A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- (1)
- Himawari-8 data
- (2)
- CloudSat data
- (3)
- Cloud type of this study
2.2. Method
3. Results
3.1. Comparison with Other Methods
3.2. Comparison with Himawari-8 Cloud Classification Production
3.3. Effects of Day and Night on Cloud Classification
3.4. Effects of Different Seasons on Cloud Classification
4. Discussion
5. Conclusions
- (1)
- The overall accuracy, precision, recall, and F1-score of AInfraredCCM cloud classification were 86.22%, 0.88, 0.84, and 0.86, respectively. Notably, the here-proposed model outperformed the other models selected for this study (Table 8) and those proposed by other researchers (Table 9). These results indicate that it is an efficient all-day cloud classification method.
- (2)
- The model performed well when used for all-day cloud classification or when used separately for daytime and nighttime classification, which suggests that the AInfraredCCM provides continuous data for cloud classification research throughout the day.
- (3)
- The model was applied to both day and night scenarios as well as to four seasons and produced good classification results. In addition to Cu, this study demonstrated efficacy in classifying other cloud types. More emphasis should be laid on Cu in future studies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Season | No. | Data ID | No. | Data ID |
---|---|---|---|---|
Spring | 1 | 20190301_0400 | 17 | 20190317_0400 |
2 | 20190302_0400 | 18 | 20190318_0400 | |
3 | 20190303_0400 | 19 | 20190319_0400 | |
4 | 20190304_0400 | 20 | 20190320_0400 | |
5 | 20190305_0400 | 21 | 20190321_0400 | |
6 | 20190306_0400 | 22 | 20190322_0400 | |
7 | 20190307_0400 | 23 | 20190323_0400 | |
8 | 20190308_0400 | 24 | 20190324_0400 | |
9 | 20190309_0400 | 25 | 20190325_0400 | |
10 | 20190310_0400 | 26 | 20190326_0400 | |
11 | 20190311_0400 | 27 | 20190327_0400 | |
12 | 20190312_0400 | 28 | 20190328_0400 | |
13 | 20190313_0400 | 29 | 20190329_0400 | |
14 | 20190314_0400 | 30 | 20190330_0400 | |
15 | 20190315_0400 | 31 | 20190331_0400 | |
16 | 20190316_0400 | |||
Summer | 32 | 20190601_0400 | 51 | 20190620_0400 |
33 | 20190602_0400 | 52 | 20190622_0400 | |
34 | 20190603_0400 | 53 | 20190623_0400 | |
35 | 20190604_0400 | 54 | 20190624_0400 | |
36 | 20190605_0400 | 55 | 20190625_0400 | |
37 | 20190606_0400 | 56 | 20190626_0400 | |
38 | 20190607_0400 | 57 | 20190627_0400 | |
39 | 20190608_0400 | 58 | 20190628_0400 | |
40 | 20190609_0400 | 59 | 20190630_0400 | |
41 | 20190610_0400 | 60 | 20190701_0400 | |
42 | 20190611_0400 | 61 | 20190702_0400 | |
43 | 20190612_0400 | 62 | 20190703_0400 | |
44 | 20190613_0400 | 63 | 20190704_0400 | |
45 | 20190614_0400 | 64 | 20190705_0400 | |
46 | 20190615_0400 | 65 | 20190706_0400 | |
47 | 20190616_0400 | 66 | 20190707_0400 | |
48 | 20190617_0400 | 67 | 20190708_0400 | |
49 | 20190618_0400 | 68 | 20190709_0400 | |
50 | 20190619_0400 | 69 | 20190710_0400 | |
Autumn | 70 | 20181101_0400 | 85 | 20181116_0400 |
71 | 20181102_0400 | 86 | 20181117_0400 | |
72 | 20181103_0400 | 87 | 20181118_0400 | |
73 | 20181104_0400 | 88 | 20181119_0400 | |
74 | 20181105_0400 | 89 | 20181120_0400 | |
75 | 20181106_0400 | 90 | 20181121_0400 | |
76 | 20181107_0400 | 91 | 20181122_0400 | |
77 | 20181108_0400 | 92 | 20181123_0400 | |
78 | 20181109_0400 | 93 | 20181124_0400 | |
79 | 20181110_0400 | 94 | 20181125_0400 | |
80 | 20181111_0400 | 95 | 20181126_0400 | |
81 | 20181112_0400 | 96 | 20181127_0400 | |
82 | 20181113_0400 | 97 | 20181128_0400 | |
83 | 20181114_0400 | 98 | 20181129_0400 | |
84 | 20181115_0400 | 99 | 20181130_0400 | |
Winter | 100 | 20190601_0400 | 116 | 20190617_0400 |
101 | 20190602_0400 | 117 | 20190618_0400 | |
102 | 20190603_0400 | 118 | 20190619_0400 | |
103 | 20190604_0400 | 119 | 20190620_0400 | |
104 | 20190605_0400 | 120 | 20190621_0400 | |
105 | 20190606_0400 | 121 | 20190622_0400 | |
106 | 20190607_0400 | 122 | 20190623_0400 | |
107 | 20190608_0400 | 123 | 20190624_0400 | |
108 | 20190609_0400 | 124 | 20190625_0400 | |
109 | 20190610_0400 | 125 | 20190626_0400 | |
110 | 20190611_0400 | 126 | 20190627_0400 | |
111 | 20190612_0400 | 127 | 20190628_0400 | |
112 | 20190613_0400 | 128 | 20190629_0400 | |
113 | 20190614_0400 | 129 | 20190630_0400 | |
114 | 20190615_0400 | 130 | 20190631_0400 | |
115 | 20190616_0400 |
References
- Tapakis, R.; Charalambides, A.G. Equipment and methodologies for cloud detection and classification: A review. Sol. Energy 2013, 95, 392–430. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Seze, G.; Simmer, C. ISCCP cloud algorithm intercomparison. J. Appl. Meteorol. Clim. 1985, 24, 877–903. [Google Scholar] [CrossRef]
- Zhuang, Z.H.; Wang, M.; Wang, K.; Li, S.; Wu, J. Research progress of ground-based cloud classification technology based on deep learning. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2022, 14, 566–578. [Google Scholar] [CrossRef]
- Zhao, C.; Garrett, T.J. Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett. 2015, 42, 557–564. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, J.; Shi, C.-X.; Hong, Y. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network. Sensors 2009, 9, 5558–5579. [Google Scholar] [CrossRef]
- Chen, D.; Guo, J.; Wang, H.; Li, J.; Min, M.; Zhao, W.; Yao, D. The Cloud Top Distribution and Diurnal Variation of Clouds Over East Asia: Preliminary Results From Advanced Himawari Imager. J. Geophys. Res. Atmos. 2018, 123, 3724–3739. [Google Scholar] [CrossRef]
- Astafurov, V.G.; Skorokhodov, A.V. Using the results of cloudclassification based on satellite data for solving climatological andmeteorological problems. Russ. Meteorol. Hydrol. 2021, 46, 839–848. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B. Classification of cloud images by using super resolution, semantic segmentation approaches and binary sailfish optimization method with deep learning model. Comput. Electron. Agric. 2022, 193, 106724. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuge, X.; Yu, F. Development of a high spatiotemporal resolution cloud-type classification approach using Himawari-8 and CloudSat. Int. J. Remote Sens. 2019, 40, 6464–6481. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Schröer, C.; Klaß, M.; Hakenes, S.; Venhaus, M.; Kauffmann, S.; Wilhelm, T.; Wohler, C. Dense Cloud Classification on Multispectral Satellite Imagery. In Proceedings of the 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), Beijing, China, 19–20 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, S.; Han, D.; Li, G.; Gao, D.; Yan, W. A cloud classification method based on random forest for FY-4A. Int. J. Remote Sens. 2021, 42, 3353–3379. [Google Scholar] [CrossRef]
- Cai, K.; Wang, H. Cloud classification of satellite image based on convolutional neural networks. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 874–877. [Google Scholar] [CrossRef]
- Afzali Gorooh, V.; Kalia, S.; Nguyen, P.; Hsu, K.-l.; Sorooshian, S.; Ganguly, S.; Nemani, R.R. Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS. Remote Sens. 2020, 12, 316. [Google Scholar] [CrossRef]
- Olesen, F.-S.; Grassl, H. Cloud detection and classification over oceans at night with NOAA-7. Int. J. Remote Sens. 1985, 6, 1435–1444. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, C.; Ma, S.; Wang, X.; Shang, J.; Wang, J.; Ai, W.; Yan, W. Detecting Multilayer Clouds From the Geostationary Advanced Himawari Imager Using Machine Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4103112. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Lin, H.; Chen, X.; Li, J.; Han, W. Cloud Detection and Classification Algorithms for Himawari-8 Imager Measurements Based on Deep Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4107117. [Google Scholar] [CrossRef]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice Cloud Properties from Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3229–3239. [Google Scholar] [CrossRef]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2557–2570. [Google Scholar] [CrossRef]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteor. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. 2008, 113, D00A12. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Unglaub, C.; Block, K.; Mülmenstädt, J.; Sourdeval, O.; Quaas, J. A new classification of satellite-derived liquid water cloud regimes at cloud scale. Atmos. Chem. Phys. 2020, 20, 2407–2418. [Google Scholar] [CrossRef]
- Wang, Z. CloudSat 2B-CLDCLASS-LIDAR Product Process Description and Interface Control Document; Process Description and Interface Control Document (PDICD) P1_R05; NASA: Washington, DC, USA, 2019; Volume 33.
- Zhang, A.; Fu, Y. Life Cycle Effects on the Vertical Structure of Precipitation in East China Measured by Himawari-8 and GPM DPR. Mon. Weather Rev. 2018, 146, 2183–2199. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties inferred from 8–12 µm Data. J. Appl. Meteor. Climatol. 1994, 33, 212–229. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, C.; Zhang, X.; Su, L.; Tong, B.; Dong, C.; Wang, F.; Chen, B.; Chen, W.; Liu, D. Construction of Nighttime Cloud Layer Height and Classification of Cloud Types. Remote Sens. 2020, 12, 668. [Google Scholar] [CrossRef]
- Yue, Q.; Fetzer, E.J.; Kahn, B.H.; Wong, S.; Manipon, G.; Guillaume, A.; Wilson, B. Cloud-State-Dependent Sampling in AIRS Observations Based on CloudSat Cloud Classification. J. Clim. 2013, 26, 8357–8377. [Google Scholar] [CrossRef]
- Berry, E.; Mace, G.G. Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos. 2014, 119, 9492–9508. [Google Scholar] [CrossRef]
- Behrangi, A.; Kubar, T.; Lambrigtsen, B. Phenomenological Description of Tropical Clouds Using CloudSat Cloud Classification. Mon. Weather Rev. 2012, 140, 3235–3249. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Chi, Y.; Yan, X.; Fan, H.; Yang, X.; Ma, Z.; Wang, Q.; Zhao, C. Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data. Remote Sens. Environ. 2022, 273, 112971. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.-J. A Machine Learning-based Cloud Detection Algorithm for the Himawari-8 Spectral Image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, W.; Yang, X.; Liu, Q.; Mi, X.; Li, J.; Yang, J.; Gu, X. Cloud and Cloud Shadow Detection of GF-1 Images Based on the Swin-UNet Method. Atmosphere 2023, 14, 1669. [Google Scholar] [CrossRef]
- Fan, X.; Kong, J.L.; Zhong, Y.L.; Jiang, Y.Z.; Zhang, J.Y. Cloud Detection of Remote Sensing Images based on XGBoost Algorithm. Remote Sens. Technol. Appl. 2023, 38, 156–162. [Google Scholar]
- Mommert, M. Cloud Identification from All-sky Camera Data with Machine Learning. Astron. J. 2020, 159, 178. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, W.; Gao, F.; Zhang, S.; Wang, S.; Liu, C.; Liu, J. A Cloud Classification Method Based on a Convolutional Neural Network for FY-4A Satellites. Remote Sens. 2022, 14, 2314. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, M.; Cheng, W.; Chen, Y.; Sheng, Q.; Li, J.; Wang, L. An Efficient Cloud Classification Method Based on a Densely Connected Hybrid Convolutional Network for FY-4A. Remote Sens. 2023, 15, 2673. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Ding, Z.; Wang, Z.; Tang, X. All-Day Cloud Classification via a Random Forest Algorithm Based on Satellite Data from CloudSat and Himawari-8. Atmosphere 2023, 14, 1410. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Guo, Q.; Feng, X.; Yang, C.; Chen, B. Improved Spatial Collocation and Parallax Correction Approaches for Calibration Accuracy Validation of Thermal Emissive Band on Geostationary Platform. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2647–2663. [Google Scholar] [CrossRef]
- Kim, H.-W.; Yeom, J.-M.; Shin, D.; Choi, S.; Han, K.-S.; Roujean, J.-L. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea. J. Geophys. Res. Atmos. 2017, 122, 8153–8172. [Google Scholar] [CrossRef]
- Vicente, G.A.; Davenport, J.C.; Scofield, R.A. The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens. 2002, 23, 221–230. [Google Scholar] [CrossRef]
Bands | Channel Type | Center Wavelength (μm) | Spatial Resolution (km) | Main Applications |
---|---|---|---|---|
7 | Midwave IR | 3.9 | 2 | Natural disasters, low cloud (fog) observation |
8 | Water vapor | 6.2 | 2 | Observation of water vapor volume in the upper and middle layers |
9 | 6.9 | 2 | Observations of water vaporization in the mesosphere | |
10 | 7.3 | 2 | ||
11 | Longwave IR | 8.6 | 2 | Cloud phase identification and SO2 detection |
12 | 9.6 | 2 | Measurement of total ozone | |
13 | 10.4 | 2 | Observation of cloud images and cloud top conditions | |
14 | 11.2 | 2 | Observation of cloud images and sea surface water temperature | |
15 | 12.4 | 2 | Observation of cloud images and sea surface water temperature | |
16 | 13.3 | 2 | Measurement of cloud height |
Cloud Label | Label of CPR/CALIOP | Label of CLTYPE | Name of Cloud |
---|---|---|---|
0 | 0 (Clear) | 0 (Clear) | Clear |
1 | 1 (Ci) | 1, 2 (Ci, Cs) | Ci (Ci, Cs) |
2 | 8 (Dc) | 3 (Dc) | Dc |
3 | 3 (Ac) | 4 (Ac) | Ac |
4 | 2 (As) | 5 (As) | As |
5 | 7 (Ns) | 6 (Ns) | Ns |
6 | 6 (Cu) | 7 (Cu) | Cu |
7 | 5 (Sc) | 8 (Sc) | Sc |
8 | 4 (St) | 9 (St) | St |
Dimension | Number | Variables |
---|---|---|
Predictor | BTs (10) | BT (3.9 μm), BT (6.2 μm), BT (6.9 μm), BT (7.3 μm), BT (8.6 μm), BT (9.6 μm), BT (10.4 μm), BT (11.2 μm), BT (12.4 μm), and BT (13.3 μm) |
BTDs (5) | BTD (11.2–7.3 μm), BTD (3.9–11.2 μm), BTD (11.2–12.4 μm), BTD (12.4–10.4 μm), and BTD (7.3–10.4 μm) | |
Auxiliary data (2) | Latitude and Longitude | |
Prediction | 1 | Cloud label from 2B-CLDCLASS-LIDAR and CLTYPE |
Number of Ever Category | Total Number | |||
---|---|---|---|---|
Number of category A clouds | Number of category B clouds | |||
Model classification result | Number of category A clouds | TA | FB | T1 |
Number of category B clouds | FA | TB | T2 | |
Total number | AS | BS | T |
Parameter | Meaning | Value |
---|---|---|
n_estimators | Number of trees | 204 |
learning_rate | Magnitude of the iterative model update | 0.2122 |
max_depth | Maximum tree depth | 26 |
min_child_weight | Minimum number of samples required in a leaf node | 3 |
Cloud Type | Precision | Recall | F1-Score |
---|---|---|---|
Clear | 0.85 | 0.89 | 0.87 |
Ci | 0.90 | 0.88 | 0.89 |
Dc | 0.93 | 0.87 | 0.90 |
Ac | 0.82 | 0.74 | 0.78 |
As | 0.89 | 0.88 | 0.89 |
Ns | 0.95 | 0.93 | 0.94 |
Cu | 0.68 | 0.57 | 0.60 |
Sc | 0.88 | 0.93 | 0.91 |
St | 0.98 | 0.90 | 0.94 |
Algorithm | Parameted Range |
---|---|
Random Forest | 1. max_depth = 73 2. n_estimators = 280 |
LightGBM | 1. learning_rate = 0.095 2. max_depth = 22 3. n_estimators = 252 4. num_leaves = 35 |
AdaBoost | 1. learning_rate = 0.4224 2. max_depth = 74 3. n_estimators = 458 4. min_samples_leaf = 1 |
GradientBoost | 1. learning_rate = 0.4749 2. max_depth = 37 3. n_estimators = 10 |
Algorithm | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Random Forest | 82.53% | 0.83 | 0.76 | 0.79 |
LightGBM | 74.60% | 0.70 | 0.64 | 0.66 |
GradientBoost | 80.96% | 0.78 | 0.77 | 0.78 |
AdaBoost | 85.83% | 0.87 | 0.83 | 0.85 |
AInfraredCCM | 86.22% | 0.88 | 0.84 | 0.86 |
Model | Category | Feature | Time | OA | Sample | Reference |
---|---|---|---|---|---|---|
RF | Dc, Ns, Cu, Sc, St, Ac, As, Ci, and multi | REF and BT of 13 channels, cloud top height, cloud optical thickness, cloud effective radius | Day | 0.67 | 272414 | Yu et al. (2021) [12] |
BP | Clear, low cloud, middle cloud, thick cirrus clouds, thin cirrus cloud, deep convective | IR1 (10.3–11.3), IR2 (11.5–12.5), WV (6.3–7.6), IR1-IR2, IR1-WV, IR2-WV | Day | 0.86 | 2449 | Zhang et al. (2012) [39] |
CNN | Clear, Ci, Ac, As, Sc, Dc, Ns, Cu | All channel of FY-4A | Day | 0.95 | 15780 | Wang et al. (2023) [40] |
RF | Clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus | R (0.64), R (1.6), BT (11.2 μm), BTD (11.2–3.9 μm), BTD (11.2–7.3 μm), BTD (11.2–8.6 μm), BTD (11.2–12.3 μm) | Day | 0.88 | 127192 | Wang et al. (2023) [41] |
RF | Clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus | BT (11.2 μm), BTD (11.2–3.9 μm), BTD (11.2–7.3 μm), BTD (11.2–8.6 μm), BTD (11.2–12.3 μm) | Night | 0.79 | 72934 | Wang et al. (2023) [41] |
RF | Clear, single, multi | BT (3.9 um), BT (7.3 m), BT (8.6 μm), BT (11.2 μm), BT (12.4 μm), BTD (3.9–11.2 μm), BTD (8.6–11.2 μm), BTD (11.2–12.4 μm), latitude, longitude | Day and night | 0.79 | 12553889 | Tan et al. (2022) [16] |
DNN | Clear, single-ice, single-mixed, single-water, multi | BT (3.9–13.3 μm), cosine of satellite zenith angle, simulated clear-sky radiances | Day and night | 0.81 | 1114591 | Li et al. (2022) [17] |
AInfraredCCM | Clear, Ci, Dc, Ac, As, Ns, Cu, Sc, St | BT (3.9–13.3 μm), BTD (11.2–9.6 μm), BTD (3.9–11.2 μm), BTD (11.2–12.4 μm), BTD (12.4–10.4 μm), BTD (7.3–10.4 μm), latitude, longitude | Day and night | 0.86 | 1314275 | This study |
Himawari-8 CLTYPE | AInfraredCCM | |
---|---|---|
Full area | 0.48 | 0.86 |
Cloudy area | 0.36 | 0.87 |
Clear sky | 0.77 | 0.85 |
Time | Cloud Type | Clear | Ci | Dc | Ac | As | Ns | Cu | Sc | St |
---|---|---|---|---|---|---|---|---|---|---|
Accuracy = 85.82% | ||||||||||
Daytime | Precision | 0.85 | 0.90 | 0.92 | 0.82 | 0.89 | 0.95 | 0.68 | 0.89 | 0.98 |
Recall | 0.89 | 0.88 | 0.86 | 0.72 | 0.88 | 0.93 | 0.54 | 0.92 | 0.90 | |
F1-score | 0.87 | 0.89 | 0.89 | 0.77 | 0.88 | 0.94 | 0.60 | 0.91 | 0.94 | |
Accuracy = 91.45% | ||||||||||
Nighttime | Precision | 0.90 | 0.92 | 0.99 | 0.87 | 0.92 | 0.96 | 0.77 | 0.93 | 0.97 |
Recall | 0.90 | 0.91 | 0.92 | 0.85 | 0.93 | 0.97 | 0.56 | 0.96 | 0.96 | |
F1-score | 0.90 | 0.91 | 0.95 | 0.86 | 0.93 | 0.96 | 0.65 | 0.94 | 0.96 |
Season | Cloud Type | Clear | Ci | Dc | Ac | As | Ns | Cu | Sc | St |
---|---|---|---|---|---|---|---|---|---|---|
Accuracy = 86.61% | ||||||||||
Spring | Precision | 0.85 | 0.90 | 0.93 | 0.83 | 0.90 | 0.96 | 0.69 | 0.90 | 0.97 |
Recall | 0.90 | 0.87 | 0.87 | 0.75 | 0.87 | 0.94 | 0.56 | 0.93 | 0.90 | |
F1-score | 0.88 | 0.88 | 0.90 | 0.79 | 0.89 | 0.95 | 0.62 | 0.92 | 0.93 | |
Accuracy = 85.60% | ||||||||||
Summer | Precision | 0.84 | 0.91 | 0.95 | 0.82 | 0.87 | 0.95 | 0.66 | 0.88 | 0.97 |
Recall | 0.88 | 0.89 | 0.89 | 0.74 | 0.88 | 0.93 | 0.50 | 0.92 | 0.93 | |
F1-score | 0.86 | 0.90 | 0.92 | 0.78 | 0.88 | 0.94 | 0.57 | 0.90 | 0.95 | |
Accuracy = 85.87% | ||||||||||
Autumn | Precision | 0.85 | 0.90 | 0.93 | 0.81 | 0.88 | 0.95 | 0.68 | 0.88 | 0.99 |
Recall | 0.89 | 0.87 | 0.90 | 0.74 | 0.88 | 0.93 | 0.54 | 0.93 | 0.90 | |
F1-score | 0.87 | 0.89 | 0.91 | 0.77 | 0.88 | 0.94 | 0.60 | 0.90 | 0.94 | |
Accuracy = 87.27% | ||||||||||
Winter | Precision | 0.87 | 0.91 | 0.86 | 0.84 | 0.91 | 0.95 | 0.69 | 0.89 | 0.99 |
Recall | 0.91 | 0.89 | 0.88 | 0.75 | 0.88 | 0.93 | 0.55 | 0.93 | 0.87 | |
F1-score | 0.89 | 0.90 | 0.87 | 0.79 | 0.90 | 0.94 | 0.60 | 0.91 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Mi, X.; Han, Z.; Zhang, W.; Liu, Q.; Gu, X.; Yu, T. A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data. Remote Sens. 2023, 15, 5630. https://doi.org/10.3390/rs15245630
Fu Y, Mi X, Han Z, Zhang W, Liu Q, Gu X, Yu T. A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data. Remote Sensing. 2023; 15(24):5630. https://doi.org/10.3390/rs15245630
Chicago/Turabian StyleFu, Yashuai, Xiaofei Mi, Zhihua Han, Wenhao Zhang, Qiyue Liu, Xingfa Gu, and Tao Yu. 2023. "A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data" Remote Sensing 15, no. 24: 5630. https://doi.org/10.3390/rs15245630
APA StyleFu, Y., Mi, X., Han, Z., Zhang, W., Liu, Q., Gu, X., & Yu, T. (2023). A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data. Remote Sensing, 15(24), 5630. https://doi.org/10.3390/rs15245630