Data Comparison and Cross-Calibration between Level 1 Products of DPC and POSP Onboard the Chinese GaoFen-5(02) Satellite
Abstract
:1. Introduction
2. PCF Suite onboard GaoFen-5(02) Satellite
2.1. GaoFen-5(02) Satellite
2.2. Overview of PCF
2.3. POSP onboard Calibration
2.4. Key Parameters of DPC Calibration
3. Methods
3.1. Data Selection
3.2. Relative Radiation Response and DoLP Comparison
4. Results
4.1. Cross-Calibration of
4.2. Relative Radiation Response Calibration
4.3. DoLP Comparison
5. Conclusions
- (1)
- The radiometric cross-calibration coefficient of DPC showed a robust fitting result with transfer uncertainty on the order of 0.55%, and the radiometric calibration transfer uncertainty can be negligible compared to the radiometric measurement uncertainty of the POSP reference sensor and the measurement errors of DPC;
- (2)
- The temporal variations of the relative radiation response cross-calibration coefficients of DPC at different observation angles in the cross-track direction reflect the attenuation characteristics, especially within the range of −30–0° VZAs in the 443 nm band, and the mechanism of this attenuation pattern is currently uncertain and thus needs to be further studied. Particularly, the coefficients were obtained only in the cross-track direction; POSP observation-constrained relative radiation response calibration with a combination of other methods, such as the uniform scenes method used by POLDER [41], will be carried out to cover the full FOV of DPC, and the coefficients will be applied to the L1 product of DPC;
- (3)
- The cross-comparison results of DoLP between POSP and DPC verify the accuracy of DPC polarimetric measurements, with the scattering percentage of DPC DoLP falling within the expected error (EE = ±0.02), while POSP measured DoLP better than 91%, the former of which has an onboard polarization calibration system with a higher polarimetric accuracy of 0.005. However, polarization characteristics may gradually deteriorate with time, and pixel-level polarimetric cross-calibration on the same satellite platform is a reasonable way to maintain DPC in-orbit polarimetric accuracy, but it also faces the problem of the full FOV calibration expansion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubovik, O.; Li, Z.; Mishchenko, M.I.; Tanré, D.; Karol, Y.; Bojkov, B.; Cairns, B.; Diner, D.J.; Espinosa, W.R.; Goloub, P. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 474–511. [Google Scholar] [CrossRef]
- Deuzé, J.; Bréon, F.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Atmos. 2001, 106, 4913–4926. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.; Deuzé, J.L.; Marchand, A.; Roger, B.; Lallart, P. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. J. Geophys. Res. Atmos. 2005, 110, 4798. [Google Scholar] [CrossRef]
- Tanré, D.; Bréon, F.; Deuzé, J.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hou, W.; Hong, J.; Zheng, F.; Luo, D.; Wang, J.; Gu, X.; Qiao, Y. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [Google Scholar] [CrossRef]
- Huang, C.; Chang, Y.; Xiang, G.; Han, L.; Chen, F.; Luo, D.; Li, S.; Sun, L.; Tu, B.; Meng, B. Polarization measurement accuracy analysis and improvement methods for the directional polarimetric camera. Opt. Exp. 2020, 28, 38638–38666. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xiang, G.; Chang, Y.; Han, L.; Zhang, M.; Li, S.; Tu, B.; Meng, B.; Hong, J. Pre-flight calibration of a multi-angle polarimetric satellite sensor directional polarimetric camera. Opt. Exp. 2020, 28, 13187–13215. [Google Scholar] [CrossRef]
- Fougnie, B.; Marbach, T.; Lacan, A.; Lang, R.; Schlüssel, P.; Poli, G.; Munro, R.; Couto, A.B. The multi-viewing multi-channel multi-polarisation imager–Overview of the 3MI polarimetric mission for aerosol and cloud characterization. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 23–32. [Google Scholar] [CrossRef]
- Marbach, T.; Riedi, J.; Lacan, A.; Schlüssel, P. The 3MI mission: Multi-viewing-channel-polarisation imager of the EUMETSAT polar system: Second generation (EPS-SG) dedicated to aerosol and cloud monitoring. In Proceedings of the Polarization Science and Remote Sensing VII, San Diego, CA, USA, 1 September 2015; pp. 271–278. [Google Scholar] [CrossRef]
- Fernandez-Borda, R.; Waluschka, E.; Pellicori, S.; Martins, J.; Ramos-Izquierdo, L.; Cieslak, J.; Thompson, P.L. Evaluation of the polarization properties of a Philips-type prism for the construction of imaging polarimeters. In Proceedings of the Polarization Science and Remote Sensing IV, San Diego, CA, USA, 11 August 2009; pp. 310–324. [Google Scholar] [CrossRef]
- Martins, J.V.; Fernandez-Borda, R.; McBride, B.; Remer, L.; Barbosa, H.M. The HARP hyperangular imaging polarimeter and the need for small satellite payloads with high science payoff for earth science remote sensing. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6304–6307. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Cairns, B.; Kopp, G.; Schueler, C.F.; Fafaul, B.A.; Hansen, J.E.; Hooker, R.J.; Itchkawich, T.; Maring, H.B.; Travis, L.D. Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bull. Am. Meteorol. Soc. 2007, 88, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Peralta, R.J.; Nardell, C.; Cairns, B.; Russell, E.E.; Travis, L.D.; Mishchenko, M.I.; Fafaul, B.A.; Hooker, R.J. Aerosol polarimetry sensor for the Glory Mission. In Proceedings of the International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, China, 15 November 2007; pp. 1460–1476. [Google Scholar] [CrossRef]
- Lei, X.; Zhu, S.; Li, Z.; Hong, J.; Liu, Z.; Tao, F.; Zou, P.; Song, M.; Li, C. Integration model of POSP measurement spatial response function. Opt. Exp. 2020, 28, 25480–25489. [Google Scholar] [CrossRef]
- Lei, X.; Liu, Z.; Tao, F.; Hou, W.; Huang, H.; Xie, Y.; Zhao, X.; Dong, H.; Zou, P.; Song, M. Geolocation Error Estimation Method for the Wide Swath Polarized Scanning Atmospheric Corrector Onboard HJ-2 A/B Satellites. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Lei, X.; Liu, Z.; Tao, F.; Zhao, X.; Hou, W.; Huang, H.; Xie, Y.; Dong, H.; Zou, P.; Song, M. Data preprocessing methods and procedures for the wide swath polarized scanning atmospheric corrector onboard HJ-2A/B satellites. In Proceedings of the Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 27 March 2022; pp. 2029–2034. [Google Scholar] [CrossRef]
- Li, Z.; Xie, Y.; Hou, W.; Liu, Z.; Bai, Z.; Hong, J.; Ma, Y.; Huang, H.; Lei, X.; Sun, X. In-orbit Test of the Polarized Scanning Atmospheric Corrector (PSAC) onboard Chinese Environmental Protection and Disaster Monitoring Satellite Constellation HJ-2 A/B. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, W.; Li, Z.; Zhu, S.; Liu, Z.; Hong, J.; Ma, Y.; Fan, C.; Guang, J.; Yang, B. Columnar Water Vapor Retrieval by Using Data from the Polarized Scanning Atmospheric Corrector (PSAC) Onboard HJ-2 A/B Satellites. Remote Sens. 2022, 14, 1376. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Z.; Hou, W.; Mei, L.; Sun, L.; Jia, C.; Zhang, Y.; Li, K.; Xu, H.; Liu, Z. Aerosol Optical Depth Retrieval Based on Neural Network Model Using Polarized Scanning Atmospheric Corrector (PSAC) Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Xiong, X.; Blonski, S.; Wu, A.; Shao, X. Radiometric intercomparison between Suomi-NPP VIIRS and Aqua MODIS reflective solar bands using simultaneous nadir overpass in the low latitudes. J. Atmos. Ocean Technol. 2013, 30, 2720–2736. [Google Scholar] [CrossRef]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O. The Plankton, Aerosol, Cloud, ocean Ecosystem mission: Status, science, advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Omar, A.H.; Tzortziou, M.; Coddington, O.; Remer, L.A. Plankton Aerosol, Cloud, ocean Ecosystem mission: Atmosphere measurements for air quality applications. J. Appl. Remote Sens. 2018, 12, 042608. [Google Scholar] [CrossRef] [Green Version]
- Milinevsky, G.; Oberemok, Y.; Syniavskyi, I.; Bovchaliuk, A.; Kolomiets, I.; Fesianov, I.; Wang, Y. Calibration model of polarimeters on board the Aerosol-UA space mission. J. Quant. Spectrosc. Radiat. Transf. 2019, 229, 92–105. [Google Scholar] [CrossRef]
- Milinevsky, G.; Yatskiv, Y.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Y.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V. Remote sensing of aerosol in the terrestrial atmosphere from space: New missions. Adv. Astron. Space Phy. 2015, 5, 11–16. [Google Scholar] [CrossRef]
- Milinevsky, G.; Yatskiv, Y.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Y.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere. Acta Astronaut. 2016, 123, 292–300. [Google Scholar] [CrossRef]
- Li, Z.; Hou, W.; Hong, J.; Fan, C.; Wei, Y.; Liu, Z.; Lei, X.; Qiao, Y.; Hasekamp, O.P.; Fu, G. The polarization crossfire (PCF) sensor suite focusing on satellite remote sensing of fine particulate matter PM2.5 from space. J. Quant. Spectrosc. Radiat. Transf. 2022, 286, 108217. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Hong, J. Polarimetric remote sensing of atmospheric particulate pollutants. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Hong, J.; Li, Z.; Lei, X.; Zou, P.; Liu, Z.; Song, M. Radiometer-to-imager in-flight cross calibration and verification. Opt. Exp. 2020, 28, 11001–11015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-N.; Sun, D.-X.; Hu, X.-N.; Ye, X.; Li, Y.-D.; Liu, S.-F.; Cao, K.-Q.; Chai, M.-Y.; Zhang, J.; Zhang, Y. The advanced hyperspectral imager: Aboard China’s gaoFen-5 satellite. IEEE Geosc. Rem. Sen. Mag. 2019, 7, 23–32. [Google Scholar] [CrossRef]
- Dong, S.; Sun, G.; Du, Y.; Ge, S. Image quality assessment for visual and infrared multis-pectral imager of Gaofen-5. Remote Sens. Technol. Appl. 2020, 35, 381–388. [Google Scholar] [CrossRef]
- Shi, H.; Li, Z.; Ye, H.; Luo, H.; Xiong, W.; Wang, X. First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite. IEEE Trans. Geosci. Remote Sens. 2020, 59, 899–914. [Google Scholar] [CrossRef]
- Luo, H.-Y.; Li, Z.-W.; Qiu, Z.-W.; Shi, H.-L.; Chen, D.-H.; Xiong, W. Polarization sensitivity error analysis and measurement of a greenhouse gas monitoring instrument. Appl. Optics. 2018, 57, 10009–10016. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Chan, K.L.; Hu, Q.; Liu, H.; Li, B.; Xing, C.; Tan, W.; Zhou, H.; Si, F. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light Sci. Appl. 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Guerry, A.; Cunin, L.; Millet, B.; Perbos, J.; Laherrere, J.-M.; Bret-Dibat, T.; Poutier, L. POLDER level-1 processing algorithms. In Proceedings of the Algorithms for Multispectral and Hyperspectral Imagery II, Orlando, FL, USA, 17 June 1996; pp. 308–319. [Google Scholar] [CrossRef]
- Schott, J.R. Fundamentals of Polarimetric Remote Sensing; SPIE Press: Washington, DC, USA, 2009; Volume 81. [Google Scholar]
- Leroy, M.; Deuzé, J.; Bréon, F.; Hautecoeur, O.; Herman, M.; Buriez, J.; Tanré, D.; Bouffies, S.; Chazette, P.; Roujean, J.-L. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS. J. Geophys. Res. Atmos. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Knobelspiesse, K.; Tan, Q.; Bruegge, C.; Cairns, B.; Chowdhary, J.; Van Diedenhoven, B.; Diner, D.; Ferrare, R.; Van Harten, G.; Jovanovic, V. Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment. Appl. Optics. 2019, 58, 650–669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, Z.; Qie, L.; Xu, H.; Ge, B.; Xie, Y.; Qiao, R.; Xie, Y.; Hong, J.; Meng, B. In-Flight Relative Radiometric Calibration of a Wide Field of View Directional Polarimetric Camera Based on the Rayleigh Scattering over Ocean. Remote Sens. 2022, 14, 1211. [Google Scholar] [CrossRef]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the simultaneous underfly event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Fougnie, B. Improvement of the PARASOL radiometric in-flight calibration based on synergy between various methods using natural targets. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2140–2152. [Google Scholar] [CrossRef]
Band No. | POSP | DPC | ||||
---|---|---|---|---|---|---|
Central Wavelength (nm) | Spectral Bandwidth (nm) | Polarization | Central Wavelength (nm) | Spectral Bandwidth (nm) | Polarization | |
1 | 380 | 20 | Yes | - | - | - |
2 | 410 | 20 | Yes | - | - | - |
3 | 443 | 20 | Yes | 443 | 20 | No |
4 | 490 | 20 | Yes | 490 | 20 | Yes |
5 | - | - | - | 565 | 20 | No |
6 | 670 | 20 | Yes | 670 | 20 | Yes |
7 | - | - | - | 763 | 10 | No |
8 | - | - | - | 765 | 40 | No |
9 | 865 | 40 | Yes | 865 | 40 | Yes |
10 | - | - | - | 910 | 20 | No |
11 | 1380 | 40 | Yes | - | - | - |
12 | 1610 | 60 | Yes | - | - | - |
13 | 2250 | 80 | Yes | - | - | - |
Sources | Uncertainty |
---|---|
Spectral Response | 0.5% |
Viewing Geometry | 0.2% |
Target Matching | 0.1% |
Total Calibration Transfer Uncertainty | 0.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Liu, Z.; Tao, F.; Dong, H.; Hou, W.; Xiang, G.; Qie, L.; Meng, B.; Li, C.; Chen, F.; et al. Data Comparison and Cross-Calibration between Level 1 Products of DPC and POSP Onboard the Chinese GaoFen-5(02) Satellite. Remote Sens. 2023, 15, 1933. https://doi.org/10.3390/rs15071933
Lei X, Liu Z, Tao F, Dong H, Hou W, Xiang G, Qie L, Meng B, Li C, Chen F, et al. Data Comparison and Cross-Calibration between Level 1 Products of DPC and POSP Onboard the Chinese GaoFen-5(02) Satellite. Remote Sensing. 2023; 15(7):1933. https://doi.org/10.3390/rs15071933
Chicago/Turabian StyleLei, Xuefeng, Zhenhai Liu, Fei Tao, Hao Dong, Weizhen Hou, Guangfeng Xiang, Lili Qie, Binghuan Meng, Congfei Li, Feinan Chen, and et al. 2023. "Data Comparison and Cross-Calibration between Level 1 Products of DPC and POSP Onboard the Chinese GaoFen-5(02) Satellite" Remote Sensing 15, no. 7: 1933. https://doi.org/10.3390/rs15071933
APA StyleLei, X., Liu, Z., Tao, F., Dong, H., Hou, W., Xiang, G., Qie, L., Meng, B., Li, C., Chen, F., Xie, Y., Zhang, M., Fan, L., Cheng, L., & Hong, J. (2023). Data Comparison and Cross-Calibration between Level 1 Products of DPC and POSP Onboard the Chinese GaoFen-5(02) Satellite. Remote Sensing, 15(7), 1933. https://doi.org/10.3390/rs15071933