.; Yuan, Z.; Li, G.; Bao, J.; Zheng, Y. DelvMap: Completing Residential Roads in Maps Based on Couriers’ Trajectories and Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Liu, K.; Zhang, Y. Aerial Remote Sensing Image Cascaded Road Detection Network Based on Edge Sensing Module and Attention Module. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Lin, Y.; Jin, F.; Wang, D.; Wang, S.; Liu, X. Dual-Task Network for Road Extraction From High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 66–78. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Qi, Y.; Zhang, Y. A Lightweight Road Detection Algorithm Based on Multiscale Convolutional Attention Network and Coupled Decoder Head. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Guo, H.; Su, X.; Wu, C.; Du, B.; Zhang, L. Building-Road Collaborative Extraction From Remote Sensing Images via Cross-Task and Cross-Scale Interaction. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Guan, H.; Jin, S.; Zhang, Y.; Yu, C.; Tang, E.; Xiao, S.; Li, J. CS-CapsFPN: A Context-Augmentation and Self-Attention Capsule Feature Pyramid Network for Road Network Extraction from Remote Sensing Imagery. Can. J. Remote Sens. 2021, 47, 499–517. [Google Scholar] [CrossRef]
- Wulamu, A.; Shi, Z.; Zhang, D.; He, Z. Multiscale Road Extraction in Remote Sensing Images. Comput. Intell. Neurosci. 2019, 2019, 2373798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Q.; Li, J.; Ai, M. Learning From GPS Trajectories of Floating Car for CNN-Based Urban Road Extraction With High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1836–1847. [Google Scholar] [CrossRef]
- Li, S.; Liao, C.; Ding, Y.; Hu, H.; Jia, Y.; Chen, M.; Xu, B.; Ge, X.; Liu, T.; Wu, D. Cascaded residual attention enhanced road extraction from remote sensing images. ISPRS Int. J. Geo-Inf. 2022, 11, 9. [Google Scholar] [CrossRef]
- Weng, Y.; Huang, X.; Chen, X.; He, J.; Li, Z.; Yi, H. Research on Railway Track Extraction Method Based on Edge Detection and Attention Mechanism. IEEE Access 2024, 12, 26550–26561. [Google Scholar] [CrossRef]
- Huan, H.; Sheng, Y.; Zhang, Y.; Liu, Y. Strip attention networks for road extraction. Remote Sens. 2022, 14, 4516. [Google Scholar] [CrossRef]
- Lourenço, M.; Estima, D.; Oliveira, H.; Oliveira, L.; Mora, A. Automatic rural road centerline detection and extraction from aerial images for a forest fire decision support system. Remote Sens. 2023, 15, 271. [Google Scholar] [CrossRef]
- Xu, Q.; Long, C.; Yu, L.; Zhang, C. Road Extraction With Satellite Images and Partial Road Maps. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, X.; Li, X. Road Detection From Remote Sensing Images by Generative Adversarial Networks. IEEE Access 2018, 6, 25486–25494. [Google Scholar] [CrossRef]
- Zhang, X.; Han, X.; Li, C.; Tang, X.; Zhou, H.; Jiao, L. Aerial image road extraction based on an improved generative adversarial network. Remote Sens. 2019, 11, 930. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Cira, C.I.; Manso-Callejo, M.Á.; Alcarria, R.; Fernandez Pareja, T.; Bordel Sanchez, B.; Serradilla, F. Generative learning for postprocessing semantic segmentation predictions: A lightweight conditional generative adversarial network based on Pix2pix to improve the extraction of road surface areas. Land 2021, 10, 79. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, M.; Zhong, Y.; Cheng, Y. GAN-assisted two-stream neural network for high-resolution remote sensing image classification. Remote Sens. 2017, 9, 1328. [Google Scholar] [CrossRef]
- Costea, D.; Marcu, A.; Slusanschi, E.; Leordeanu, M. Creating roadmaps in aerial images with generative adversarial networks and smoothing-based optimization. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2100–2109. [Google Scholar]
- Liu, R.; Li, F.; Jiang, W.; Song, C.; Chen, Q.; Li, Z. Generating Pixel Enhancement for Road Extraction in High-Resolution Aerial Images. IEEE Trans. Intell. Veh. 2024, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Peng, B.; He, L.; Fan, K.; Tong, L. Road Segmentation of Unmanned Aerial Vehicle Remote Sensing Images Using Adversarial Network With Multiscale Context Aggregation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2279–2287. [Google Scholar] [CrossRef]
- Lin, S.; Yao, X.; Liu, X.; Wang, S.; Chen, H.M.; Ding, L.; Zhang, J.; Chen, G.; Mei, Q. MS-AGAN: Road Extraction via Multi-Scale Information Fusion and Asymmetric Generative Adversarial Networks from High-Resolution Remote Sensing Images under Complex Backgrounds. Remote Sens. 2023, 15, 3367. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Zareapoor, M.; Zhou, H.; Wang, R.; Yang, J. Road Segmentation for Remote Sensing Images Using Adversarial Spatial Pyramid Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4673–4688. [Google Scholar] [CrossRef]
- Xu, J.; Xu, B.; Xia, G.S.; Dong, L.; Xue, N. Patched Line Segment Learning for Vector Road Mapping. Proc. AAAI Conf. Artif. Intell. 2024, 38, 6288–6296. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Gan, L.; Hu, X.; Sun, Y.; Liu, M.; Wang, L. csBoundary: City-Scale Road-Boundary Detection in Aerial Images for High-Definition Maps. IEEE Robot. Autom. Lett. 2022, 7, 5063–5070. [Google Scholar] [CrossRef]
- Zao, Y.; Zou, Z.; Shi, Z. Road Graph Extraction via Transformer and Topological Representation. IEEE Geosci. Remote Sens. Lett. 2024, 21, 2502205. [Google Scholar] [CrossRef]
- Li, T.; Ye, S.; Li, R.; Fu, Y.; Yang, G.; Pan, Z. Topology-aware Road Extraction via Multi-task Learning for Autonomous Driving. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2275–2281. [Google Scholar]
- Wu, Z.; Zhang, J.; Zhang, L.; Liu, X.; Qiao, H. Bi-HRNet: A road extraction framework from satellite imagery based on node heatmap and bidirectional connectivity. Remote Sens. 2022, 14, 1732. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Q.; Guo, W.; Qiu, C.; Yu, A. GA-Net: A geometry prior assisted neural network for road extraction. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103004. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Wei, Y.; Zhang, L. Road Topology Extraction From Satellite Imagery by Joint Learning of Nodes and Their Connectivity. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Liu, G.; Shan, Z.; Meng, Y.; Akbar, T.A.; Ye, S. RDPGNet: A road extraction network with dual-view information perception based on GCN. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102009. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, W.; Gui, Q.; Li, X.; Wang, L. Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in Complex Environments From High-Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Bastani, F.; He, S.; Abbar, S.; Alizadeh, M.; Balakrishnan, H.; Chawla, S.; Madden, S.; DeWitt, D. RoadTracer: Automatic Extraction of Road Networks from Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4720–4728. [Google Scholar]
- Xu, Z.; Liu, Y.; Gan, L.; Sun, Y.; Wu, X.; Liu, M.; Wang, L. Rngdet: Road network graph detection by transformer in aerial images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Sun, Y.; Liu, M.; Wang, L. RNGDet++: Road Network Graph Detection by Transformer With Instance Segmentation and Multi-Scale Features Enhancement. IEEE Robot. Autom. Lett. 2023, 8, 2991–2998. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, K.; Guo, X.; Xu, Y.; Guo, J. Joint Topology-Preserving and Feature-Refinement Network for Curvilinear Structure Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 7147–7156. [Google Scholar]
- Acuna, D.; Ling, H.; Kar, A.; Fidler, S. Efficient interactive annotation of segmentation datasets with polygon-rnn++. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 859–868. [Google Scholar]
- Yang, B.; Zhang, M.; Zhang, Z.; Zhang, Z.; Hu, X. TopDiG: Class-Agnostic Topological Directional Graph Extraction From Remote Sensing Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1265–1274. [Google Scholar]
- Wang, R.; Cai, M.; Xia, Z.; Zhou, Z. Remote Sensing Image Road Segmentation Method Integrating CNN-Transformer and UNet. IEEE Access 2023, 11, 144446–144455. [Google Scholar] [CrossRef]
- Li, K.; Wang, D.; Wang, X.; Liu, G.; Wu, Z.; Wang, Q. Mixing Self-Attention and Convolution: A Unified Framework for Multisource Remote Sensing Data Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Jamali, A.; Roy, S.K.; Li, J.; Ghamisi, P. Neighborhood Attention Makes the Encoder of ResUNet Stronger for Accurate Road Extraction. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.X.; Chen, S.B.; Tang, J.; Luo, B. BDTNet: Road Extraction by Bi-Direction Transformer From Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Hu, P.C.; Chen, S.B.; Huang, L.L.; Wang, G.Z.; Tang, J.; Luo, B. Road Extraction by Multiscale Deformable Transformer From Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar]
- Wang, C.; Xu, R.; Xu, S.; Meng, W.; Wang, R.; Zhang, J.; Zhang, X. Toward Accurate and Efficient Road Extraction by Leveraging the Characteristics of Road Shapes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Deng, F.; Luo, W.; Ni, Y.; Wang, X.; Wang, Y.; Zhang, G. UMiT-Net: A U-Shaped Mix-Transformer Network for Extracting Precise Roads Using Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Ge, C.; Nie, Y.; Kong, F.; Xu, X. Improving Road Extraction for Autonomous Driving Using Swin Transformer Unet. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1216–1221. [Google Scholar]
- Yang, Z.; Zhou, D.; Yang, Y.; Zhang, J.; Chen, Z. TransRoadNet: A Novel Road Extraction Method for Remote Sensing Images via Combining High-Level Semantic Feature and Context. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Zhang, X.; Ma, X.; Yang, Z.; Liu, X.; Chen, Z. A Context-Aware Road Extraction Method for Remote Sensing Imagery Based on Transformer Network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar]
- Yang, Z.X.; You, Z.H.; Chen, S.B.; Tang, J.; Luo, B. Semisupervised Edge-Aware Road Extraction via Cross Teaching Between CNN and Transformer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8353–8362. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. Vmamba: Visual state space model. arXiv 2024, arXiv:2401.10166. [Google Scholar]
- Chen, K.; Chen, B.; Liu, C.; Li, W.; Zou, Z.; Shi, Z. Rsmamba: Remote sensing image classification with state space model. arXiv 2024, arXiv:2403.19654. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, H.; Zhang, X.; Xiao, P.; Bai, L.; Ouyang, W. Rs-mamba for large remote sensing image dense prediction. arXiv 2024, arXiv:2404.02668. [Google Scholar]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, Y.Z.; Liu, J.; Luo, L.; Yang, K. Road extraction from high resolution image with deep convolution network-A case study of GF-2 image. Proceedings 2018, 2, 325. [Google Scholar]
- He, Y.; Wang, J.; Liao, C.; Shan, B.; Zhou, X. ClassHyPer: ClassMix-based hybrid perturbations for deep semi-supervised semantic segmentation of remote sensing imagery. Remote Sens. 2022, 14, 879. [Google Scholar] [CrossRef]
- Han, X.; Lu, J.; Zhao, C.; You, S.; Li, H. Semisupervised and Weakly Supervised Road Detection Based on Generative Adversarial Networks. IEEE Signal Process. Lett. 2018, 25, 551–555. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Wu, J.; Xiong, W.; Du, C. SemiRoadExNet: A semi-supervised network for road extraction from remote sensing imagery via adversarial learning. ISPRS J. Photogramm. Remote Sens. 2023, 198, 169–183. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, Y.; Tao, C. Fine-Grained Road Scene Understanding From Aerial Images Based on Semisupervised Semantic Segmentation Networks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- You, Z.H.; Wang, J.X.; Chen, S.B.; Tang, J.; Luo, B. FMWDCT: Foreground Mixup Into Weighted Dual-Network Cross Training for Semisupervised Remote Sensing Road Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5570–5579. [Google Scholar] [CrossRef]
- Deng, X.; Yang, H.L.; Makkar, N.; Lunga, D. Large Scale Unsupervised Domain Adaptation of Segmentation Networks with Adversarial Learning. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4955–4958. [Google Scholar]
- Wang, J.; HQ Ding, C.; Chen, S.; He, C.; Luo, B. Semi-supervised remote sensing image semantic segmentation via consistency regularization and average update of pseudo-label. Remote Sens. 2020, 12, 3603. [Google Scholar] [CrossRef]
- Wang, J.X.; Chen, S.B.; Ding, C.H.Q.; Tang, J.; Luo, B. RanPaste: Paste Consistency and Pseudo Label for Semisupervised Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; Peng, S.; Du, C.; Li, J.; Wu, S. SW-GAN: Road extraction from remote sensing imagery using semi-weakly supervised adversarial learning. Remote Sens. 2022, 14, 4145. [Google Scholar] [CrossRef]
- Meng, S.; Di, Z.; Yang, S.; Wang, Y. Large-scale Weakly Supervised Learning for Road Extraction from Satellite Imagery. arXiv 2023, arXiv:2309.07823. [Google Scholar]
- Lian, R.; Huang, L. Weakly Supervised Road Segmentation in High-Resolution Remote Sensing Images Using Point Annotations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Hua, Y.; Marcos, D.; Mou, L.; Zhu, X.X.; Tuia, D. Semantic Segmentation of Remote Sensing Images With Sparse Annotations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Wei, Y.; Ji, S. Scribble-Based Weakly Supervised Deep Learning for Road Surface Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhou, M.; Sui, H.; Chen, S.; Liu, J.; Shi, W.; Chen, X. Large-scale road extraction from high-resolution remote sensing images based on a weakly-supervised structural and orientational consistency constraint network. ISPRS J. Photogramm. Remote Sens. 2022, 193, 234–251. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 4015–4026. [Google Scholar]
- Osco, L.P.; Wu, Q.; de Lemos, E.L.; Gonçalves, W.N.; Ramos, A.P.M.; Li, J.; Junior, J.M. The segment anything model (sam) for remote sensing applications: From zero to one shot. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103540. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Q.; Zhao, X.; Zhang, X.; Pun, M.O.; Huang, B. SAM-Assisted Remote Sensing Imagery Semantic Segmentation with Object and Boundary Constraints. arXiv 2023, arXiv:2312.02464. [Google Scholar]
- Guo, C.; Mita, S.; McAllester, D. Robust road detection and tracking in challenging scenarios based on Markov random fields with unsupervised learning. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1338–1354. [Google Scholar] [CrossRef]
- Assran, M.; Duval, Q.; Misra, I.; Bojanowski, P.; Vincent, P.; Rabbat, M.; LeCun, Y.; Ballas, N. Self-supervised learning from images with a joint-embedding predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 15619–15629. [Google Scholar]
- Zhang, L.; Lan, M.; Zhang, J.; Tao, D. Stagewise Unsupervised Domain Adaptation With Adversarial Self-Training for Road Segmentation of Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar]
- Cira, C.I.; Kada, M.; Manso-Callejo, M.Á.; Alcarria, R.; Bordel Sanchez, B. Improving road surface area extraction via semantic segmentation with conditional generative learning for deep inpainting operations. ISPRS Int. J. Geo-Inf. 2022, 11, 43. [Google Scholar] [CrossRef]
- Han, L.; Hou, L.; Zheng, X.; Ding, Z.; Yang, H.; Zheng, K. Segmentation Is Not the End of Road Extraction: An All-Visible Denoising Autoencoder for Connected and Smooth Road Reconstruction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Cha, K.; Seo, J.; Lee, T. A billion-scale foundation model for remote sensing images. arXiv 2023, arXiv:2304.05215. [Google Scholar] [CrossRef]
- Yan, Z.; Li, J.; Li, X.; Zhou, R.; Zhang, W.; Feng, Y.; Diao, W.; Fu, K.; Sun, X. RingMo-SAM: A Foundation Model for Segment Anything in Multimodal Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Lu, W.; Zhu, Z.; Lu, X.; He, Q.; Li, J.; Rong, X.; Yang, Z.; Chang, H.; et al. RingMo: A Remote Sensing Foundation Model With Masked Image Modeling. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–22. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Y.; Liu, M. Topo-boundary: A benchmark dataset on topological road-boundary detection using aerial images for autonomous driving. IEEE Robot. Autom. Lett. 2021, 6, 7248–7255. [Google Scholar] [CrossRef]
- Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013. [Google Scholar]
- Mattyus, G.; Wang, S.; Fidler, S.; Urtasun, R. Enhancing road maps by parsing aerial images around the world. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1689–1697. [Google Scholar]
- Kaiser, P.; Wegner, J.D.; Lucchi, A.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning Aerial Image Segmentation From Online Maps. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6054–6068. [Google Scholar] [CrossRef]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–181. [Google Scholar]
- Van Etten, A.; Lindenbaum, D.; Bacastow, T.M. Spacenet: A remote sensing dataset and challenge series. arXiv 2018, arXiv:1807.01232. [Google Scholar]
- Chen, Z.; Wang, C.; Li, J.; Xie, N.; Han, Y.; Du, J. Reconstruction Bias U-Net for Road Extraction From Optical Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2284–2294. [Google Scholar] [CrossRef]
Approaches | Literature Quantity | Advantages | Limitations |
---|---|---|---|
PatchCNN-based | 9 | Local feature extraction; Handling images of varying sizes; Memory consumption reduction | Loss of contextual information; Boundary effects; High computational cost |
Encoder-Decoder-based | 101 | Efficient information propagation; Effective utilization of contextual information; Strong interpretability | High risk of information loss; High computational cost; High model complexity |
GAN-based | 14 | Realistic generated images; No need large amnotated datas; Learn data distribution | Training and convergence instability; High resource demand |
Graph-based | 22 | Global information utilization; Improve road topological connectivity and integrity | Complex training; Time consuming |
Transformer-based | 14 | Capture long-distance dependencies and context information; Improve model interpretability | Require large parameters; Strong data dependences |
Mamba-based | 5 | Linear time complexity; More efficient across long series; Cross-scanningmodule | Direction sensitive; Complex model design |
Dataset | Size | Train | Test | Val | Resolution (m/pixel) | From | Time |
---|---|---|---|---|---|---|---|
Massachusetts [227] | 1108 | 49 | 14 | 1 | Massachusetts | 2013 | |
AerialKITTI-Bavaria [228] | 360 | 100 | - | - | AerialKITTI and Bavaria | 2015 | |
CNDS [63] | 180 | 30 | 14 | 1.2 | Google Earth | 2017 | |
CITY-OSM [229] | 660 | 165 | - | - | - | 2017 | |
RTDS [179] | 25 cities | 15 cites | - | 0.6 | GoogleMap | 2018 | |
DeepGlobe [230] | 6226 | 1101 | 243 | 0.5 | Thailand, Indonesia and India | 2018 | |
SpaceNet v3 [231] | 2213 | 567 | - | 0.3 | Paris, Las Vegas, Shanghai, and Khartoum | 2018 | |
Conghua [136] | 37 | 10 | - | 0.2 | - | 2019 | |
RNBD [37] | - | 14 regions | 6 regions | 1 region | 0.21 | Google Earth | 2019 |
WorldView-4 [73] | 6736 | 1012 | - | 0.31 | - | 2019 | |
CityScale [114] | 144 | 27 | 9 | 1 | OSM | 2020 | |
Gaofen-2 [94] | 36,000 | 4000 | - | 0.8 | Fujian and Hainan | 2020 | |
ShaoShan [121] | 29 | 20 | - | 0.5 | Shaoshan | 2020 | |
GE-Road [115] | 12,000 | 7000 | 1000 | 0.3–0.6 | - | 2020 | |
CHN6-CUG [42] | 3608 | 903 | - | 0.5 | Google Earth | 2021 | |
LRSNY [232] | 716 | 432 | 220 | 0.5 | New York | 2021 | |
Topo-boundary [226] | 20,236 | 3289 | 1770 | - | - | 2021 | |
Icurb [101] | 29,000 | 10,000 | 1000 | 0.152 | NYC OpenData | 2021 |
Type | Literature Quantity | Annotation Requirements | Advantages | Limitations |
---|---|---|---|---|
Fully-supervised | 165 | Complete annotated data | High level of precision | Equire a large amount of annotated data; High cost; Weak ability of model generalization |
Semi-supervised | 28 | Limited labeled data and abundant unlabeled data | Cost-saving annotation process; Can still train more accurate models in situations where annotation information is difficult to obtain; More suitable for practical scenarios | Inaccurate model learning information increases the complexity of design and tuning |
Unsupervised | 11 | No need for annotated data | Lack of interpretability of results; Difficulty in mastering model performance |
Model | Precision | Recall | F1 (↑) | IoU | mIoU | APLS |
---|---|---|---|---|---|---|
Tiny-AAResUNet [53] | 86.96 | 93.96 | 92.35 | 95.89 | – | – |
CoANet [51] | – | – | 89.25 | 80.58 | – | 85.14 |
NodeConnect [176] | 88.34 | 88.38 | 88.36 | 82.58 | – | 70.81 |
Bi-HRNet [174] | 88.78 | 84.39 | 86.51 | – | – | 54.78 |
RoadCT [104] | 85.20 | 83.90 | 84.50 | 73.40 | – | – |
Topology_aware [173] | 85.55 | 82.43 | 83.96 | 72.36 | – | 77.24 |
AD-RoadNet [55] | 84.37 | 82.11 | 83.22 | 71.28 | 83.04 | – |
MDTNet [189] | 82.96 | 83.01 | 82.98 | 71.19 | – | 78.42 |
UMiT-Net [191] | 82.64 | 84.09 | 82.61 | 71.66 | – | – |
RSANet [190] | 78.84 | 86.33 | 82.42 | 70.26 | – | – |
Unet+ATM+MLAF [105] | 80.88 | 85.41 | 82.13 | 70.91 | – | – |
Dual-Task Network [149] | 82.50 | 81.77 | 82.13 | 69.68 | – | – |
TransRoadNet [193] | 80.92 | 83.91 | 81.34 | 70.06 | – | – |
DFC-UNet [141] | 83.62 | 79.14 | 81.32 | 68.52 | – | – |
RCFSNet [43] | 78.98 | 85.46 | 81.01 | 69.34 | – | – |
LGNet [86] | 91.17 | 87.35 | 80.54 | 68.29 | – | 72.69 |
Model | Accuracy | Precision | Recall | F1 (↑) | IoU |
---|---|---|---|---|---|
PropGAN [95] | – | 91.54 | 92.92 | 92.20 | 87.43 |
Road-RCF [46] | 96.30 | 85.80 | 98.50 | 91.50 | – |
Tiny-AAResUNet [53] | – | 92.23 | 81.56 | 91.07 | 94.27 |
Mixer UNet [57] | – | 89.42 | 87.02 | 88.04 | – |
LRSR-net [56] | – | 89.67 | 89.20 | 87.48 | 82.64 |
ImproGAN [173] | 98.00 | 93.00 | 82.00 | 87.00 | – |
MsGAN [96] | – | 85.30 | 87.10 | 86.20 | – |
Nested SE-Deeplab [92] | 96.70 | 85.80 | – | 85.70 | 73.87 |
NL-DlinkNet [79] | – | 85.20 | 81.80 | 83.40 | – |
RDRCNN [149] | 98.01 | 85.35 | 75.75 | 80.31 | 67.10 |
MDTNet [189] | 98.06 | 81.07 | 79.54 | 80.30 | 67.30 |
DCANet [138] | 98.09 | 80.20 | 79.54 | 79.84 | 66.45 |
DDU-Net [54] | 98.04 | 82.54 | 73.99 | 78.03 | 63.98 |
RUW-Net [87] | – | 87.70 | 68.10 | 76.70 | 69.10 |
Modified UNet [134] | 97.14 | 74.15 | 75.48 | 74.54 | – |
RoadCT [104] | – | 81.20 | 68.90 | 74.50 | 59.50 |
DenseUNet [136] | – | 78.25 | 70.41 | 74.07 | 74.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wu, J.; Lu, W.; Miao, Q.; Zhang, H.; Liu, X.; Lu, Z.; Li, L. A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2024, 16, 2056. https://doi.org/10.3390/rs16122056
Liu R, Wu J, Lu W, Miao Q, Zhang H, Liu X, Lu Z, Li L. A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images. Remote Sensing. 2024; 16(12):2056. https://doi.org/10.3390/rs16122056
Chicago/Turabian StyleLiu, Ruyi, Junhong Wu, Wenyi Lu, Qiguang Miao, Huan Zhang, Xiangzeng Liu, Zixiang Lu, and Long Li. 2024. "A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images" Remote Sensing 16, no. 12: 2056. https://doi.org/10.3390/rs16122056
APA StyleLiu, R., Wu, J., Lu, W., Miao, Q., Zhang, H., Liu, X., Lu, Z., & Li, L. (2024). A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images. Remote Sensing, 16(12), 2056. https://doi.org/10.3390/rs16122056