Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review
Abstract
:1. Introduction
1.1. Forests in Germany: Current Challenges
1.2. Earth-Observation-Based Monitoring of Forests in Germany
1.3. Objectives of this Review
- Give an update (since April 2020) regarding research studies described within scientific publications focusing on forests in Germany, including a categorization on topic, location, extent, spatial resolution, temporal interval, thematic focus, and outcome;
- Present an overview of existing forest-related remote-sensing-based products and projects;
- Consider political and strategic directions in Germany with regard to the use of remote sensing for monitoring the forest;
- Critically discuss limitations and possibilities of EO for different aspects in relation to German forests.
2. Methodology of the Review
2.1. Literature Review
- Northwest German Forest Research Institute (Hesse, Lower Saxony, Saxony-Anhalt, and Schleswig-Holstein);
- Competence Center Forest and Forestry (Landesbetrieb Sachsenforst, Saxony);
- Forestry Research and Competence Centre (ThüringenForst, Thuringia);
- Bavarian State Institute of Forestry (Bavaria);
- Forest Research Institute Baden-Württemberg (Baden-Württemberg);
- Research Institute for Forest Ecology and Forestry Rhineland-Palatinate (Rhineland-Palatinate);
- Research Unit Silviculture and Forest Growth (Landesforst Mecklenburg-Vorpommern and Mecklenburg–Western Pomerania);
- State Competence Center Forestry Eberswalde (Landesbetrieb Forst Brandenburg, Brandenburg);
- Center for Forest and Timber Management (Landesbetrieb Wald und Holz Nordrhein-Westfalen and North Rhine-Westphalia)
2.2. Existing Forest-Related Products
- Spatial coverage within Germany. Europe-wide products that include Germany were also considered;
- Sufficient information on the spatial and temporal resolution and the temporal coverage of the products as well as the EO data used.
2.3. Existing Forest-Related Projects
- German Project Information System (GEPRIS), which includes projects funded by the German Research Foundation (DFG);
- CORDIS (Community Research and Development Information Service), the European Commission’s database covering projects funded by the EU’s framework programs;
- The grant program of the German Federal Ministry of Food and Agriculture (BMEL) called “Waldklimafonds” (Forest Climate Fund);
- Database of projects in the funding programs of the BMEL, supervised by the Project Management Agency (BLE);
- Project database of the German Environment Agency (UBA)
- Project data base of the German Copernicus Network Office Forest (“Copernicus Netzwerkbüro Wald”).
3. Results
3.1. Literature Review
3.1.1. Review Results: Temporal Development of Publications, Author Affiliation, and Funding of Studies
3.1.2. Review Results: Spatial Coverage, Spatial Extent, and Investigated Forest Scale
3.1.3. Review Results: Employed Earth-Observation Sensors
3.1.4. Review Results: Temporal Resolution
3.1.5. Review Results: Research Topics
Disturbance
Forest Structure
Forest Cover/Type
Phenology
Biodiversity
Biomass/Productivity
Plant Traits
3.2. Forest-Related Products
3.2.1. Content of Available Products
3.2.2. Spatial Coverage and Spatial Resolution
3.2.3. Temporal Coverage and Update Interval
3.2.4. Earth Observation Sensors Employed
3.3. Forest-Related Projects
3.3.1. Funding
3.3.2. Topics and Used Sensors
4. Discussion
4.1. Current Strategic Planning in the German Forest Sector
4.2. Forest Disturbance Monitoring: The Most Urgent Task?
4.3. User Needs and Possibilities of EO Based Forest Monitoring
4.4. Future Developments
5. Conclusions
- The increasing number of publications that was already observed over the previous 23 years continued, with a growing number of publications in ecology-related journals (29% in the last three years compared to 12.5% in the years before);
- A total of 27% of publications for the years 2020–2022 can be assigned to institutions with an institution background on both EO and forestry in comparison to only 3.5% beforehand;
- The extent of the study areas did increase with many more nationwide studies (from 2.9% to 28%);
- The growing deployment of Copernicus data or satellite data in general: 70% of the studies are based on spaceborne sensor systems, which is an increase of 20%. As before, mainly multispectral sensors (i.e., Sentinel-2, Landsat, and MODIS) were used, namely 85%;
- A shift towards the usage of multi-temporal/multi-annual EO data, which account now for 50% of the studies in contrast to the earlier period with 18.5%;
- The percentage of studies dealing with the derivation of forest disturbance information doubled from 16.2% to 32.1%.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Ahmed, K.R.; Paul-Limoges, E.; Rascher, U.; Damm, A. A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. Remote Sens. 2020, 13, 16. [Google Scholar] [CrossRef]
- Brun, P.; Psomas, A.; Ginzler, C.; Thuiller, W.; Zappa, M.; Zimmermann, N.E. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 2020, 26, 7021–7035. [Google Scholar] [CrossRef] [PubMed]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Obladen, N.; Dechering, P.; Skiadaresis, G.; Tegel, W.; Keßler, J.; Höllerl, S.; Kaps, S.; Hertel, M.; Dulamsuren, C.; Seifert, T.; et al. Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agric. For. Meteorol. 2021, 307, 108482. [Google Scholar] [CrossRef]
- Philipp, M.; Wegmann, M.; Kübert-Flock, C. Quantifying the Response of German Forests to Drought Events via Satellite Imagery. Remote Sens. 2021, 13, 1845. [Google Scholar] [CrossRef]
- Puletti, N.; Mattioli, W.; Bussotti, F.; Pollastrini, M. Monitoring the effects of extreme drought events on forest health by Sentinel-2 imagery. J. Appl. Remote Sens. 2019, 13, 020501. [Google Scholar] [CrossRef]
- Rohner, B.; Kumar, S.; Liechti, K.; Gessler, A.; Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 2021, 120, 106903. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Shekhar, A.; Chen, J.; Bhattacharjee, S.; Buras, A.; Castro, A.O.; Zang, C.S.; Rammig, A. Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO-2 Solar-Induced Fluorescence. Remote Sens. 2020, 12, 3249. [Google Scholar] [CrossRef]
- Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; da Ponte, E.; Huth, J.; Kuenzer, C. A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sens. 2022, 14, 562. [Google Scholar] [CrossRef]
- Concern about German Forests. Available online: https://www.dlr.de/en/latest/news/2022/01/20220221_concern-about-german-forests (accessed on 1 July 2023).
- Eckpunkte der Waldstrategie 2050—Stellungnahme des Wissenschaftlichen Beirates Waldpolitik; Wissenschaftlicher Beirat Waldpolitik beim BMEL: Berlin, Germany, 2020.
- AG Wald- und Holzforschung. Stärkung der Wald- und Holzforschung in Deutschland; AG Wald- und Holzforschung: Berlin, Germany, 2021. [Google Scholar]
- de Brito, M.M. Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships. Sci. Total Environ. 2021, 778, 146236. [Google Scholar] [CrossRef] [PubMed]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.-J.; Seidl, R.; Svoboda, M.; et al. Living with Bark Beetles: Impacts, Outlook and Management Options; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar] [CrossRef]
- Third National Forest Inventory. Available online: https://bwi.info/ (accessed on 1 March 2023).
- Waldstrategie 2050; BMEL, Referat 513; Nationale Waldpolitik, Jagd, Kompetenzzentrum Wald und Holz: Berlin, Germany, 2021.
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Schmied, G.; Hilmers, T.; Uhl, E.; Pretzsch, H. The Past Matters: Previous Management Strategies Modulate Current Growth and Drought Responses of Norway Spruce (Picea abies H. Karst.). Forests 2022, 13, 243. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncina, A.; Chauvin, C.; Drossler, L.; Garcia-Guemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Levesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef]
- Wellbrock, N.; Eickenscheidt, N.; Hilbrig, L.; Dühnelt, P.-E.; Holzhausen, M.; Bauer, A.; Dammann, I.; Strich, S.; Engels, F.; Wauer, A. Leitfaden und Dokumentation zur Waldzustandserhebung in Deutschland; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2018. [Google Scholar]
- Ergebnisse der Waldzustandserhebung 2022; BMEL, Referat 515; Nachhaltige Waldbewirtschaftung, Holzmarkt: Bonn, Germany, 2023.
- Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al. Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation. For. Ecol. Manag. 2022, 505, 119868. [Google Scholar] [CrossRef]
- The Forest-based Sector Technology Platform (FTP). Strategic Research and Innovation Agenda 2030 of the European Forest-Based Sector; The European Forestry House: Brussels, Belgium, 2020. [Google Scholar]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Achim, A.; Mulverhill, C.; Fassnacht, F. Framework for near real-time forest inventory using multi source remote sensing data. For. Int. J. For. Res. 2023, 96, 1–19. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M.; Puca, S. An automatic processing chain for near real-time mapping of burned forest areas using sentinel-2 data. Remote Sens. 2020, 12, 674. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; SERVIR Global Science Coordination Office, National Space Science and Technology Center: Huntsville, AL, USA, 2019. [Google Scholar]
- Hill, J.; Buddenbaum, H.; Townsend, P.A. Imaging spectroscopy of forest ecosystems: Perspectives for the use of space-borne hyperspectral earth observation systems. Surv. Geophys. 2019, 40, 553–588. [Google Scholar] [CrossRef]
- Kacic, P.; Thonfeld, F.; Gessner, U.; Kuenzer, C. Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data. Remote Sens. 2023, 15, 1969. [Google Scholar] [CrossRef]
- Kacic, P.; Kuenzer, C. Forest Biodiversity Monitoring Based on Remotely Sensed Spectral Diversity—A Review. Remote Sens. 2022, 14, 5363. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Vangi, E.; D’Amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The new hyperspectral satellite PRISMA: Imagery for forest types discrimination. Sensors 2021, 21, 1182. [Google Scholar] [CrossRef]
- Di Leo, M.; Minghini, M.; Kona, A.; Spadaro, N.; Kotsev, A.; Dusart, J.; Lumnitz, S.; Ilie, C.M.; Kilsedar, C.E.; Tzotsos, A. Digital earth observation infrastructures and initiatives: A review framework based on open principles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-4/W7-2023, 33–40. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Alagialoglou, L.; Manakos, I.; Heurich, M.; Cervenka, J.; Delopoulos, A. A Learnable Model with Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4410913. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.; Gara, T.W.; Heurich, M. Machine learning methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest. Int. J. Digit. Earth 2020, 14, 106–120. [Google Scholar] [CrossRef]
- Axer, M.; Schlicht, R.; Wagner, S. Modelling potential density of natural regeneration of European oak species (Quercus robur L., Quercus petraea (Matt.) Liebl.) depending on the distance to the potential seed source: Methodological approach for modelling dispersal from inventory data at forest enterprise level. For. Ecol. Manag. 2021, 482, 118802. [Google Scholar] [CrossRef]
- Barta, K.A.; Hais, M.; Heurich, M. Characterizing forest disturbance and recovery with thermal trajectories derived from Landsat time series data. Remote Sens. Environ. 2022, 282, 113274. [Google Scholar] [CrossRef]
- Bastos, A.; Orth, R.; Reichstein, M.; Ciais, P.; Viovy, N.; Zaehle, S.; Anthoni, P.; Arneth, A.; Gentine, P.; Joetzjer, E.; et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 2021, 12, 1015–1035. [Google Scholar] [CrossRef]
- Beloiu, M.; Stahlmann, R.; Beierkuhnlein, C. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. For. Ecol. Manag. 2022, 509, 120075. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Front. Plant Sci. 2021, 12, 689220. [Google Scholar] [CrossRef]
- Cazcarra-Bes, V.; Pardini, M.; Papathanassiou, K. Definition of Tomographic SAR Configurations for Forest Structure Applications at L-Band. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4002605. [Google Scholar] [CrossRef]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Chetan, M.A.; Dornik, A. 20 years of landscape dynamics within the world’s largest multinational network of protected areas. J. Environ. Manag. 2021, 280, 111712. [Google Scholar] [CrossRef]
- Deigele, W.; Brandmeier, M.; Straub, C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sens. 2020, 12, 2121. [Google Scholar] [CrossRef]
- Dersch, S.; Schöttl, A.; Krzystek, P.; Heurich, M. Novel Single Tree Detection by Transformers Using Uav-Based Multispectral Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 981–988. [Google Scholar] [CrossRef]
- Descals, A.; Verger, A.; Yin, G.; Filella, I.; Peñuelas, J. Widespread drought-induced leaf shedding and legacy effects on productivity in European deciduous forests. Remote Sens. Ecol. Conserv. 2022, 9, 76–89. [Google Scholar] [CrossRef]
- Dostálová, A.; Lang, M.; Ivanovs, J.; Waser, L.T.; Wagner, W. European Wide Forest Classification Based on Sentinel-1 Data. Remote Sens. 2021, 13, 337. [Google Scholar] [CrossRef]
- Drag, L.; Burner, R.C.; Stephan, J.G.; Birkemoe, T.; Doerfler, I.; Gossner, M.M.; Magdon, P.; Ovaskainen, O.; Potterf, M.; Schall, P.; et al. High-resolution 3D forest structure explains ecomorphological trait variation in assemblages of saproxylic beetles. Funct. Ecol. 2022, 37, 150–161. [Google Scholar] [CrossRef]
- Einzmann, K.; Atzberger, C.; Pinnel, N.; Glas, C.; Böck, S.; Seitz, R.; Immitzer, M. Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sens. Environ. 2021, 266, 112676. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Freudenberg, M.; Magdon, P.; Nölke, N. Individual tree crown delineation in high-resolution remote sensing images based on U-Net. Neural Comput. Appl. 2022, 34, 22197–22207. [Google Scholar] [CrossRef]
- Ganz, S.; Adler, P.; Kändler, G. Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests 2020, 11, 1322. [Google Scholar] [CrossRef]
- Gnilke, A.; Sanders, T.G.M. Distinguishing Abrupt and Gradual Forest Disturbances With MODIS-Based Phenological Anomaly Series. Front. Plant Sci. 2022, 13, 863116. [Google Scholar] [CrossRef]
- Haberstroh, S.; Werner, C.; Grun, M.; Kreuzwieser, J.; Seifert, T.; Schindler, D.; Christen, A. Central European 2018 hot drought shifts scots pine forest to its tipping point. Plant Biol. 2022, 24, 1186–1197. [Google Scholar] [CrossRef]
- Haesen, S.; Lembrechts, J.J.; De Frenne, P.; Lenoir, J.; Aalto, J.; Ashcroft, M.B.; Kopecky, M.; Luoto, M.; Maclean, I.; Nijs, I.; et al. ForestTemp—Sub-canopy microclimate temperatures of European forests. Glob. Chang. Biol. 2021, 27, 6307–6319. [Google Scholar] [CrossRef]
- Hase, N.; Doktor, D.; Rebmann, C.; Dechant, B.; Mollenhauer, H.; Cuntz, M. Identifying the main drivers of the seasonal decline of near-infrared reflectance of a temperate deciduous forest. Agric. For. Meteorol. 2022, 313, 108746. [Google Scholar] [CrossRef]
- Heidrich, L.; Bae, S.; Levick, S.; Seibold, S.; Weisser, W.; Krzystek, P.; Magdon, P.; Nauss, T.; Schall, P.; Serebryanyk, A.; et al. Heterogeneity-diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 2020, 4, 1204–1212. [Google Scholar] [CrossRef]
- Heisig, J.; Olson, E.; Pebesma, E. Predicting Wildfire Fuels and Hazard in a Central European Temperate Forest Using Active and Passive Remote Sensing. Fire 2022, 5, 29. [Google Scholar] [CrossRef]
- Hellwig, F.M.; Stelmaszczuk-Górska, M.A.; Dubois, C.; Wolsza, M.; Truckenbrodt, S.C.; Sagichewski, H.; Chmara, S.; Bannehr, L.; Lausch, A.; Schmullius, C. Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements. Remote Sens. 2021, 13, 4659. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Hoeppner, J.M.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M.; Chang, H.-C.; Gara, T.W. Mapping Canopy Chlorophyll Content in a Temperate Forest Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 3573. [Google Scholar] [CrossRef]
- Hoffmann, J.; Muro, J.; Dubovyk, O. Predicting Species and Structural Diversity of Temperate Forests with Satellite Remote Sensing and Deep Learning. Remote Sens. 2022, 14, 1631. [Google Scholar] [CrossRef]
- Kemper, L.; Kemper, H.; Kemper, G. Multispectral Aerial Images to Support Biotope Information Systems for Midge Infestation and Bark Beetle Monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 893–898. [Google Scholar] [CrossRef]
- Kempf, C.; Tian, J.; Kurz, F.; D’Angelo, P.; Schneider, T.; Reinartz, P. Oblique view individual tree crown delineation. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102314. [Google Scholar] [CrossRef]
- Korolyova, N.; Buechling, A.; Ďuračiová, R.; Zabihi, K.; Turčáni, M.; Svoboda, M.; Bláha, J.; Swarts, K.; Poláček, M.; Hradecký, J.; et al. The Last Trees Standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agric. For. Meteorol. 2022, 322, 109025. [Google Scholar] [CrossRef]
- Kowalski, K.; Senf, C.; Hostert, P.; Pflugmacher, D. Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102172. [Google Scholar] [CrossRef]
- Krause, A.; Knoke, T.; Rammig, A. A regional assessment of land-based carbon mitigation potentials: Bioenergy, BECCS, reforestation, and forest management. GCB Bioenergy 2020, 12, 346–360. [Google Scholar] [CrossRef]
- Liu, Q.; Piao, S.; Campioli, M.; Gao, M.; Fu, Y.H.; Wang, K.; He, Y.; Li, X.; Janssens, I.A. Modeling leaf senescence of deciduous tree species in Europe. Glob. Chang. Biol. 2020, 26, 4104–4118. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020, 247, 111933. [Google Scholar] [CrossRef]
- Meyer, B.F.; Buras, A.; Rammig, A.; Zang, C.S. Higher susceptibility of beech to drought in comparison to oak. Dendrochronologia 2020, 64, 125780. [Google Scholar] [CrossRef]
- Misra, G.; Asam, S.; Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 2021, 303, 108383. [Google Scholar] [CrossRef]
- Montibeller, B.; Marshall, M.; Mander, Ü.; Uuemaa, E. Increased carbon assimilation and efficient water usage may not compensate for carbon loss in European forests. Commun. Earth Environ. 2022, 3, 194. [Google Scholar] [CrossRef]
- Montzka, C.; Bayat, B.; Tewes, A.; Mengen, D.; Vereecken, H. Sentinel-2 Analysis of Spruce Crown Transparency Levels and Their Environmental Drivers After Summer Drought in the Northern Eifel (Germany). Front. For. Glob. Chang. 2021, 4, 667151. [Google Scholar] [CrossRef]
- Münzinger, M.; Prechtel, N.; Behnisch, M. Mapping the urban forest in detail: From LiDAR point clouds to 3D tree models. Urban For. Urban Green. 2022, 74, 127637. [Google Scholar] [CrossRef]
- Musshoff, O.; Buchholz, M.; Kölle, W. Can Satellite-Based Weather Index Insurance Hedge the Mortality Risk of Pine Stands? J. For. Econ. 2021, 36, 315–350. [Google Scholar] [CrossRef]
- Palmero-Iniesta, M.; Pino, J.; Pesquer, L.; Espelta, J.M. Recent forest area increase in Europe: Expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. Eur. J. For. Res. 2021, 140, 793–805. [Google Scholar] [CrossRef]
- Pardini, M.; Cazcarra-Bes, V.; Papathanassiou, K.P. TomoSAR Mapping of 3D Forest Structure: Contributions of L-Band Configurations. Remote Sens. 2021, 13, 2255. [Google Scholar] [CrossRef]
- Pisek, J.; Erb, A.; Korhonen, L.; Biermann, T.; Carrara, A.; Cremonese, E.; Cuntz, M.; Fares, S.; Gerosa, G.; Grünwald, T.; et al. Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences 2021, 18, 621–635. [Google Scholar] [CrossRef]
- Polewski, P.; Shelton, J.; Yao, W.; Heurich, M. Instance segmentation of fallen trees in aerial color infrared imagery using active multi-contour evolution with fully convolutional network-based intensity priors. ISPRS J. Photogramm. Remote Sens. 2021, 178, 297–313. [Google Scholar] [CrossRef]
- Richter, R.; Hutengs, C.; Wirth, C.; Bannehr, L.; Vohland, M. Detecting Tree Species Effects on Forest Canopy Temperatures with Thermal Remote Sensing: The Role of Spatial Resolution. Remote Sens. 2021, 13, 135. [Google Scholar] [CrossRef]
- Rocchini, D.; Salvatori, N.; Beierkuhnlein, C.; Chiarucci, A.; de Boissieu, F.; Förster, M.; Garzon-Lopez, C.X.; Gillespie, T.W.; Hauffe, H.C.; He, K.S.; et al. From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecol. Inform. 2021, 61, 101195. [Google Scholar] [CrossRef]
- Scharvogel, D.; Brandmeier, M.; Weis, M. A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data. Forests 2020, 11, 1239. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Seidel, D.; Annighöfer, P.; Ehbrecht, M.; Magdon, P.; Wöllauer, S.; Ammer, C. Deriving Stand Structural Complexity from Airborne Laser Scanning Data—What Does It Tell Us about a Forest? Remote Sens. 2020, 12, 1854. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Senf, C.; Mori, A.S.; Müller, J.; Seidl, R. The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landsc. Ecol. 2020, 35, 2101–2112. [Google Scholar] [CrossRef]
- Senf, C.; Sebald, J.; Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 2021, 4, 749–755. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2020, 4, 63–70. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Storm and fire disturbances in Europe: Distribution and trends. Glob. Chang. Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Seidl, R.; Poulter, B. Post-disturbance canopy recovery and the resilience of Europe’s forests. Glob. Ecol. Biogeogr. 2021, 31, 25–36. [Google Scholar] [CrossRef]
- Steffen, M.; Schipek, M.; Lohrengel, A.-F.; Meine, L. Identification of windthrow-endangered infrastructure combining LiDAR-based tree extraction methods using GIS. J. Appl. Remote Sens. 2021, 15, 014522. [Google Scholar] [CrossRef]
- Szymczak, S.; Bott, F.; Babeck, P.; Frick, A.; Stöckigt, B.; Wagner, K. Estimating the hazard of tree fall along railway lines: A new GIS tool. Nat. Hazards 2022, 112, 2237–2258. [Google Scholar] [CrossRef]
- Thiel, C.; Mueller, M.M.; Epple, L.; Thau, C.; Hese, S.; Voltersen, M.; Henkel, A. UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park). Remote Sens. 2020, 12, 3293. [Google Scholar] [CrossRef]
- Thiel, C.; Müller, M.M.; Berger, C.; Cremer, F.; Dubois, C.; Hese, S.; Baade, J.; Klan, F.; Pathe, C. Monitoring Selective Logging in a Pine-Dominated Forest in Central Germany with Repeated Drone Flights Utilizing a Low Cost RTK Quadcopter. Drones 2020, 4, 11. [Google Scholar] [CrossRef]
- Tian, F.; Cai, Z.; Jin, H.; Hufkens, K.; Scheifinger, H.; Tagesson, T.; Smets, B.; Van Hoolst, R.; Bonte, K.; Ivits, E.; et al. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sens. Environ. 2021, 260, 112456. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Sonnenschein, R.; Zebisch, M.; Hauffe, H.C.; Heym, M.; Pretzsch, H.; Tonon, G. Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data. Ecol. Indic. 2020, 117, 106520. [Google Scholar] [CrossRef]
- Uphus, L.; Lüpke, M.; Yuan, Y.; Benjamin, C.; Englmeier, J.; Fricke, U.; Ganuza, C.; Schwindl, M.; Uhler, J.; Menzel, A. Climate Effects on Vertical Forest Phenology of Fagus sylvatica L., Sensed by Sentinel-2, Time Lapse Camera, and Visual Ground Observations. Remote Sens. 2021, 13, 3982. [Google Scholar] [CrossRef]
- Weiser, H.; Schäfer, J.; Winiwarter, L.; Krašovec, N.; Fassnacht, F.E.; Höfle, B. Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth Syst. Sci. Data 2022, 14, 2989–3012. [Google Scholar] [CrossRef]
- Welle, T.; Aschenbrenner, L.; Kuonath, K.; Kirmaier, S.; Franke, J. Mapping Dominant Tree Species of German Forests. Remote Sens. 2022, 14, 3330. [Google Scholar] [CrossRef]
- Wernicke, J.; Seltmann, C.T.; Wenzel, R.; Becker, C.; Körner, M. Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics. Remote Sens. Environ. 2022, 279, 113134. [Google Scholar] [CrossRef]
- West, E.; Morley, P.J.; Jump, A.S.; Donoghue, D.N.M. Satellite data track spatial and temporal declines in European beech forest canopy characteristics associated with intense drought events in the Rhon Biosphere Reserve, central Germany. Plant Biol. 2022, 24, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Wittich, D.; Rottensteiner, F.; Voelsen, M.; Heipke, C.; Müller, S. Deep Learning for the Detection of Early Signs for Forest Damage Based on Satellite Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-2-2022, 307–315. [Google Scholar] [CrossRef]
- Xie, R.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, M.; Holzwarth, S.; Gara, T.W.; Reusen, I. Mapping leaf area index in a mixed temperate forest using Fenix airborne hyperspectral data and Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102242. [Google Scholar] [CrossRef]
- Yazbeck, T.; Bohrer, G.; Gentine, P.; Ye, L.; Arriga, N.; Bernhofer, C.; Blanken, P.D.; Desai, A.R.; Durden, D.; Knohl, A.; et al. Site Characteristics Mediate the Relationship between Forest Productivity and Satellite Measured Solar Induced Fluorescence. Front. For. Glob. Chang. 2021, 4, 695269. [Google Scholar] [CrossRef]
- Zong, X.; Wang, T.; Skidmore, A.K.; Heurich, M. Estimating fine-scale visibility in a temperate forest landscape using airborne laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102478. [Google Scholar] [CrossRef]
- Bulatov, D.L. Instance segmentation of deadwood objects in combined optical and elevation data using convolutional neural networks. In Proceedings of the SPIE Remote Sensing, Earth Resources and Environmental Remote Sensing/GIS Applications XII, Virtual Conference, 13–17 September 2021. [Google Scholar]
- Garamszegi, B.; Jung, C.; Schindler, D. Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany. Forests 2022, 13, 2114. [Google Scholar] [CrossRef]
- Grunig, M.; Seidl, R.; Senf, C. Increasing aridity causes larger and more severe forest fires across Europe. Glob. Chang. Biol. 2023, 29, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P.; Buddenbaum, H.; Nink, S.; Hill, J. Potential of Sentinel-1 Data for Spatially and Temporally High-Resolution Detection of Drought Affected Forest Stands. Forests 2022, 13, 2148. [Google Scholar] [CrossRef]
- Mueller, M.M.; Dubois, C.; Jagdhuber, T.; Hellwig, F.M.; Pathe, C.; Schmullius, C.; Steele-Dunne, S. Sentinel-1 Backscatter Time Series for Characterization of Evapotranspiration Dynamics over Temperate Coniferous Forests. Remote Sens. 2022, 14, 6384. [Google Scholar] [CrossRef]
- Zimmermann, S.; Hoffmann, K. Evaluating the capabilities of Sentinel-2 data for large-area detection of bark beetle infestation in the Central German Uplands. J. Appl. Remote Sens. 2020, 14, 024515. [Google Scholar] [CrossRef]
- Zong, X.; Wang, T.; Skidmore, A.K.; Heurich, M. LiDAR reveals a preference for intermediate visibility by a forest-dwelling ungulate species. J. Anim. Ecol. 2022, 92, 1306–1319. [Google Scholar] [CrossRef]
- Ackermann, J.; Adler, P.; Engels, F.; Franz, S.; Hoffmann, K.; Jütte, K.; Rüffer, O.; Sagischewski, H.; Seitz, R. Die Arbeitsgruppe Forstliche Fernerkundung der Länder. AFZ-Der Wald 2019, 22, 16–17. [Google Scholar]
- Latifi, H.; Holzwarth, S.; Skidmore, A.; Brůna, J.; Červenka, J.; Darvishzadeh, R.; Hais, M.; Heiden, U.; Homolová, L.; Krzystek, P.; et al. A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The ‘Data pool initiative for the Bohemian Forest Ecosystem’. Methods Ecol. Evol. 2021, 12, 2073–2083. [Google Scholar] [CrossRef]
- Wernick, I.K.; Ciais, P.; Fridman, J.; Hogberg, P.; Korhonen, K.T.; Nordin, A.; Kauppi, P.E. Quantifying forest change in the European Union. Nature 2021, 592, E13–E14. [Google Scholar] [CrossRef]
- Palahi, M.; Valbuena, R.; Senf, C.; Acil, N.; Pugh, T.A.M.; Sadler, J.; Seidl, R.; Potapov, P.; Gardiner, B.; Hetemaki, L.; et al. Concerns about reported harvests in European forests. Nature 2021, 592, E15–E17. [Google Scholar] [CrossRef]
- Breidenbach, J.; Ellison, D.; Petersson, H.; Korhonen, K.T.; Henttonen, H.M.; Wallerman, J.; Fridman, J.; Gobakken, T.; Astrup, R.; Næsset, E. Harvested area did not increase abruptly—How advancements in satellite-based mapping led to erroneous conclusions. Ann. For. Sci. 2022, 79, 2. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Rocchini, D.; Santos, M.J.; Ustin, S.L.; Feret, J.B.; Asner, G.P.; Beierkuhnlein, C.; Dalponte, M.; Feilhauer, H.; Foody, G.M.; Geller, G.N.; et al. The Spectral Species Concept in Living Color. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007026. [Google Scholar] [CrossRef]
- Rocchini, D.; Torresani, M.; Beierkuhnlein, C.; Feoli, E.; Foody, G.M.; Lenoir, J.; Malavasi, M.; Moudrý, V.; Šímová, P.; Ricotta, C. Double down on remote sensing for biodiversity estimation: A biological mindset. Community Ecol. 2022, 23, 267–276. [Google Scholar] [CrossRef]
- Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics 2002, 13, 121–137. [Google Scholar] [CrossRef]
- High Resolution Land Cover Characteristics. Tree-Cover/Forest and Change 2015–2018; European Environment Agency (EEA); Copernicus Land Monitoring Service (CLMS): Copenhagen, Denmark, 2021.
- Copernicus Land Monitoring Service—High Resolution Layer Forest: Product Specifications Document; European Environment Agency: Copenhagen, Denmark, 2017.
- Blickensdörfer, L.; Oehmichen, K.; Pflugmacher, D.; Kleinschmit, B.; Hostert, P. Dominant Tree Species for Germany (2017/2018); Thünen-Institut, Institut für Waldökosysteme: Eberswalde, Germany, 2022. [Google Scholar] [CrossRef]
- Frick, A.R.K. Beispiele für die Anwendung Künstlicher Intelligenz mit Erdbeobachtungs- und Multi-Source Geodaten für das Naturschutz- und Waldmonitoring. In BfN-Schriften 640; Bundesamt für Naturschutz: Bonn, Germany, 2022. [Google Scholar]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Libertá, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; IntechOpen: London, UK, 2012. [Google Scholar]
- Schiefer, F.; Schmidtlein, S.; Frick, A.; Frey, J.; Klinke, R.; Zielewska-Büttner, K.; Junttila, S.; Uhl, A.; Kattenborn, T. UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series. ISPRS Open J. Photogramm. Remote Sens. 2023, 8, 100034. [Google Scholar] [CrossRef]
- FVA. MoBiTools. Available online: https://www.fva-bw.de/top-meta-navigation/fachabteilungen/biometrie-informatik/mobitools (accessed on 1 June 2023).
- EC. European Forest Fire Information System EFFIS. Available online: https://effis.jrc.ec.europa.eu/ (accessed on 1 June 2023).
- Copernicus. HRL Forests. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests (accessed on 1 June 2023).
- Buras, A. Forest Condition Monitor. Available online: http://interaktiv.waldzustandsmonitor.de/ (accessed on 1 June 2023).
- DLR. Tree Canopy Cover Loss. Available online: https://geoservice.dlr.de/web/maps/eoc:tcclde (accessed on 1 June 2023).
- Blickensdörfer, L. Dominant Tree Species for Germany (2017/2018). Available online: https://atlas.thuenen.de/layers/Dominant_Species_Class:geonode:Dominant_Species_Class (accessed on 1 June 2023).
- Remote Sensing Solutions GmbH. Waldmonitor. Available online: https://www.remote-sensing-solutions.com/waldmonitor-deutschland/ (accessed on 1 June 2023).
- Watch, G.F. Global Forest Watch. Available online: https://map3d.remote-sensing-solutions.de/waldmonitor-deutschland/# (accessed on 1 June 2023).
- Waldstrategie 2020; Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV): Berlin, Germany, 2011.
- Waldbericht der Bundesregierung 2021; BMEL, Referat 513; Nationale Waldpolitik, Jagd, Kompetenzzentrum Wald und Holz: Berlin, Germany, 2021.
- Masek, J.G.; Hayes, D.J.; Joseph Hughes, M.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef]
- Müller, J.; Noss, R.F.; Thorn, S.; Bässler, C.; Leverkus, A.B.; Lindenmayer, D. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 2019, 12, e12449. [Google Scholar] [CrossRef]
- Torresan, C.; Benito Garzón, M.; O’Grady, M.; Robson, T.M.; Picchi, G.; Panzacchi, P.; Tomelleri, E.; Smith, M.; Marshall, J.; Wingate, L.; et al. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can. J. For. Res. 2021, 51, 1751–1765. [Google Scholar] [CrossRef]
- König, S.; Thonfeld, F.; Förster, M.; Dubovyk, O.; Heurich, M. Assessing Combinations of Landsat, Sentinel-2 and Sentinel-1 Time series for Detecting Bark Beetle Infestations. GIScience Remote Sens. 2023, 60, 2226515. [Google Scholar] [CrossRef]
- Dalponte, M.; Cetto, R.; Marinelli, D.; Andreatta, D.; Salvadori, C.; Pirotti, F.; Frizzera, L.; Gianelle, D. Spectral separability of bark beetle infestation stages: A single-tree time-series analysis using Planet imagery. Ecol. Indic. 2023, 153, 110349. [Google Scholar] [CrossRef]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M.; Pettorelli, N.; Disney, M. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sens. Ecol. Conserv. 2018, 5, 87–106. [Google Scholar] [CrossRef]
- Hill, J.; Buddenbaum, H.; Langshausen, J.; Hill, A.; Rock, G.; Schneider, T. Die Entwicklung einer operativen Sentinel-2-basierten Prozesskette zur landesweiten Bewertung von Vitalitätsverlusten sowie biotischer und abiotischer Waldschäden in Rheinland-Pfalz und Luxembourg. In Proceedings of the Forstwissenschaftliche Tagung, Freising, Germany, 13–16 September 2021. [Google Scholar]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote sensing in forestry: Current challenges, considerations and directions. For. Int. J. For. Res. 2023, cpad024. [Google Scholar] [CrossRef]
- Ceccherini, G.; Girardello, M.; Beck, P.S.A.; Migliavacca, M.; Duveiller, G.; Dubois, G.; Avitabile, V.; Battistella, L.; Barredo, J.I.; Cescatti, A. Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Commun. Earth Environ. 2023, 4, 97. [Google Scholar] [CrossRef]
- Mandl, L.; Stritih, A.; Seidl, R.; Ginzler, C.; Senf, C.; Disney, M.; Vaglio Laurin, G. Spaceborne LiDAR for characterizing forest structure across scales in the European Alps. Remote Sens. Ecol. Conserv. 2023. [Google Scholar] [CrossRef]
- Rajab Pourrahmati, M.; Baghdadi, N.; Fayad, I. Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sens. 2023, 15, 1522. [Google Scholar] [CrossRef]
- Return of the Gedi: Space-Based, Forest Carbon-Mapping Laser Array Saved. Available online: https://gedi.umd.edu/return-of-the-gedi-space-based-forest-carbon-mapping-laser-array-saved/ (accessed on 12 June 2023).
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Jetz, W.; Cavender-Bares, J.; Pavlick, R.; Schimel, D.; Davis, F.W.; Asner, G.P.; Guralnick, R.; Kattge, J.; Latimer, A.M.; Moorcroft, P.; et al. Monitoring plant functional diversity from space. Nat. Plants 2016, 2, 16024. [Google Scholar] [CrossRef]
- Randin, C.F.; Ashcroft, M.B.; Bolliger, J.; Cavender-Bares, J.; Coops, N.C.; Dullinger, S.; Dirnböck, T.; Eckert, S.; Ellis, E.; Fernández, N.; et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 2020, 239, 111626. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Schneider, F.D.; Santos, M.J.; Armstrong, A.; Carnaval, A.; Dahlin, K.M.; Fatoyinbo, L.; Hurtt, G.C.; Schimel, D.; Townsend, P.A.; et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 2022, 6, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wollauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 4757. [Google Scholar] [CrossRef] [PubMed]
Name | Producer/ Publisher | Spatial Coverage | Spatial Resolution | Temporal Coverage | Update Interval | EO Data Used | Publication/Data Access |
---|---|---|---|---|---|---|---|
Monitoring Biodiversity with Remote Sensing Tools (MoBiTools) | Forest Research Institute Baden-Württemberg (FVA) | Baden-Württemberg | 5 m | 2013 2016 2019 | 3 years | Aerial imagery Sentinel-2 | [61,137] |
European Forest Fire Information System (EFFIS) | EC (JRC) | Europe | 375 m 250 m | since 2000 | 2–3 h | VIIRS MODIS | [135,138] |
Copernicus Land Monitoring Service High-resolution layer forest | EEA | Europe | 10 m20 m | 2012 2015 2018 | 3 years | Sentinel-2 | [131,132,139] |
European Forest Condition Monitor (EFCM) | Technical University Munich | Europe | 231 m | since 2000 | 8 days | MODIS | [49,140] |
Tree Canopy Cover Loss | DLR | Germany | 10 m | 2018–2021 | monthly | Sentinel-2 Landsat-8 | [11,141] |
Dominant Tree Species | Thünen Institute | Germany | 10 m | 2017/2018 | one time | Sentinel-1 Sentinel-2 | [133,142] |
Forest Monitor “Waldmonitor” | Naturwaldakademie, Remote Sensing Solutions (RSS) | Germany | 10 m | 2017 | one time | Sentinel-2 | [108,143] |
Global Forest Change/Watch | University of Maryland, Google | Global | 30 m | 2000–2022 | yearly | Landsat | [30,144] |
ForestWatch | LUP Luftbild Umwelt Planung | Germany | 10 m | 2018–2022 | yearly | Sentinel-2 | [134,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzwarth, S.; Thonfeld, F.; Kacic, P.; Abdullahi, S.; Asam, S.; Coleman, K.; Eisfelder, C.; Gessner, U.; Huth, J.; Kraus, T.; et al. Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review. Remote Sens. 2023, 15, 4234. https://doi.org/10.3390/rs15174234
Holzwarth S, Thonfeld F, Kacic P, Abdullahi S, Asam S, Coleman K, Eisfelder C, Gessner U, Huth J, Kraus T, et al. Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review. Remote Sensing. 2023; 15(17):4234. https://doi.org/10.3390/rs15174234
Chicago/Turabian StyleHolzwarth, Stefanie, Frank Thonfeld, Patrick Kacic, Sahra Abdullahi, Sarah Asam, Kjirsten Coleman, Christina Eisfelder, Ursula Gessner, Juliane Huth, Tanja Kraus, and et al. 2023. "Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review" Remote Sensing 15, no. 17: 4234. https://doi.org/10.3390/rs15174234