Analysis of Spatial and Temporal Variability of Ecosystem Service Values and Their Spatial Correlation in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
2.3. Estimation of ESV
2.4. ESV Gain/Loss Analysis
2.5. ESV Anthropogenic Impact Index Analysis Method
2.6. Spatial Clustering Model
3. Results
3.1. Spatial and Temporal Variation Characteristics of ESV in Xinjiang
3.1.1. Changes in ESV
3.1.2. Spatial Change Characteristics of Ecosystem Service Values
3.1.3. Ecosystem Service Value Loss and Gain Analysis
3.2. Analysis of the Correlation between ESV and Intensity of Human Activities
3.2.1. Analysis of Changes in Intensity of Human Activities
3.2.2. Correlation Analysis
3.3. Ecosystem Service Value and Natural Vegetation Correlation Analysis
3.3.1. Analysis of Spatial and Temporal Changes in Vegetation NPP
3.3.2. ESV and NPP Correlation Analysis
4. Discussion
4.1. Research Methods
4.2. Characterization of Temporal and Spatial Variations in ESV
4.3. Effects of Human Activities and Vegetation Changes on ESV
5. Conclusions
- (1)
- The ESV in Xinjiang showed an increasing trend from 2000 to 2010, and a downward trend from 2010 to 2020. However, the overall increase from 2000 to 2020 was about CNY 18.20 billion, including a decrease of CNY 16.89 billion in the ESV in northern Xinjiang and an increase of about CNY 35.09 billion in the ESV in southern Xinjiang. The spatial distribution characteristics of the ESV in Xinjiang are mainly low in the central areas and high around the peripheral oases, with ESV Class 2, Class 4, and Class 1 regions being the most active.
- (2)
- The results of the ESV gain/loss transfer matrix show that the main loss of ESV in Xinjiang during 2000–2020 was primarily due to the flow of ecological land types to barren land and the conversion of other land types to cropland, totaling CNY 196.63 billion and CNY 100.08 billion, respectively. The increase in ESV was mostly due to the conversion of each land type to grassland, water, and forestland, resulting in a total ESV increase of CNY 409.55 billion.
- (3)
- Additionally, this study found an overall increasing trend in the HAI index. Moreover, the area covered by intense human activities displayed an expansion trend, whereby a large amount of ecological land transformed into agricultural land and built-up land, thus decreasing the ESV in Xinjiang. The increase in vegetation NPP also increased the ESV. Finally, the spatial clustering between ESV ∩ HAI and ESV ∩ NPP was found to be higher than that of ESV ∩ HAI, indicating that vegetation change is an important reason for the dominant spatial correlation of ESV. Therefore, in the future, Xinjiang should pay more attention to the protection of vegetation between deserts and oases, as well as adjusting the structure of water resource utilization, rationally allocating water resources, and integrating and efficiently utilizing land resources in order to promote the overall benign development of the basin ecological environment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, C.Y.; Chen, B.W.; Huang, X.J.; Wei, Y.H.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, L.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Robinson, G.M.; Song, B.J. Experimental research on trade-offs in ecosystem services: The agro-ecosystem functional spectrum. Ecol. Indic. 2019, 106, 105536. [Google Scholar] [CrossRef]
- Shrestha, B.; Ye, Q.H.; Khadka, N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 3183. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sikdar, P.K.; Pal, S.; Schutt, B. Assessment of Environmental Water Security of an Asian Deltaic Megacity and Its Peri-Urban Wetland Areas. Sustainability 2021, 13, 2772. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Li, T.; Zhou, Z. Positive and negative ecosystem services evaluation and its spatial pattern analysis on urban landscape: A case study of Xi’an City. Acta Geogr. Sin. 2016, 71, 1215–1230. [Google Scholar]
- Yu, L.; Zhang, X.; Li, Y.; Zhao, X.; Ma, S.; Cao, H.; Cao, J. Coastal ecosystem services and their spatial-temporal variation in Haikou, China. Acta Ecol. Sin. 2016, 36, 2431–2441. [Google Scholar]
- Li, Z.; Xu, Y.; Sun, Y.; Wu, M.; Zhao, B. Urbanization-Driven Changes in Land-Climate Dynamics: A Case Study of Haihe River Basin, China. Remote Sens. 2020, 12, 2701. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Chen, H.; Zhang, X. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi province based on GWR. J. Nat. Resour. 2020, 35, 1714–1727. [Google Scholar]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.; Quine, T.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- He, Z.Q.; Shang, X.; Zhang, T.H.; Yun, J.Y. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of northern Shaanxi, China. Ecol. Indic. 2022, 143, 109325. [Google Scholar] [CrossRef]
- Lang, M.; Kõlli, R.; Nikopensius, M.; Nilson, T. Assessment of MODIS NPP algorithm-based estimates using soil fertility and forest inventory data in mixed hemiboreal forest. For. Stud. 2017, 66, 49–64. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Defries, R.S.; Field, C.B.; Fung, I.; Collatz, G.J.; Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 1999, 13, 803–815. [Google Scholar] [CrossRef]
- Xu, X.B.; Tan, Y.; Yang, G.S.; Li, H.P.; Su, W.Z. Impacts of China’s Three Gorges Dam Project on net primary productivity in the reservoir area. Sci. Total Environ. 2011, 409, 4656–4662. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Tucker, C.J.; Lawrence, W.T.; Stutzer, D.C. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2549–2556. [Google Scholar]
- Chen, Y.; Li, W.; Chen, Y.; Zhu, C. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin. Arid. Land Geogr. 2018, 41, 901–907. [Google Scholar]
- Liu, W.; Jiang, F.Q.; Li, X.L. Spatiotemporal evolution of adaptive capacity to climate change in Xinjiang. Arid Zone Res. 2017, 34, 531–540. [Google Scholar]
- Hou, Y.; Chen, Y.; Ding, J.; Li, Z.; Li, Y.; Sun, F. Ecological impacts of land use change in the arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Wei, H.J.; Liu, H.M.; Xu, Z.H.; Ren, J.H.; Lu, N.C.; Fan, W.G.; Zhang, P.; Dong, X.B. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-dessert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Song, F.; Su, F.L.; Mi, C.X.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2020, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xia, J.; Zhang, Y.; Zhan, C.; Sun, S. How is the risk of hydrological drought in the Tarim River Basin, Northwest China? Sci. Total Environ. 2019, 693, 133555. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Chen, Y.; Li, Y.; Zhang, Q.; Qin, J.; Kayumba, P.M. Historic and simulated desert-oasis ecotone changes in the arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhu, C.; Li, W. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. Acta Ecol. Sin. 2019, 39, 7410–7417. [Google Scholar]
- Li, Z.; Li, Y.P.; Li, H.W.; Liu, Y.C.; Wang, C. Analysis of drought change and its impact in Central Asia. Adv. Earth Sci. 2022, 37, 37–50. [Google Scholar]
- Kang, T.T.; Li, Z.; Gao, Y.C. Effectiveness of ecological restoration in the mountain-oasis-desert system of northwestern arid area of China. Acta Ecol. Sin. 2019, 39, 7418–7431. [Google Scholar]
- Guo, Z.C.; Wei, W.; Shi, P.J.; Zhou, L.; Wang, X.F.; Li, Z.Y.; Pang, S.F.; Jie, B.B. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China. Acta Geogr. Sin. 2020, 75, 1948–1965. [Google Scholar]
- Qian, W.; Zhai, P.M.; Qin, D.H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Chang. Res. 2020, 11, 252–260. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. Mod17a3hgf Modis/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m Sin Grid v006; Nasa Eosdis Land Processes DAAC: Sioux Falls, SD, USA, 2019; Volume 6.
- Deng, C.X.; Zhong, X.L.; Xie, B.G.; Wan, Y.L.; Song, X.W. Spatial and temporal changes of land ecosystem service value in Dongting Lake area in 1995–2015. Geogr. Res. 2019, 38, 844–855. [Google Scholar]
- Fu, J.; Zhang, Q.; Wang, P.; Zhang, L.; Tian, Y.; Li, X. Spatio-Temporal Changes in Ecosystem Service Value and Its Coordinated Development with Economy: A Case Study in Hainan Province, China. Remote Sens. 2022, 14, 970. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, C.X.; Cao, X.Y.; Xiao, J.S.; Zhaxi, L.D.; Yan, Y.Q.; Chen, G.Q.; Shi, F.F. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale. Chin. J. Appl. Ecol. 2020, 31, 1660–1672. [Google Scholar]
- Zhang, X.; Chen, D.C.; Fan, J.D.; Yu, C.; Zhou, Y.; Tang, J.J. Study on the change of ecosystem service value and its correlation with human activities: Taking Changzhou City as an example. J. Environ. Eng. Technol. 2022, 12, 2124–2131. [Google Scholar]
- Huang, M.; Fang, B.; Yue, W.; Feng, S. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995–2017. Geogr. Res. 2019, 38, 2790–2803. [Google Scholar]
- Zhang, C.; Bai, Z.; Li, X.; Ran, Q.; Wei, Z.; Lei, T.; Wang, N. Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018. Arid Land Geogr. 2021, 44, 188–196. [Google Scholar]
- Xin, D.; Wang, L.C.; Huang, C.B.; Fang, L.L.; Wang, S.Q.; Wang, L.Z. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, Y.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Lu, X.; Ming, S.H.; Yi, W. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 104126. [Google Scholar]
- Qin, Y.L.; Shi, P.; He, W.H.; Huo, C.P.; Li, Z.B.; Yang, S.T.; Feng, Z.H. Influence of urbanization on landscape pattern and ecosystem service value in Xi’an City. Acta Ecol. Sin. 2020, 40, 8239–8250. [Google Scholar]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Sun, F.; Wang, S. Spatial-Temporal Evolution and Influencing Factors Analysis of Ecosystem Services Value: A Case Study in Sunan Canal Basin of Jiangsu Province, Eastern China. Remote Sens. 2023, 15, 112. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, F.; Hsiang-te, K.; Zhang, Y.; Jing, Y.Q. Spatial and temporal ecosystem changes in the Ebinur Wetland Nature Reserve from 1998 to 2014. Acta Ecol. Sin. 2017, 37, 4984–4997. [Google Scholar]
- Chen, Y.N.; Zhang, X.Q.; Fang, G.H.; Wang, F.; Qin, J.X.; Sun, F. Potential risks and challenges of climate change in the arid region of northwestern China. Reg. Sustain. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Chakraborti, S.; Joshi, K.P.; Saskia, K.; Somnath, S.; Saikat, K.P.; Urs, K.; Paul, C. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–277. [Google Scholar] [CrossRef]
- Sarker, S. Fundamentals of Climatology for Engineers: Lecture Note. Eng 2022, 3, 573–595. [Google Scholar] [CrossRef]
- Sarker, S.; Sarker, T.; Leta, O.T.; Raihan, S.U.; Khan, I.; Ahmed, N. Understanding the Planform Complexity and Morphodynamic Properties of Brahmaputra River in Bangladesh: Protection and Exploitation of Riparian Areas. Water 2023, 15, 1384. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gui, D. A review on water resources research in Tarim River Basin. Arid Land Geogr. 2018, 41, 1151–1159. [Google Scholar]
- Lin, J.; Zhao, C.Y.; Ma, X.F.; Shi, F.Z.; Wu, S.X.; Zhu, J. Optimization of land use structure based on ecosystem service value in the mainstream of Tarim river. Arid Zone Res. 2021, 38, 1140–1151. [Google Scholar]
- He, S.S.; Ye, L.P.; Zhu, W.B.; Cui, Y.P.; Zhu, L.Q. Soil erosion and water supply change in Qihe watershed of Taihang Mountains from 2000 to 2015. Geogr. Res. 2018, 37, 1775–1787. [Google Scholar]
- Xue, M.G.; Xing, L.; Wang, X.L. Spatial Correction and Evaluation of Ecosystem Services in China. China Land Sci. 2018, 32, 81–88. [Google Scholar]
Data | Accuracy | Data Sources |
---|---|---|
Land use data | 30 m | Annual China Land Cover Dataset data set |
Temperature and precipitation data | 500 m | National Climatic Data Center |
DEM data | 30 m | SRTM DEM dataset (http://www.gscloud.cn (12 May 2023)) |
Vegetation Net Primary Productivity data | 500 m | MODIS/Terra satellite land observation products (http://landweb.nascom.nasa.gov/ (24 July 2023)) |
ESV | ||||||||
---|---|---|---|---|---|---|---|---|
Primary Type | Secondary Type | Cropland | Forest | Grassland | Water | Snow/Ice | Barren | Wetland |
Support service Provision of service | Food production | 3393.57 | 1550.91 | 1074.89 | 1228.44 | 0.00 | 15.36 | 783.13 |
Material production | 752.42 | 3562.48 | 1581.62 | 353.18 | 0.00 | 46.07 | 767.78 | |
Water supply | −4007.79 | 1842.66 | 875.26 | 12,729.71 | 3316.79 | 30.71 | 3977.07 | |
Regulation service | Gas conditioning | 2733.28 | 11,716.25 | 5558.69 | 1182.37 | 276.40 | 199.62 | 2917.55 |
Climate regulation | 1428.06 | 35,056.61 | 14,695.21 | 3516.41 | 829.20 | 153.56 | 5527.98 | |
Purify environment | 414.60 | 10,272.83 | 4852.34 | 8522.30 | 245.69 | 629.58 | 5527.98 | |
Hydrological adjusting | 4591.29 | 22,941.12 | 10,764.21 | 156,994.63 | 10,948.47 | 368.53 | 37,206.38 | |
Support service | Soil conservation | 1596.97 | 14,265.26 | 6771.78 | 1428.06 | 0.00 | 230.33 | 3547.12 |
Maintain nutrient circulation | 476.02 | 1090.24 | 522.09 | 107.49 | 0.00 | 15.36 | 276.40 | |
Biodiversity | 522.09 | 12,990.75 | 6157.56 | 3915.65 | 15.36 | 214.98 | 12,084.78 | |
Cultural service | Aesthetic landscape | 230.33 | 5696.89 | 2717.92 | 2902.19 | 138.20 | 92.13 | 7263.15 |
Total | 12,130.85 | 120,985.98 | 55,571.55 | 192,880.44 | 15,770.10 | 1996.22 | 79,879.31 |
2020 | ||||||||
---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Snow/Ice | Barren | Wetland | ||
2 0 0 0 | Cropland | – | 8.46 | 308.86 | 37.97 | 0.00 | −1.65 | 0.32 |
Forest | −30.84 | – | −1.19 | 0.56 | 0.00 | 0.00 | −0.01 | |
Grassland | −1021.61 | 247.09 | – | 927.73 | −14.30 | −1830.46 | 4.82 | |
Water | −38.78 | −2.39 | −66.52 | – | −3.11 | −71.62 | −0.05 | |
Snow/ice | 0.00 | 1.34 | 6.76 | 36.62 | – | −62.55 | 0.00 | |
Barren | 91.99 | 0.94 | 2093.08 | 496.77 | 74.49 | – | 0.03 | |
Wetland | −1.52 | 0.08 | −0.86 | 0.15 | 0.00 | −0.02 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Xu, W.; Sheng, Z.; Zhu, Z.; Hou, Y. Analysis of Spatial and Temporal Variability of Ecosystem Service Values and Their Spatial Correlation in Xinjiang, China. Remote Sens. 2023, 15, 4861. https://doi.org/10.3390/rs15194861
Zhang S, Wang Y, Xu W, Sheng Z, Zhu Z, Hou Y. Analysis of Spatial and Temporal Variability of Ecosystem Service Values and Their Spatial Correlation in Xinjiang, China. Remote Sensing. 2023; 15(19):4861. https://doi.org/10.3390/rs15194861
Chicago/Turabian StyleZhang, Shuai, Yang Wang, Wenzhe Xu, Ziyi Sheng, Zhen Zhu, and Yifeng Hou. 2023. "Analysis of Spatial and Temporal Variability of Ecosystem Service Values and Their Spatial Correlation in Xinjiang, China" Remote Sensing 15, no. 19: 4861. https://doi.org/10.3390/rs15194861
APA StyleZhang, S., Wang, Y., Xu, W., Sheng, Z., Zhu, Z., & Hou, Y. (2023). Analysis of Spatial and Temporal Variability of Ecosystem Service Values and Their Spatial Correlation in Xinjiang, China. Remote Sensing, 15(19), 4861. https://doi.org/10.3390/rs15194861