Assessing the Perspectives of Ground Penetrating Radar for Precision Farming
Abstract
:1. Introduction
2. Physico-Chemical and Hydrological Soil Properties Relevant for PI
2.1. Reference Values for Physico-Chemical and Hydrological Soil Properties
2.2. Soil Characterization and Mapping
3. Agricultural Geophysics and Ground Penetrating Radar
Ground Penetrating Radar Application for PA
4. Review of GPR Applications to Soil Properties Estimation
4.1. GPR Equipment Characteristics and Survey Strategies
4.2. Soil Water Content
4.3. Soil Textural Properties
4.4. Soil Structural Properties
4.5. Soil Hydraulic Properties
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- European Commission, Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/foresight/topic/continuing-urbanisation/developments-and-forecasts-on-continuing-urbanisation_en (accessed on 27 November 2022).
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Praharaj, C.S.; Gurjar, D.S.; Kumar, R. Precision irrigation management: Concepts and applications for higher use efficiency in field crops. In Scaling Water Productivity and Resource Conservation in Upland Field Crops Ensuring More Crop per Drop; ICAR-Indian Institute of Pulses Research: Kampur, India, 2019. [Google Scholar]
- Vories, E.; O’Shaughnessy, S.; Sudduth, K.; Evett, S.; Andrade, M.; Drummond, S. Comparison of precision and conventional irrigation management of cotton and impact of soil texture. Precis. Agric. 2021, 22, 414–431. [Google Scholar] [CrossRef]
- Piccoli, I.; Furlan, L.; Lazzaro, B.; Morari, F. Examining conservation agriculture soil profiles: Outcomes from northeastern Italian silty soils combining indirect geophysical and direct assessment methods. Eur. J. Soil Sci. 2020, 71, 1064–1075. [Google Scholar] [CrossRef]
- Moral, F.J.; Serrano, J.M. Using low-cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures. Precis. Agric. 2019, 20, 1000–1014. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Youssef, Y.M.; Gemail, K.S.; Sugita, M.; AlBarqawy, M.; Teama, M.A.; Koch, M.; Saada, S.A. Natural and anthropogenic coastal environmental hazards: An integrated remote sensing, GIS, and geophysical-based approach. Surv. Geophys. 2021, 42, 1109–1141. [Google Scholar] [CrossRef]
- Roy, P.C.; Guber, A.; Abouali, M.; Nejadhashemi, A.P.; Deb, K.; Smucker, A.J. Crop yield simulation optimization using precision irrigation and subsurface water retention technology. Environ. Model. Softw. 2019, 119, 433–444. [Google Scholar] [CrossRef]
- De Lara, A.; Khosla, R.; Longchamps, L. Characterizing spatial variability in soil water content for precision irrigation management. Agronomy 2018, 8, 59. [Google Scholar] [CrossRef]
- Neupane, J.; Guo, W. Agronomic basis and strategies for precision water management: A review. Agronomy 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 1: Soil Applications. Water 2022, 14, 1158. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. Water 2022, 14, 1157. [Google Scholar] [CrossRef]
- Capello, M.A.; Shaughnessy, A.; Caslin, E. The geophysical sustainability atlas: Mapping geophysics to the UN Sustainable Development Goals. Lead. Edge 2021, 40, 10–24. [Google Scholar] [CrossRef]
- Becker, S.M.; Franz, T.E.; Abimbola, O.; Steele, D.D.; Flores, J.P.; Jia, X.; Scherer, T.F.; Rudnick, D.R.; Neale, C.M. Feasibility assessment on use of proximal geophysical sensors to support precision management. Vadose Zone J. 2022, 21, e20228. [Google Scholar] [CrossRef]
- Garré, S.; Hyndman, D.; Mary, B.; Werban, U. Geophysics conquering new territories: The rise of “agrogeophysics”. Vadose Zone J. 2015, 20, e20115. [Google Scholar] [CrossRef]
- Freeland, R.S.; Wells, L.G.; Dodd, R.B. Assessing soil properties for site-specific agriculture using ground penetrating radar. In Proceedings of the 9th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Keystone, CO, USA, 28 April–2 May 1996; p. cp-205. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Šimunek, J. Soil Physics with HYDRUS, Modeling and Applications; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Miller, B.A.; Koszinski, S.; Wehrhan, M.; Sommer, M. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks. Soil 2015, 1, 217–233. [Google Scholar] [CrossRef]
- Soane, B.D.; van Ouwerkerk, C. Soil Compaction Problems in World Agriculture. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 1–21. [Google Scholar]
- Soane, B.D.; Van Ouwerkerkb, C. Implications of Soil Compaction in Crop Production for the Quality of the Environment. Soil Tillage Res. 1995, 35, 5–22. [Google Scholar] [CrossRef]
- Horna, R.; Domialb, H.; Slowihka-Jurkiewiczb, A.; Van Ouwerkerkct, C. Soil Compaction Processes and Their Effects on the Structure of Arable Soils and the Environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Lipiec, J.; Stcpniewski, W. Effects of Soil Compaction and Tillage Systems on Uptake and Losses of Nutrients. Soil Tillage Res. 1995, 35, 37–52. [Google Scholar] [CrossRef]
- Taylor, H.; Brar, G. Effect of soil compaction on root development. Soil Tillage Res. 1991, 19, 111–119. [Google Scholar] [CrossRef]
- Osman, K.T. Soils: Principles, Properties and Management; Springer: New York, NY, USA, 2013. [Google Scholar]
- Romero-Ruiz, A.; Linde, N.; Baron, L.; Solazzi, S.G.; Keller, T.; Or, D. Seismic signatures reveal persistence of soil compaction. Vadose Zone J. 2021, 20, e20140. [Google Scholar] [CrossRef]
- Kutílek, M.; Nielsen, D.R. Soil Hydrology; Catena Verl: Reiskirchen, Germany, 1994. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Paper 3; Colorado St. University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Tietje, O.; Tapkenhinrichs, M. Evaluation of pedotransfer functions. Soil Sci. Soc. Am. J. 1993, 57, 1088–1095. [Google Scholar] [CrossRef]
- Cornelis, W.M.; Ronsyn, J.; Meirvenne, M.V.; Hartmann, R. Evaluation of pedotranfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 2001, 65, 638–648. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Rawls, W.J. Development of pedotransfer functions in soil hydrology. In Developments in Soil Science; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 30. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017.
- Rawls, W.J.; Brakensiek, D.L.; Soni, B. Agricultural management effects on soil water processes part I: Soil water retention and Green and Ampt parameters. Trans. ASAE 1983, 26, 1747–1752. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.L. Estimation of soil water retention and hydraulic properties. In Unsaturated Flow in Hydrologic Modeling; Springer: Dordrecht, The Netherlands, 1989; pp. 275–300. [Google Scholar]
- Patil, N.G.; Singh, S.K. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.L. Prediction of soil water properties for hydrologic modeling. In Proceedings of the Symposium on Watershed Management in the Eighties, New York, NY, USA, 30 April–1 May 1985; Jones, E.E., Ward, T.J., Eds.; ASCE Convention: Anaheim, CA, USA, 1985; pp. 293–299. [Google Scholar]
- Rawls, W.J. Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci. 1983, 135, 123–125. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1035. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Wosten, J.H.M.; Lilly, A.; Nemes, A.; Bas, C.L. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Brakensiek, D.L.; Saxton, K.E. Estimation of soil water properties. Trans. ASAE 1982, 25, 1316–1320+1328. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Klein, K.A.; Santamarina, J.C. Electrical conductivity in soils: Underlying phenomena. J. Environ. Eng. Geophys. 2003, 8, 263–273. [Google Scholar] [CrossRef]
- Rehman, F.; Abouelnaga, H.S.O.; Rehman, F. Estimation of dielectric permittivity, water content, and porosity for environmental engineering and hydrogeological studies using ground penetrating radar, a short review. Arab. J. Geosci. 2016, 9, 312. [Google Scholar] [CrossRef]
- Brovelli, A.; Cassiani, G. Combined estimation of effective electrical conductivity and permittivity for soil monitoring. Water Resour. Res. 2011, 47, W08510. [Google Scholar] [CrossRef]
- Fukue, M.; Minato, T.; Horibe, H.; Taya, N. The micro-structure of clay given by resistivity measurements. Eng. Geol. 1999, 54, 43–53. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Das, B.; Corwin, D.L.; Wraith, J.M.; Kachanoski, R.G. Relationship between soil water solute concentration and apparent soil electrical conductivity. In Methods of Soils Analysis: Part 4. Physical Methods; Dane, J.H., Topp, J.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 1275–1282. [Google Scholar]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Kweon, G.; Lund, E.; Maxton, C. Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma 2013, 199, 80–89. [Google Scholar] [CrossRef]
- Besson, A.; Cousin, I.; Samouëlian, A.; Boizard, H.; Richard, G. Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil Tillage Res. 2004, 79, 239–249. [Google Scholar] [CrossRef]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon: New York, NY, USA, 1966. [Google Scholar]
- Hilhorst, M.A. Dielectric Characterization of Soil; Wageningen Agricultural University: Wageningen, The Netherlands, 1998. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, K.Z.; Slob, E.; Vanclooster, M.; Vereecken, H.; Lambot, S. Uniqueness and stability analysis of hydrogeophysical inversion for time-lapse ground penetrating radar estimates of shallow soil hydraulic properties. Water Resour. Res. 2008, 44, W09421. [Google Scholar] [CrossRef] [Green Version]
- Kowalsky, M.B.; Finsterle, S.; Peterson, J.; Hubbard, S.; Rubin, Y.; Majer, E.; Ward, A.; Gee, G. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour. Res. 2005, 41, W11425. [Google Scholar] [CrossRef] [Green Version]
- Lambot, S.; Slob, E.C.; Vanclooster, M.; Vereecken, H. Closed loop GPR data inversion for soil hydraulic and electric property determination. Geophys. Res. Lett. 2006, 33, L21405. [Google Scholar] [CrossRef] [Green Version]
- Allred, B.; Daniels, J.J.; Ehsani, M.R. (Eds.) Handbook of Agricultural Geophysics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Pet. Eng. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Briggs, L.J. Electrical Instruments for Determining the Moisture, Temperature, and Soluble Salts Content of Soils; USDA Division of Soils Bulletin 10; U.S. Government Printing Office: Washington, DC, USA, 1899.
- Smith-Rose, R.L. The electrical properties of soil for alternating currents at radio frequencies. Proc. R. Soc. Lond. 1933, 140, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Hulin, G.; Maneuvrier, C.; Tabbagh, A.; Vincent, J.B. What exists beneath the place where Conrad Schlumberger carried out the first (1912) electrical prospection experiment: The Val-Richer Abbey. Near Surf. Geophys. 2018, 16, 445–460. [Google Scholar] [CrossRef]
- Schlumberger, C. Premières Expériences. Carte des Courbes Equi-Potentielles, Tracées au Courant Continu Val-Richer (Calvados); Ref 4717; Musée de Crèvecoeur en Auge: Calvados, France, 1912. [Google Scholar]
- Wenner, F. A Method of Measuring Earth Resistivity (No. 258); US Government Printing Office: Washington, DC, USA, 1916. [Google Scholar]
- Rhoades, J.D.; Ingvalson, R.D. Determining salinity in field soils with soil resistance measurements. Proc. Soil Sci. Soc. Am. J. 1971, 35, 54–60. [Google Scholar] [CrossRef]
- Edlefsen, N.E.; Anderson, A.B.C. The four-electrode resistance method for measuring soil moisture content under field conditions. Soil Sci. 1941, 51, 367–376. [Google Scholar] [CrossRef]
- McNeill, J.D.; Black, G.D.; Bosnar, M. Method and Apparatus for Measuring Terrain Resistivity. U.S. Patent US4070612A, 2 June 1976. Available online: https://patents.google.com/patent/US4070612A/en (accessed on 27 November 2022).
- Williams, B.G.; Baker, G.C. An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards. Soil Res. 1982, 20, 107–118. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L. Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter. Soil Sci. Soc. Am. J. 1981, 45, 255–260. [Google Scholar] [CrossRef]
- de Jong, E.; Ballantyne, A.K.; Caneron, D.R.; Read, D.W. Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys. Soil Sci. Soc. Am. J. 1979, 43, 810–812. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef]
- Triantafilis, J.; Terhune Iv, C.H.; Santos, F.M. An inversion approach to generate electromagnetic conductivity images from signal data. Environ. Model. Softw. 2013, 43, 88–95. [Google Scholar] [CrossRef]
- Morris, E.R. Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters. Comput. Electron. Agric. 2009, 68, 150–156. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 2003, 95, 352. [Google Scholar] [CrossRef] [Green Version]
- Moral, F.J.; Terrón, J.M.; Marques da Silva, J.R. Delineation of management zones using mobile measurements of soil apparent electrical conductivity andmultivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Scudiero, E.; Teatini, P.; Corwin, D.L.; Deiana, R.; Berti, A.; Morari, F. Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity. Comput. Electron. Agric. 2013, 99, 54–64. [Google Scholar] [CrossRef]
- André, F.; Van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; De Resseguier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography. J. Appl. Geophys. 2012, 78, 113–122. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Indorante, S.J.; Potter, D.K.; Hefner, S.G.; McCauley, W.M. Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri. J. Soil Water Conserv. 2002, 57, 175–182. [Google Scholar]
- Fortes, R.; Millán, S.; Prieto, M.H.; Campillo, C. A methodology based on apparent electrical conductivity and guided soil samples to improve irrigation zoning. Precis. Agric. 2015, 16, 441–454. [Google Scholar] [CrossRef]
- Hedley, C.B.; Bradbury, S.; Ekanayake, J.; Yule, I.J.; Carrick, S. Spatial irrigation scheduling for variable rate irrigation. Proc. N. Z. Grassl. Assoc. 2010, 72, 97–102. [Google Scholar] [CrossRef]
- Hedley, C.B.; Roudier, P.; Yule, I.J.; Ekanayake, J.; Bradbury, S. Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling. Geoderma 2013, 199, 22–29. [Google Scholar] [CrossRef]
- Priori, S.; Martini, E.; Andrenelli, M.C.; Magini, S.; Agnelli, A.E.; Bucelli, P.; Biagi, M.; Pellegrini, S.; Costantini, E.A.C. Improving wine quality through harvest zoning and combined use of remote and soil proximal sensing. Soil Sci. Soc. Am. J. 2013, 77, 1338–1348. [Google Scholar] [CrossRef]
- Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, D.; Bianchi, A.; Brancadoro, L. Assessing the effectiveness of variable-rate drip irrigation on water use efficiency in a Vineyard in Northern Italy. Water 2019, 11, 1964. [Google Scholar] [CrossRef] [Green Version]
- Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, A.; Bianchi, D.; Brancadoro, L. Enhancing water use efficiency in irrigated agriculture through variable rate drip irrigation: The case of a pear orchard in Northern Italy. Acta Hortic. 2022, 1335, 515–522. [Google Scholar] [CrossRef]
- Allred, B.J.; Freeland, R.S.; Farahani, H.J.; Collins, M.E. Agricultural geophysics: Past, present, and future. In Proceedings of the 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Denver, CO, USA, 11–15 April 2010; p. cp-175. [Google Scholar] [CrossRef]
- Menshov, O.; Kuderavets, R.; Vyzhva, S.; Chobotok, I.; Pastushenko, T. Magnetic mapping and soil magnetometry of hydrocarbon prospective areas in western Ukraine. Stud. Geophys. Geod. 2015, 59, 614–627. [Google Scholar] [CrossRef]
- Lu, Z.; CHickey, J.; Sabatier, J.M. Effects of compaction on the acoustic velocity in soil. Soil Sci. Soc. Am. J. 2004, 68, 7–16. [Google Scholar] [CrossRef]
- Huang, S.; Lu, C.; Li, H.; He, J.; Wang, Q.; Gao, Z.; Yuan, P.; Li, Y. The attenuation mechanism and regular of the acoustic wave on propagation path in farmland soil. Comput. Electron. Agric. 2022, 199, 107138. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Duan, J.; Song, S.; Jiang, R.; Yang, Z. Soil water content detection based on acoustic method and improved Brutsaert’s model. Geoderma 2020, 359, 114003. [Google Scholar] [CrossRef]
- Golovko, L.; Pozdnyakov, A.I. Applications of Self-potential Method in Agriculture. In Proceedings of the 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Keystone, CO, USA, 11–15 April 2010; p. cp-175. [Google Scholar] [CrossRef]
- Jougnot, D.; Linde, N.; Haarder, E.B.; Looms, M.C. Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark. J. Hydrol. 2015, 521, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.E.; Doolittle, J.A. Using ground-penetrating radar to study soil microvariability. Soil Sci. Soc. Am. J. 1987, 51, 491–493. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Asmussen, L.E. Ten years of applications of Ground Penetrating Radar by United States Department of Agriculture. In Proceedings of the Fourth International Conference on Ground Penetrating Radar, Rovaniemi, Finland, 8–13 June 1992; pp. 139–147. [Google Scholar] [CrossRef]
- Collins, M.E. History of Ground-Penetrating Radar Applications in Agriculture; CRC Press, Taylor and Francis Group: New York, NY, USA, 2008; pp. 45–55. [Google Scholar]
- Johnson, R.W.; Glasscum, R.; Wojtasinski, R. Application of ground penetrating radar to soil survey. Soil Surv. Horiz. 1982, 23, 17–25. [Google Scholar] [CrossRef]
- Benson, R.; Glaccum, R. The Application of Ground-Penetrating Radar to Soil Surveying; Final Report NASA; Cape Kennedy Space Center: Merritt Island, FL, USA, 1979. [Google Scholar]
- Collins, M.E. Soil taxonomy: A useful guide for the application of ground penetrating radar. In Proceedings of the Fourth International Conference on Ground Penetrating Radar, Rovaniemi, Finland, 8–13 June 1992; p. cp-303. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Collins, M.E. Use of soil information to determine application of ground penetrating radar. J. Appl. Geophys. 1995, 33, 101–108. [Google Scholar] [CrossRef]
- Doolittle, J.; Dobos, R.; Peaslee, S.; Waltman, S.; Benham, E.; Tuttle, W. Revised ground-penetrating radar soil suitability maps. J. Environ. Eng. Geophys. 2010, 15, 111–118. [Google Scholar] [CrossRef]
- Doolittle, J.A. Using ground-penetrating radar to increase the quality and efficiency of soil surveys. Soil Surv. Tech. 1987, 20, 11–32. [Google Scholar] [CrossRef]
- Shih, S.F.; Doolittle, J.A. Using radar to investigate organic soil thickness in the Florida Everglades. Soil Sci. Soc. Am. J. 1984, 48, 651–656. [Google Scholar] [CrossRef]
- Collins, M.E.; Schellentrager, G.W.; Doolittle, J.A.; Shih, S.F. Using ground-penetrating radar to study changes in soil map unit composition in selected Histosols. Soil Sci. Soc. Am. J. 1986, 50, 408–412. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Asmussen, L.E.; Perkins, H.F. Use of ground-penetrating radar on upland Coastal Plain soils. J. Soil Water Conserv. 1990, 45, 399–405. [Google Scholar]
- Raper, R.L.; Asmussen, L.E.; Powell, J.B. Sensing hard pan depth with ground-penetrating radar. Trans. ASAE 1990, 33, 0041–0046. [Google Scholar] [CrossRef]
- Truman, C.C.; Perkins, H.F.; Asmussen, L.E.; Allison, H.D. Using ground-penetrating radar to investigate variability in selected soil properties. J. Soil Water Conserv. 1988, 43, 341–345. [Google Scholar]
- Smith, M.C.; Vellidis, G.; Thomas, D.L.; Breve, M.A. Measurement of water table fluctuations in a sandy soil using ground penetrating radar. Trans. ASAE 1992, 35, 1161–1166. [Google Scholar] [CrossRef]
- Vellidis, G.; Smith, M.C.; Thomas, D.L.; Asmussen, L.E. Detecting wetting front movement in a sandy soil with ground-penetrating radar. Trans. ASAE 1990, 33, 1867–1874. [Google Scholar] [CrossRef]
- Vellidis, G.; Ghate, S.R.; Asmussen, L.E.; Allison, H.D. Using Ground-Penetrating Radar (GPR) to Detect Soil Water Movement under Microirrigation Laterals; No. 90-2534; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990. [Google Scholar]
- Kung, K.J.; Donohue, S.V. Improved solute-sampling protocol in a sandy vadose zone using ground-penetrating radar. Soil Sci. Soc. Am. J. 1991, 55, 1543–1545. [Google Scholar] [CrossRef]
- Lombardi, F.; Podd, F.; Solla, M. From Its Core to the Niche: Insights from GPR Applications. Remote Sens. 2022, 14, 3033. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Leucci, G. Global Research Patterns on Ground Penetrating Radar (GPR). Surv. Geophys. 2018, 39, 1039–1068. [Google Scholar] [CrossRef]
- Knight, R. Ground penetrating radar for environmental applications. Ann. Rev. Earth Planet. Sci. 2001, 29, 229–255. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, S.; Chen, J.; Williams, K.; Rubin, Y.; Peterson, J. Environmental and agricultural applications of GPR. In Proceedings of the 3rd Int Work on Advanced Ground Penetrating Radar, IWAGPR 2005, Delft, The Netherlands, 2–3 May 2005; pp. 45–49. [Google Scholar] [CrossRef] [Green Version]
- Zajícová, K.; Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Leskovar, D.I. Ground penetrating radar for underground sensing in agriculture: A review. Int. Agrophys. 2016, 30, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Friedman, S.P. Electrical Properties of Soils. In Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Doolittle, J. Ground-Penetrating Radar, Soil Exploration. In Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Hoekstra, P.; Delaney, A. Dielectric properties of soils at UHF and microwave frequencies. J. Geophys. Res. 1974, 79, 1699–1708. [Google Scholar] [CrossRef]
- Curtis, J.O. Moisture effects on the dielectric properties of soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 125–128. [Google Scholar] [CrossRef]
- Szypłowska, A.; Saito, H.; Yagihara, S.; Furuhata, K.; Szerement, J.; Kafarski, M.; Lewandowski, A.; Wilczek, A.; Skierucha, W. Relations between Dielectric Permittivity and Volumetric Water Content of Living Soil. In Proceedings of the 2021 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Lublin, Poland, 26–30 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Curtis, J.O.; Weiss, C.A.; Everett, J.B. Effect of Soil Composition on Complex Dielectric Properties; Technical Report EL-95-34; U.S. Army Corps of Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1995. [Google Scholar]
- Turner, G. GPR and the Effects of Conductivity. Explor. Geophys. 1992, 23, 381–385. [Google Scholar] [CrossRef]
- Malicki, M.A.; Walczak, R.T. Evaluating soil salinity status from bulk electrical conductivity and permittivity. Eur. J. Soil Sci. 1999, 50, 505–514. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q. Soil Moisture Estimate Uncertainties from the Effect of Soil Texture on Dielectric Semiempirical Models. Remote Sens. 2020, 12, 2343. [Google Scholar] [CrossRef]
- Hipp, J.E. Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture. Proc. IEEE 1974, 62, 98–103. [Google Scholar] [CrossRef]
- Wobschall, D. A theory of the complex dielectric permittivity of soil containing water: The semidisperse model. IEEE Trans. Geosci. Electron. 1977, 15, 49–58. [Google Scholar] [CrossRef]
- Comite, D.; Galli, A.; Lauro, S.E.; Mattei, E.; Pettinelli, E. Analysis of GPR early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 178–187. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Xue, Q.; Leskovar, D.I.; Jifon, J.; Butnor, J.R.; Marek, T. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil 2018, 423, 517–531. [Google Scholar] [CrossRef]
- Steelman, C.M.; Endres, A.L. Assessing vertical soil moisture dynamics using multi-frequency GPR common-midpoint soundings. J. Hydrol. 2012, 436, 51–66. [Google Scholar] [CrossRef]
- Loewer, M.; Igel, J.; Wagner, N. Spectral decomposition of soil electrical and dielectric losses and prediction of in situ GPR performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 212–220. [Google Scholar] [CrossRef]
- Rhebergen, J.B.; Lensen, H.A.; van Wijk, R.; Hendrickx, J.M.; van Dam, R.L.; Borchers, B. Prediction of soil effects on GPR signatures. In Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets IX, Orlando, FL, USA, 21 September 2004; Volume 5415, pp. 705–715. [Google Scholar] [CrossRef] [Green Version]
- Daniels, D.J. Ground Penetrating Radar. In Encyclopedia of RF and Microwave Engineering; Chang, K., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Wensink, W.A. Dielectric properties of wet soils in the frequency range 1–3000 MHz1. Geophys. Prospect. 1993, 41, 671–696. [Google Scholar] [CrossRef]
- Alsharahi, G.; Driouach, A.; Faize, A. Performance of GPR influenced by electrical conductivity and dielectric constant. Procedia Technol. 2016, 22, 570–575. [Google Scholar] [CrossRef]
- Freeland, R.S.; Yoder, R.E.; Ammons, J.T. Mapping shallow underground features that influence site-specific agricultural production. J. Appl. Geophys. 1998, 40, 19–27. [Google Scholar] [CrossRef]
- Salat, C.; Junge, A. Dielectric permittivity of fine-grained fractions of soil samples from eastern Spain at 200 MHz. Geophysics 2010, 75, J1–J9. [Google Scholar] [CrossRef]
- Hamdan, H.; Economou, N.; Vafidis, A.; Bano, M.; Ortega-Ramirez, J. A New Approach for Adaptive GPR Diffraction Focusing. Remote Sens. 2022, 14, 2547. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Jiang, L.; Chai, L.; Wu, F. The influence of organic matter on soil dielectric constant at microwave frequencies (0.5–40 GHZ). In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 13–16. [Google Scholar] [CrossRef]
- Bradford, J.H. Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics 2007, 72, J7–J16. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Li, X.; Zhao, K.; Jiang, T.; Zheng, X.; Li, X.; Gu, L.; Wang, X. A nondestructive conductivity estimating method for saline-alkali land based on ground penetrating radar. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2605–2614. [Google Scholar] [CrossRef]
- Wunderlich, T.; Rabbel, W. Attenuation of GPR waves in soil samples based on reflection measurements. In Proceedings of the 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Aachen, Germany, 22–24 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Nazli, H.; Bicak, E.; Sezgin, M. Experimental investigation of different soil types for buried object imaging using impulse GPR. In Proceedings of the XIII Internarional Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Bano, M. Constant dielectric losses of ground-penetrating radar waves. Geophys. J. Int. 1996, 124, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Noon, D.A.; Stickley, G.F.; Longstaff, D. A frequency-independent characterisation of GPR penetration and resolution performance. J. Appl. Geophys. 1998, 40, 127–137. [Google Scholar] [CrossRef]
- Wunderlich, T.; Rabbel, W. Absorption and frequency shift of GPR signals in sandy and silty soils: Empirical relations between quality factor Q, complex permittivity and clay and water contents. Near Surf. Geophys. 2013, 11, 117–128. [Google Scholar] [CrossRef]
- Lai, W.W. Spectral shift and absorption of GPR signals in a wetted sand column. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; pp. 687–691. [Google Scholar] [CrossRef]
- Lauro, S.E.; Baniamerian, J.; Cosciotti, B.; Mattei, E.; Pettinelli, E. Loss tangent estimation from ground-penetrating radar data using Ricker wavelet centroid-frequency shift analysis. Geophysics 2022, 87, H1–H12. [Google Scholar] [CrossRef]
- Nobes, D.C.; Deng, J. Ground Penetrating Radar Resolution in Archaeological Geophysics. In Archaeogeophysics. Natural Science in Archaeology; El-Qady, G., Metwaly, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Belina, F.A.; Dafflon, B.; Tronicke, J.; Holliger, K. Enhancing the vertical resolution of surface georadar data. J. Appl. Geophys. 2009, 68, 26–35. [Google Scholar] [CrossRef]
- Słowik, M. Influence of measurement conditions on depth range and resolution of GPR images: The example of lowland valley alluvial fill (the Obra River, Poland). J. Appl. Geophys. 2012, 85, 1–14. [Google Scholar] [CrossRef]
- Luo, T.X.; Lai, W.W.; Chang, R.K.; Goodman, D. GPR imaging criteria. J. Appl. Geophys. 2019, 165, 37–48. [Google Scholar] [CrossRef]
- Plumb, R.G.; Noon, D.A.; Longstaff, I.D.; Stickley, G.F. A waveform-range performance diagram for ground-penetrating radar. J. Appl. Geophys. 1998, 40, 117–126. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, L. GPR signal analysis: Can we get deep-penetration and high-resolution simultaneously? In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, GPR 2004, Delft, The Netherlands, 21–24 June 2004; Volume 1, pp. 263–265. [Google Scholar]
- Hong, W.T.; Kang, S.; Lee, S.J.; Lee, J.S. Analyses of GPR signals for characterization of ground conditions in urban areas. J. Appl. Geophys. 2018, 152, 65–76. [Google Scholar] [CrossRef]
- Dossi, M.; Forte, E.; Pipan, M. Quantitative analysis of GPR signals: Transmitted wavelet, amplitude decay, and sampling-related amplitude distortions. Pure Appl. Geophys. 2018, 175, 1103–1122. [Google Scholar] [CrossRef]
- Bitella, G.; Rossi, R.; Loperte, A.; Satriani, A.; Lapenna, V.; Perniola, M.; Amato, M. Geophysical techniques for plant, soil, and root research related to sustainability. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Springer: Cham, Switzerland, 2015; pp. 353–372. [Google Scholar] [CrossRef] [Green Version]
- Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D. A review of geophysical methods for soil structure characterization. Rev. Geophys. 2018, 56, 672–697. [Google Scholar] [CrossRef] [Green Version]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring soil water content with ground penetrating radar: A decade of progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Cui, X.; Liu, Q.; Cao, X.; Chen, X. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 2019, 12, 95–118. [Google Scholar] [CrossRef]
- Klewe, T.; Strangfeld, C.; Kruschwitz, S. Review of moisture measurements in civil engineering with ground penetrating radar–Applied methods and signal features. Constr. Build. Mater. 2021, 278, 122250. [Google Scholar] [CrossRef]
- Jonard, F.; Mahmoudzadeh, M.; Roisin, C.; Weihermüller, L.; André, F.; Minet, J.; Vereecken, H.; Lambot, S. Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction. Geoderma 2013, 207, 310–322. [Google Scholar] [CrossRef]
- André, F.; Jonard, M.; Lambot, S. Non-invasive forest litter characterization using full-wave inversion of microwave radar data. IEEE Trans. Geosci. Remote Sens. 2014, 53, 828–840. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, Z.; Wang, X. Soil water content estimation using high-frequency ground penetrating radar. Water 2019, 11, 1036. [Google Scholar] [CrossRef] [Green Version]
- Wijewardana, Y.G.N.S.; Galagedara, L.W. Estimation of spatio-temporal variability of soil water content in agricultural fields with ground penetrating radar. J. Hydrol. 2010, 391, 24–33. [Google Scholar] [CrossRef]
- Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M. Mapping spatial moisture content of unsaturated agricultural soils with ground-penetrating radar. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1279–1285. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, M.; Di Matteo, L.; Pauselli, C.; Mancinelli, P.; Frapiccini, S.; Talegalli, L.; Cannata, A. Integrated GPR and laboratory water content measures of sandy soils: From laboratory to field scale. Constr. Build. Mater. 2018, 159, 734–744. [Google Scholar] [CrossRef]
- Galagedara, L.W.; Parkin, G.W.; Redman, J.D.; Von Bertoldi, P.; Endres, A.L. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. J. Hydrol. 2005, 301, 182–197. [Google Scholar] [CrossRef]
- Hubbard, S.; Grote, K.; Rubin, Y. Mapping the volumetric soil water content of a California vineyard using high-frequency GPR ground wave data. Lead. Edge 2002, 21, 552–559. [Google Scholar] [CrossRef]
- Lunt, I.A.; Hubbard, S.S.; Rubin, Y. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Serbin, G.; Or, D. Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1695–1705. [Google Scholar] [CrossRef]
- Glover, P.W. Archie’s law—A reappraisal. Solid Earth 2016, 7, 1157–1169. [Google Scholar] [CrossRef] [Green Version]
- Steelman, C.M.; Endres, A.L. Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves. Vadose Zone J. 2011, 10, 270–285. [Google Scholar] [CrossRef]
- Cao, Q.; Song, X.; Wu, H.; Gao, L.; Liu, F.; Yang, S.; Zhang, G. Mapping the response of volumetric soil water content to an intense rainfall event at the field scale using GPR. J. Hydrol. 2020, 583, 124605. [Google Scholar] [CrossRef]
- Greaves, R.J.; Lesmes, D.P.; Lee, J.M.; Toksöz, M.N. Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 1996, 61, 683–695. [Google Scholar] [CrossRef]
- Grote, K.; Hubbard, S.; Rubin, Y. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques. Water Resour. Res. 2003, 39, 1321. [Google Scholar] [CrossRef] [Green Version]
- Hamann, G.; Tronicke, J. Global inversion of GPR traveltimes to assess uncertainties in CMP velocity models. Near Surf. Geophys. 2014, 12, 505–514. [Google Scholar] [CrossRef]
- Saito, H.; Kuroda, S.; Iwasaki, T.; Sala, J.; Fujimaki, H. Estimating infiltration front depth using time-lapse multioffset gathers obtained from ground-penetrating-radar antenna array. Geophysics 2021, 86, WB51–WB59. [Google Scholar] [CrossRef]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-situ measurement of soil permittivity at various depths for the calibration and validation of low-frequency SAR soil moisture models by using GPR. Remote Sens. 2017, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Irving, J.; Holliger, K. High-resolution velocity estimation from surface-based common-offset GPR reflection data. Geophys. J. Int. 2022, 230, 131–144. [Google Scholar] [CrossRef]
- Forte, E.; Pipan, M. Review of multi-offset GPR applications: Data acquisition, processing and analysis. Signal Process. 2017, 132, 210–220. [Google Scholar] [CrossRef]
- Alumbaugh, D.; Chang, P.Y.; Paprocki, L.; Brainard, J.R.; Glass, R.J.; Rautman, C.A. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability. Water Resour. Res. 2002, 38, 45-1–45-12. [Google Scholar] [CrossRef] [Green Version]
- Klotzsche, A.; Lärm, L.; Vanderborght, J.; Cai, G.; Morandage, S.; Zörner, M.; Vereecken, H.; van der Kruk, J. Monitoring soil water content using time-lapse horizontal borehole GPR data at the field-plot scale. Vadose Zone J. 2019, 18, 190044. [Google Scholar] [CrossRef] [Green Version]
- Klotzsche, A.; Vereecken, H.; van der Kruk, J. Review of crosshole ground-penetrating radar full-waveform inversion of experimental data: Recent developments, challenges, and pitfalls. Geophysics 2019, 84, H13–H28. [Google Scholar] [CrossRef]
- Yu, Y.; Klotzsche, A.; Weihermüller, L.; Huisman, J.A.; Vanderborght, J.; Vereecken, H.; van der Kruk, J. Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground penetrating radar data. Near Surf. Geophys. 2020, 18, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Weihermüller, L.; Klotzsche, A.; Lärm, L.; Vereecken, H.; Huisman, J.A. Sequential and coupled inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic properties at the field scale. J. Hydrol. 2021, 596, 126010. [Google Scholar] [CrossRef]
- Strobach, E.; Harris, B.D.; Dupuis, J.C.; Kepic, A.W. Time-lapse borehole radar for monitoring rainfall infiltration through podosol horizons in a sandy vadose zone. Water Resour. Res. 2014, 50, 2140–2163. [Google Scholar] [CrossRef]
- Jaumann, S.; Roth, K. Soil hydraulic material properties and layered architecture from time-lapse GPR. Hydrol. Earth Syst. Sci. 2018, 22, 2551–2573. [Google Scholar] [CrossRef] [Green Version]
- Lambot, S.; Slob, E.; Rhebergen, J.; Lopera, O.; Jadoon, K.Z.; Vereecken, H. Remote Estimation of the Hydraulic Properties of a Sand Using Full-Waveform Integrated Hydrogeophysical Inversion of Time-Lapse, Off-Ground GPR Data. Vadose Zone J. 2009, 8, 743–754. [Google Scholar] [CrossRef]
- Scholer, M.; Irving, J.; Looms, M.C.; Nielsen, L.; Holliger, K. Examining the Information Content of Time-lapse Crosshole GPR Data Collected Under Different Infiltration Conditions to Estimate Unsaturated Soil Hydraulic Properties. Adv. Water Resour. 2013, 54, 38–56. [Google Scholar] [CrossRef]
- Busch, S.; Weihermüller, L.; Huisman, J.A.; Steelman, C.M.; Endres, A.L.; Vereecken, H.; Van Der Kruk, J. Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface. Water Resour. Res. 2013, 49, 8480–8494. [Google Scholar] [CrossRef] [Green Version]
- Anbazhagan, P.; Bittelli, M.; Pallepati, R.R.; Mahajan, P. Comparison of soil water content estimation equations using ground penetrating radar. J. Hydrol. 2020, 588, 125039. [Google Scholar] [CrossRef]
- Benedetto, A.; Benedetto, F. Remote sensing of soil moisture content by GPR signal processing in the frequency domain. IEEE Sens. J. 2011, 11, 2432–2441. [Google Scholar] [CrossRef]
- Benedetto, A. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain. J. Appl. Geophys. 2010, 71, 26–35. [Google Scholar] [CrossRef]
- Lambot, S.; Slob, E.C.; Van Den Bosch, I.; Stockbroeckx, B.; Scheers, B.; Vanclooster, M. Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain. Water Resour. Res. 2004, 40, W04205. [Google Scholar] [CrossRef] [Green Version]
- Tran, A.P.; Bogaert, P.; Wiaux, F.; Vanclooster, M.; Lambot, S. High-resolution space–time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data. J. Hydrol. 2015, 523, 252–261. [Google Scholar] [CrossRef]
- Lai, W.L.; Poon, C.S. GPR data analysis in time-frequency domain. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 362–366. [Google Scholar] [CrossRef]
- Barkataki, N.; Mazumdar, S.; Tiru, B.; Sarma, U. Estimation of soil moisture from GPR data using artificial neural networks. In Proceedings of the 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), Hong Kong, China, 17–19 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- D’Amico, F.; Guattari, C.; Benedetto, A. GPR signal processing in frequency domain using artificial neural network for water content prediction in unsaturated subgrade. In Proceedings of the XIII Internarional Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Algeo, J.; Van Dam, R.L.; Slater, L. Early-time GPR: A method to monitor spatial variations in soil water content during irrigation in clay soils. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pettinelli, E.; Vannaroni, G.; Di Pasquo, B.; Mattei, E.; Di Matteo, A.; De Santis, A.; Annan, A.P. Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study. Geophysics 2007, 72, A25–A28. [Google Scholar] [CrossRef]
- Pettinelli, E.; Di Matteo, A.; Beaubien, S.E.; Mattei, E.; Lauro, S.E.; Galli, A.; Vannaroni, G. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties. J. Appl. Geophys. 2014, 101, 68–76. [Google Scholar] [CrossRef]
- Di Matteo, A.; Elena, P.; Evert, S. Early-time GPR signal attributes to estimate soil dielectric permittivity: A theoretical study. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1643–1654. [Google Scholar] [CrossRef]
- Ferrara, C.; Barone, P.M.; Steelman, C.M.; Pettinelli, E.; Endres, A.I. Monitoring shallow soil water content under natural field conditions using the early-time GPR signal technique. Vadose Zone J. 2013, 12, 1–9. [Google Scholar] [CrossRef]
- Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y. Characterization of soil water content variability and soil texture using GPR groundwave techniques. J. Environ. Eng. Geophys. 2010, 15, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Zajc, M.; Urbanc, J.; Pečan, U.; Glavan, M.; Pintar, M. Using 3D GPR for determining soil conditions in precision agriculture. In Proceedings of the 18th International Conference Ground Penetrating Radar, Golden, CO, USA, 14–19 November 2020; pp. 291–294. [Google Scholar] [CrossRef]
- Koganti, T.; Van De Vijver, E.; Allred, B.J.; Greve, M.H.; Ringgaard, J.; Iversen, B.V. Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument. Sensors 2020, 20, 3922. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignano, A.; Sollitto, D.; Modugno, F. Spatial relationship between clay content and geophysical data. Clay Miner. 2010, 45, 197–207. [Google Scholar] [CrossRef]
- Lärm, L.; Bauer, F.; van der Kruk, J.; Vanderborght, J.; Vereecken, H.; Schnepf, A.; Klotzsche, A. Using horizontal borehole GPR data to estimate the effect of maize plants on the spatial and temporal distribution of dielectric permittivity. In Proceedings of the 2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Valletta, Malta, 1–4 December 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Schneidhofer, P.; Tonning, C.; Cannell, R.J.S.; Nau, E.; Hinterleitner, A.; Verhoeven, G.J.; Gustavsen, L.; Paasche, K.; Neubauer, W.; Gansum, T. The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sens. 2022, 14, 3289. [Google Scholar] [CrossRef]
- Igel, J.; Dlugosch, R.; Günther, T.; Müller-Petke, M.; Jiang, C.; Helms, J.; Lang, J.; Winsemann, J. Combined GPR and surface magnetic resonance investigation for aquifer characterisation. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Van der Kruk, J.; Vereecken, H.; Jacob, R.W. Identifying dispersive GPR signals and inverting for surface wave-guide properties. Lead. Edge 2009, 28, 1234–1239. [Google Scholar] [CrossRef]
- Bradford, J.H. Frequency dependent attenuation of GPR data as a tool for material property characterization: A review and new developments. In Proceedings of the 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Aachen, Germany, 22–24 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Busch, S.; Van der Kruk, J.; Vereecken, H. Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3947–3958. [Google Scholar] [CrossRef]
- Tosti, F.; Patriarca, C.; Slob, E.; Benedetto, A.; Lambot, S. Clay content evaluation in soils through GPR signal processing. J. Appl. Geophys. 2013, 97, 69–80. [Google Scholar] [CrossRef]
- Benedetto, F.; Tosti, F. GPR spectral analysis for clay content evaluation by the frequency shift method. J. Appl. Geophys. 2013, 97, 89–96. [Google Scholar] [CrossRef]
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precis. Agric. 2016, 17, 531–545. [Google Scholar] [CrossRef]
- Saarenketo, T. Electrical properties of water in clay and silty soils. J. Appl. Geophys. 1998, 40, 73–88. [Google Scholar] [CrossRef]
- Pedret Rodés, J.; Martínez Reguero, A.; Pérez-Gracia, V. GPR spectra for monitoring asphalt pavements. Remote Sens. 2020, 12, 1749. [Google Scholar] [CrossRef]
- Meadows, D.G.; Young, M.H.; McDonald, E.V. Estimating the fine soil fraction of desert pavements using ground penetrating radar. Vadose Zone J. 2006, 5, 720–730. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Z.; Yang, J.; Wang, F.; Gao, M. The identification test of soil texture with ground penetrating radar. In Proceedings of the 2010 International Conference on Advances in Energy Engineering, Beijing, China, 19–20 June 2010; pp. 81–84. [Google Scholar] [CrossRef]
- de Mahieu, A.; Ponette, Q.; Mounir, F.; Lambot, S. Using GPR to analyze regeneration success of cork oaks in the Maâmora forest (Morocco). NDT E Int. 2020, 115, 102297. [Google Scholar] [CrossRef]
- Kaufmann, M.S.; Klotzsche, A.; Vereecken, H.; van der Kruk, J. Simultaneous multichannel multi-offset ground-penetrating radar measurements for soil characterization. Vadose Zone J. 2020, 19, e20017. [Google Scholar] [CrossRef]
- Knight, R.; Tercier, P.; Jol, H. The role of ground penetrating radar and geostatistics in reservoir description. Lead. Edge 1997, 16, 1576–1584. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignano, A.; Sollitto, D.; Modugno, F.; Buttafuoco, G.; lo Papa, G. Integrating geophysical and geostatistical techniques to map the spatial variation of clay. Geoderma 2012, 171, 53–63. [Google Scholar] [CrossRef]
- De Benedetto, D.; Montemurro, F.; Diacono, M. Mapping an agricultural field experiment by electromagnetic Induction and ground penetrating radar to improve soil water content estimation. Agronomy 2019, 9, 638. [Google Scholar] [CrossRef]
- Bobrov, P.P.; Mironov, V.L.; Kondratyeva, O.V.; Repin, A.V. The effect of clay and organic matter content on the dielectric permittivity of soils and grounds at the frequency range from 10 MHz to 1 GHz. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4433–4435. [Google Scholar] [CrossRef]
- Weihermueller, L.; Kaufmann, M.; Steinberger, P.; Pätzold, S.; van der Kruk, J.; Vereecken, H. Fertilization effects on the electrical conductivity measured by EMI, ERT, and GPR. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 4786. [Google Scholar]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Jonard, F.; Demontoux, F.; Bircher, S.; Razafindratsima, S.; Schwank, M.; Weillermüller, L.; Lambot, S.; Wigneron, J.P.; Kerr, Y.; Vereecken, H. Electromagnetic characterization of organic-rich soils at the microwave L-band with ground-penetrating radar, radiometry and laboratory measurements. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 June 2014; pp. 202–207. [Google Scholar] [CrossRef]
- Lauer, K.; Albrecht, C.; Salat, C.; Felix-Henningsen, P. Complex effective relative permittivity of soil samples from the taunus region (Germany). J. Earth Sci. 2010, 21, 961–967. [Google Scholar] [CrossRef]
- van Dam, R.L.; van den Berg, E.H.; van Heteren, S.; Kasse, C.; Kenter, J.A.; Groen, K. Influence of organic matter in soils on radar-wave reflection: Sedimentological implications. J. Sediment. Res. 2002, 72, 341–352. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Zhao, S.; Liu, S. Dielectric properties of saline soils and an improved dielectric model in C-band. IEEE Trans. Geosci. Remote Sens. 2014, 53, 440–452. [Google Scholar] [CrossRef]
- Bircher, S.; Demontoux, F.; Razafindratsima, S.; Zakharova, E.; Drusch, M.; Wigneron, J.-P.; Kerr, Y.H. L-Band Relative Permittivity of Organic Soil Surface Layers—A New Dataset of Resonant Cavity Measurements and Model Evaluation. Remote Sens. 2016, 8, 1024. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.; Paul, K.B.; Higgins, T.R. Impacts of Soil Physicochemical Properties and Temporal-Seasonal Soil-Environmental Status on Ground-Penetrating Radar Response. Soil Sci. Soc. Am. J. 2019, 83, 542–554. [Google Scholar] [CrossRef]
- André, F.; Jonard, F.; Jonard, M.; Lambot, S. In situ characterization of forest litter using ground-penetrating radar. J. Geophys. Res. Biogeosci. 2016, 121, 879–894. [Google Scholar] [CrossRef]
- Xiao, L.; Li, C.; Cai, Y.; Zhou, T.; Zhou, M.; Gao, X.; Shi, Y.; Du, H.; Zhou, G.; Zhou, Y. Interactions between soil properties and the rhizome-root distribution in a 12-year Moso bamboo reforested region: Combining ground-penetrating radar and soil coring in the field. Sci. Total Environ. 2021, 800, 149467. [Google Scholar] [CrossRef]
- Williams, R.D.; Ahuja, L.R.; Naney, J.W. Comparison of methods to estimate soil water characteristics from soil texture, bulk density, and limited data. Soil Sci. 1992, 153, 172–184. [Google Scholar] [CrossRef]
- Van Dam, R.L. Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Commun. Soil Sci. Plant Anal. 2014, 45, 392–413. [Google Scholar] [CrossRef]
- Campos, J.R.D.R.; Vidal-Torrado, P.; Modolo, A.J. Use of Ground Penetrating Radar to Study Spatial Variability and Soil Stratigraphy. Eng. Agríc. 2019, 39, 358–364. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Yagihara, S.; Saito, H.; Furuhata, K.; Szerement, J.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric models for moisture determination of soils with variable organic matter content. Geoderma 2021, 401, 115288. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, X.; Jiang, T.; Li, X.; Li, X.-J.; Zhao, K. Evaluation and improvement of SMOS and SMAP soil moisture products for soils with high organic matter over a forested area in Northeast China. Remote Sens. 2017, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Berg, A.; Cosh, M.H.; Colliander, A.; Behrendt, A.; Manns, H.; Hong, J.; Lee, J.; Zhang, R.; Wulfmeyer, V. An inverse dielectric mixing model at 50 MHz that considers soil organic carbon. Hydrol. Earth Syst. Sci. 2021, 25, 6407–6420. [Google Scholar] [CrossRef]
- Ikazaki, K.; Nagumo, F.; Simporé, S.; Barro, A. Soil toposequence, productivity, and a simple technique to detect petroplinthites using ground-penetrating radar in the Sudan Savanna. Soil Sci. Plant Nutr. 2018, 64, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Idi, B.Y. Application of Ground Penetrating Radar for Spatial Mapping of Organic Contents in Potian Peat Soil, Johor Malaysia. Dutse J. Pure Appl. Sci. 2019, 5, 31–38. [Google Scholar]
- Li, L.; Xia, Y.H.; Liu, S.J.; Zhang, W.; Chen, X.B.; Zheng, H.; Qiu, H.S.; He, X.Y.; Su, Y.R. Modified method for estimating organic carbon density in discontinuous Karst soil using ground-penetrating radar and geostatistics. J. Mt. Sci. 2015, 12, 1229–1240. [Google Scholar] [CrossRef]
- Winkelbauer, J.; Völkel, J.; Leopold, M.; Bernt, N. Methods of surveying the thickness of humous horizons using ground penetrating radar (GPR): An example from the Garmisch-Partenkirchen area of the Northern Alps. Eur. J. For. Res. 2011, 130, 799–812. [Google Scholar] [CrossRef]
- Zajícová, K.; Chuman, T. O and A soil horizons’ boundaries detection using GPR under variable soil moisture conditions. Geoderma 2022, 422, 115934. [Google Scholar] [CrossRef]
- Alaoui, A.; Diserens, E. Mapping soil compaction—A review. Curr. Opin. Environ. Sci. Health 2018, 5, 60–66. [Google Scholar] [CrossRef]
- Hanxiao, X.; Yingui, C.; Gubai, L.; Shufeti, W.; Jinman, W.; Zhongke, B. Variability in reconstructed soil bulk density of a high moisture content soil: A study on feature identification and ground penetrating radar detection. Environ. Earth Sci. 2022, 81, 249. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Pysz, P. Correlation between agrotechnical properties of selected soil types and corresponding GPR response. Acta Geophys. 2019, 67, 1913–1919. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Cao, Q.; Sun, Z. The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrol. Process. 2003, 17, 3601–3614. [Google Scholar] [CrossRef]
- Perdok, U.D.; Kroesbergen, B.; Hilhorst, M.A. Influence of gravimetric water content and bulk density on the dielectric properties of soil. Eur. J. Soil Sci. 1996, 47, 367–371. [Google Scholar] [CrossRef]
- Malicki, M.A.; Campbell, E.C.; Hanks, R.J. Investigations on power factor of the soil electrical impedance as related to moisture, salinity and bulk density. Irrig. Sci. 1989, 10, 55–62. [Google Scholar] [CrossRef]
- Petersen, H.; Rabbel, W.; Horn, R.; Volk, L. Sensitivity of Electrical Properties to Soil Compaction-Case Study. In Proceedings of the Near Surface 2010-16th EAGE European Meeting of Environmental and Engineering Geophysics, Houten, The Netherlands, 6–8 September 2010; p. cp-164. [Google Scholar] [CrossRef]
- Lombardi, F.; Lualdi, M. Step—Frequency Ground Penetrating Radar for agricultural soil morphology characterisation. Remote Sens. 2019, 11, 1075. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Hu, Z.; Zhao, Y.; Li, X. Experimental study of soil compaction effects on GPR signals. J. Appl. Geophys. 2016, 126, 128–137. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Kiełbasa, P.; Juliszewski, T.; Pysz, P.; Karczewski, J.; Zagórda, M. GPR geophysical method as a remediation tool to determine zones of high penetration resistance of soil. J. Phys. Conf. Ser. 2021, 1782, 012001. [Google Scholar] [CrossRef]
- De-Ville, S.; Pattison, I.; Frost, M. COMPACT: A frequency analysis of Ground Penetrating Radar to identify agricultural soil compaction. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; Volume 2018, p. NS13B-0596. [Google Scholar]
- De-Ville, S.; Pattison, I.; Frost, M.; Demirci, E. Taking novel approaches of Ground Penetrating Radar and Computed Tomography to quantity the location and severity of soil compaction in agricultural landscapes. In Proceedings of the Geophysical Research Abstracts, Vienna, Austria, 10 January 2019; Volume 21. [Google Scholar]
- Akinniyi, A.; Jerzy, K.; Paweł, P.; Sylwia, T.S.; Tadeusz, U. Identification of heavy machines impact on soil using Ground Penetrating Radar. In Advances in Mechanism and Machine Science. IFToMM WC 2019; Mechanisms and Machine Science; Uhl, T., Ed.; Springer: Cham, Switzerland, 2019; Volume 73. [Google Scholar] [CrossRef]
- Petersen, H.; Fleige, H.; Rabbel, W.; Horn, R. Applicability of geophysical prospecting methods for mapping of soil compaction and variability of soil texture on farm land. J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. 2005, 168, 68–79. [Google Scholar] [CrossRef]
- Muñiz, E.; Shaw, R.K.; Gimenez, D.; Williams, C.A.; Kenny, L. Use of Ground-Penetrating Radar to Determine Depth to Compacted Layer in Soils Under Pasture. In Digital Soil Morphometrics. Progress in Soil Science; Hartemink, A., Minasny, B., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Afshar, F.A.; Ayoubi, S.; Castrignanò, A.; Quarto, R.; Ardekani, M.R.M. Using ground-penetrating radar to explore the cemented soil horizon in an arid region in Iran. Near Surf. Geophys. 2017, 15, 103–110. [Google Scholar] [CrossRef]
- Keller, T.; Colombi, T.; Ruiz, S.; Manalili, M.P.; Rek, J.; Stadelmann, V.; Wunderli, H.; Breitenstein, D.; Reiser, R.; Oberholzer, H.; et al. Long-term Soil Structure Observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 2017, 16, 118. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Wu, Z.Y.; Wang, L.; Wu, Y.B. Application of the Ground Penetrating Radar ARMA power spectrum estimation method to detect moisture content and compactness values in sandy loam. J. Appl. Geophys. 2015, 120, 26–35. [Google Scholar] [CrossRef]
- Iwasaki, K.; Tamura, M.; Sato, H.; Masaka, K.; Oka, D.; Yamakawa, Y.; Kosugi, K. Application of Ground-Penetrating Radar and a Combined Penetrometer–Moisture Probe for Evaluating Spatial Distribution of Soil Moisture and Soil Hardness in Coastal and Inland Windbreaks. Geosciences 2020, 10, 238. [Google Scholar] [CrossRef]
- Kiełbasa, P.; Zagórda, M.; Juliszewski, T.; Akinsunmade, A.; Tomecka, S.; Karczewski, J.; Pysz, P. Assessment of the possibility of using GPR to determine the working resistance force of tools for subsoil reclamation. J. Phys. Conf. Ser. 2021, 1782, 012013. [Google Scholar] [CrossRef]
- Keller, T.; Lamandé, M.; Naderi-Boldaji, M.; de Lima, R.P. Soil Compaction Due to Agricultural Field Traffic: An Overview of Current Knowledge and Techniques for Compaction Quantification and Mapping. In Advances in Understanding Soil Degradation. Innovations in Landscape Research; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Akinsunmade, A. GPR imaging of traffic compaction effects on soil structures. Acta Geophys. 2021, 69, 643–653. [Google Scholar] [CrossRef]
- Mount, G.J.; Comas, X. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale. Water Resour. Res. 2014, 50, 7590–7605. [Google Scholar] [CrossRef]
- Bradford, J.H.; Clement, W.P.; Barrash, W. Estimating porosity with ground-penetrating radar reflection tomography: A controlled 3-D experiment at the Boise Hydrogeophysical Research Site. Water Resour. Res. 2009, 45, W00D26. [Google Scholar] [CrossRef]
- Ghose, R.; Slob, E.C. Quantitative integration of seismic and GPR reflections to derive unique estimates for water saturation and porosity in subsoil. Geophys. Res. Lett. 2006, 33, L05404. [Google Scholar] [CrossRef] [Green Version]
- Clement, W.P.; Knoll, M.D. Traveltime inversion of vertical radar profiles. Geophysics 2006, 71, K67–K76. [Google Scholar] [CrossRef] [Green Version]
- Roodposhti, H.R.; Hafizi, M.K.; Kermani, M.R.S. Ground Penetrating Radar for water content and compaction evaluation: A laboratory test on construction material. J. Environ. Eng. Geophys. 2020, 25, 169–179. [Google Scholar] [CrossRef]
- Turesson, A. Water content and porosity estimated from ground-penetrating radar and resistivity. J. Appl. Geophys. 2006, 58, 99–111. [Google Scholar] [CrossRef]
- Cunningham, K.J. Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA. J. Appl. Geophys. 2004, 55, 61–76. [Google Scholar] [CrossRef]
- Causse, E.; Sénéchal, P. Model-based automatic dense velocity analysis of GPR field data for the estimation of soil properties. J. Geophys. Eng. 2006, 3, 169–176. [Google Scholar] [CrossRef]
- Mount, G.J.; Comas, X.; Wright, W.J.; McClellan, M.D. Delineation of macroporous zones in the unsaturated portion of the Miami Limestone using ground penetrating radar, Miami Dade County, Florida. J. Hydrol. 2015, 527, 872–883. [Google Scholar] [CrossRef]
- Kaufmann, M.S.; Klotzsche, A.; Dal Bo, I.; Vereecken, H.; Van Der Kruk, J. Determining large scale soil permittivity with simultaneous multi-channel GPR measurement. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; Volume 2018, p. NS13B-0597. [Google Scholar]
- Harbi, H.; McMechan, G.A. Modeling 3D porosity and permeability from GPR data in the Ellenburger Dolomite, central Texas. Geophysics 2011, 76, J35–J46. [Google Scholar] [CrossRef]
- Lassen, R.N.; Sonnenborg, T.O.; Jensen, K.H.; Looms, M.C. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar. Int. J. Greenh. Gas Control 2015, 37, 287–298. [Google Scholar] [CrossRef]
- Nielsen, L.; Looms, M.C.; Hansen, T.M.; Cordua, K.S.; Stemmerik, L. Estimation of chalk heterogeneity from stochastic modeling conditioned by crosshole GPR traveltimes and log data. Adv. Near-Surf. Seismol. Ground-Penetrating Radar SEG Geophys. Dev. Ser. 2010, 15, 379–398. [Google Scholar] [CrossRef]
- Lu, D.; Wang, H.; Geng, N.; Xia, Y.; Xu, C.; Hua, E. Imaging and characterization of the preferential flow process in agricultural land by using electrical resistivity tomography and dual-porosity model. Ecol. Indic. 2022, 134, 108498. [Google Scholar] [CrossRef]
- Keskinen, J.; Klotzsche, A.; Looms, M.C.; Moreau, J.; van der Kruk, J.; Holliger, K.; Stemmerik, L.; Nielsen, L. Full-waveform inversion of crosshole GPR data: Implications for porosity estimation in chalk. J. Appl. Geophys. 2017, 140, 102–116. [Google Scholar] [CrossRef]
- Klotzsche, A.; van der Kruk, J.; Bradford, J.; Vereecken, H. Detection of spatially limited high-porosity layers using crosshole GPR signal analysis and full-waveform inversion. Water Resour. Res. 2014, 50, 6966–6985. [Google Scholar] [CrossRef] [Green Version]
- van der Kruk, J.; Gueting, N.; Klotzsche, A.; He, G.; Rudolph, S.; von Hebel, C.; Yang, X.; Weihermüller, L.; Mester, A.; Vereecken, H. Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data. J. Earth Sci. 2015, 26, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Finsterle, S.; Kowalsky, M.B. Joint hydrological–geophysical inversion for soil structure identification. Vadose Zone J. 2008, 7, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Su, Y.; Huang, C. Inversion of ground penetrating radar data based on neural networks. Remote Sens. 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Kotlar, A.M.; Iversen, B.V.; de Jong van Lier, Q. Evaluation of parametric and nonparametric machine-learning techniques for prediction of saturated and near-saturated hydraulic conductivity. Vadose Zone J. 2019, 18, 1–13. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. J. Hydrometeorol. 2001, 2, 356–373. [Google Scholar] [CrossRef]
- Léger, E.; Saintenoy, A.; Coquet, Y. Hydrodynamic parameters of a sandy soil determined by ground-penetrating radar inside a single ring infiltrometer. Water Resour. Res. 2014, 50, 5459–5474. [Google Scholar] [CrossRef] [Green Version]
- de Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring soil moisture dynamics using electrical resistivity tomography under homogeneous field conditions. Sensors 2020, 20, 5313. [Google Scholar] [CrossRef]
- Moua, R.; Lesparre, N.; Girard, J.F.; Belfort, B.; Lehmann, F. Estimate of hydrodynamic parameters with a coupled hydrogeophysical inversion using GPR surveys. In Proceedings of the EGU General Assembly Conference Abstracts, Virtual, 19–30 April 2021; p. EGU21-8705. [Google Scholar]
- Xiao, X.; Guan, B.; Ihamouten, A.; Villain, G.; Dérobert, X.; Tian, G. Monitoring water transfers in limestone building materials with water retention curve and Ground Penetrating Radar: A comparative study. NDT E Int. 2018, 100, 31–39. [Google Scholar] [CrossRef]
- Luo, G.; Cao, Y.; Xu, H.; Yang, G.; Wang, S.; Huang, Y.; Bai, Z. Detection of soil physical properties of reclaimed land in open-pit mining area: Feasibility of application of ground penetrating radar. Environ. Monit. Assess. 2021, 193, 392. [Google Scholar] [CrossRef]
- Grote, K.; Leverett, K. Comparison of pedotransfer functions for high-resolution mapping of hydraulic conductivity in agricultural soils using GPR. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019; Volume 2019, p. NS31A-0762. [Google Scholar]
- Gloaguen, E.; Chouteau, M.; Marcotte, D.; Chapuis, R. Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. J. Appl. Geophys. 2001, 47, 135–152. [Google Scholar] [CrossRef]
- Schmalz, B.; Lennartz, B. Analyses of soil water content variations and GPR attribute distributions. J. Hydrol. 2002, 267, 217–226. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 1966, 92, 61–88. [Google Scholar] [CrossRef]
- Kosugi, K.I. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 1996, 32, 2697–2703. [Google Scholar] [CrossRef]
- Oikawa, K.; Kuroda, S.; Saito, H. Velocity analysis of time-lapse sparse array antenna GPR CMP data to estimate infiltration front depth: A numerical study. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2020; Volume 2020, p. H003-13. [Google Scholar]
- Klenk, P.; Jaumann, S.; Roth, K. Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar. Hydrol. Earth Syst. Sci. 2015, 19, 1125–1139. [Google Scholar] [CrossRef]
- Chen, J.; Hubbard, S.; Rubin, Y. Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resour. Res. 2001, 37, 1603–1613. [Google Scholar] [CrossRef]
- Di Prima, S.; Giannini, V.; Ribeiro Roder, L.; Stewart, R.D.; Abou Najm, M.R.; Longo, V.; Winiarski, T.; Angulo-Jaramillo, R.; Pirastru, M.; Lassabatere, L.; et al. Using GPR surveys and infiltration experiments for assessing soil physical quality of an agricultural soil. In Proceedings of the EGU General Assembly Conference Abstracts, Virtual, 19–30 April 2021; p. EGU21-2034. [Google Scholar]
- Weihnacht, B.; Boerner, F. Measurement of retention functions with hysteresis using ground-penetrating radar. Near Surf. Geophys. 2014, 12, 539–548. [Google Scholar] [CrossRef]
- Saintenoy, A.; Schneider, S.; Tucholka, P. Evaluating ground penetrating radar use for water infiltration monitoring. Vadose Zone J. 2008, 7, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Köpke, C.; Irving, J.; Roubinet, D. Stochastic inversion for soil hydraulic parameters in the presence of model error: An example involving ground-penetrating radar monitoring of infiltration. J. Hydrol. 2019, 569, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Shakas, A.; Maurer, H.; Giertzuch, P.L.; Hertrich, M.; Giardini, D.; Serbeto, F.; Meier, P. Permeability enhancement from a hydraulic stimulation imaged with Ground Penetrating Radar. Geophys. Res. Lett. 2020, 47, e2020GL088783. [Google Scholar] [CrossRef]
- Leger, E.; Saintenoy, A.C.; Coquet, Y. Soil water retention function hysteresis determined by ground-penetrating radar. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014; Volume 2014, p. NS21B-3882. [Google Scholar]
- Angulo-Jaramillo, R.; Vandervaere, J.P.; Roulier, S.; Thony, J.L.; Gaudet, J.P.; Vauclin, M. Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil Tillage Res. 2000, 55, 1–29. [Google Scholar] [CrossRef]
- Léger, E.; Saintenoy, A.; Coquet, Y. Estimating saturated hydraulic conductivity from ground-based GPR monitoring Porchet infiltration in sandy soil. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 June 2014; pp. 124–130. [Google Scholar] [CrossRef]
- Léger, E.; Saintenoy, A.; Coquet, Y.; Tucholka, P.; Zeyen, H. Evaluating hydrodynamic parameters accounting for water retention hysteresis in a large sand column using surface GPR. J. Appl. Geophys. 2020, 182, 104176. [Google Scholar] [CrossRef]
- Tran, A.P.; Vanclooster, M.; Zupanski, M.; Lambot, S. Joint estimation of soil moisture profile and hydraulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter. Water Resour. Res. 2014, 50, 3131–3146. [Google Scholar] [CrossRef]
- Dagenbach, A.; Buchner, J.S.; Klenk, P.; Roth, K. Identifying a parameterisation of the soil water retention curve from on-ground GPR measurements. Hydrol. Earth Syst. Sci. 2013, 17, 611–618. [Google Scholar] [CrossRef]
- Bano, M. Effects of the transition zone above a water table on the reflection of GPR waves. Geophys. Res. Lett. 2006, 33, L13309. [Google Scholar] [CrossRef] [Green Version]
- Saintenoy, A.; Hopmans, J.W. Ground penetrating radar: Water table detection sensitivity to soil water retention properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Guellouz, L.; Askri, B.; Jaffré, J.; Bouhlila, R. Estimation of the soil hydraulic properties from field data by solving an inverse problem. Sci. Rep. 2020, 10, 9359. [Google Scholar] [CrossRef] [PubMed]
- Léger, E.; Saintenoy, A.; Tucholka, P.; Coquet, Y. Inverting surface GPR data to estimate wetting and drainage water retention curves in laboratory. In Proceedings of the 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Florence, Italy, 7–10 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Lambot, S.; Antoine, M.; Van den Bosch, I.; Slob, E.C.; Vanclooster, M. Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone J. 2004, 3, 1072–1081. [Google Scholar] [CrossRef]
- Tran, A.P.; Ardekani, M.R.M.; Lambot, S. Coupling of dielectric mixing models with full-wave ground-penetrating radar signal inversion for sandy-soil-moisture estimation. Geophysics 2012, 77, H33–H44. [Google Scholar] [CrossRef]
- Minet, J.; Wahyudi, A.; Bogaert, P.; Vanclooster, M.; Lambot, S. Mapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data. Geoderma 2011, 161, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, K.Z.; Weihermuller, L.; Scharnagl, B.; Kowalsky, M.B.; Bechtold, M.; Hubbard, S.S.; Vereecken, H.; Lambot, S. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data. Vadose Zone J. 2012, 11, vzj2011.0177. [Google Scholar] [CrossRef]
- Köpke, C.; Irving, J.; Elsheikh, A.H. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach. Adv. Water Resour. 2018, 116, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Huisman, J.A.; Klotzsche, A.; Vereecken, H.; Weihermüller, L. Coupled full-waveform inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: A synthetic study. J. Hydrol. 2022, 610, 127817. [Google Scholar] [CrossRef]
- Oikawa, K.; Saito, H.; Kuroda, S. Effect of soil type on estimating infiltration front depth and hydraulic conductivity using time-lapse array antenna GPR multi-offset gather: A numerical study. In Proceedings of the 18th International Conference on Ground Penetrating Radar, Golden, CO, USA, 18–21 November 2020; pp. 303–306. [Google Scholar] [CrossRef]
- Evett, S.R.; Parkin, G.W. Advances in soil water content sensing: The continuing maturation of technology and theory. Vadose Zone J. 2005, 4, 986–991. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef] [Green Version]
- Robertson, B.B.; Almond, P.C.; Carrick, S.T.; Penny, V.; Chau, H.W.; Smith, C.M. Variation in matric potential at field capacity in stony soils of fluvial and alluvial fans. Geoderma 2021, 392, 114978. [Google Scholar] [CrossRef]
- Sreelash, K.; Buis, S.; Sekhar, M.; Ruiz, L.; Tomer, S.K.; Guerif, M. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime. J. Hydrol. 2017, 546, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Nourbakhsh, F.; Afyuni, M.; Abbaspour, K.C.; Schulin, R. Research note: Estimation of field capacity and wilting point from basic soil physical and chemical properties. Arid. Land Res. Manag. 2004, 19, 81–85. [Google Scholar] [CrossRef]
- Galagedara, L.W.; Redman, J.D.; Parkin, G.W.; Annan, A.P.; Endres, A.L. Numerical modeling of GPR to determine the direct ground wave sampling depth. Vadose Zone J. 2005, 4, 1096–1106. [Google Scholar] [CrossRef]
- Park, C.-H.; Montzka, C.; Jagdhuber, T.; Jonard, F.; De Lannoy, G.; Hong, J.; Jackson, T.J.; Wulfmeyer, V. A Dielectric Mixing Model Accounting for Soil Organic Matter. Vadose Zone J. 2019, 18, 190036. [Google Scholar] [CrossRef]
- Wang, R.; Gao, P.; Zhou, E.; Li, Y.; Zhao, G. Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar. J. Soil Water Conserv. 2021, 76, 199–210. [Google Scholar] [CrossRef]
- Harmsen, E.; Parsiani, H.; Torres, M. Evaluation of several dielectric mixing models for estimating soil moisture content in sand, loam and clay soils. In Proceedings of the 2003 ASAE Annual Meeting, Las Vegas, NV, USA, 27–30 July 2003; p. 1. [Google Scholar] [CrossRef]
[39,40] | [43] | [47] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
USDA Texture Class | Sample Size | n (cm3/cm3) 1 | FC (cm3/cm3) 2 | WP (cm3/cm3) 3 | Ksat (cm/h) 4 | Sample Size | OM (%) 5 | Sample Size | n* (cm3/cm3) 6 | Ksat (cm/h) 4 |
Sand | 762 | 0.437 | 0.091 | 0.033 | 21.00 | 660 | 0.71 | 308 | 0.375 | 26.78 |
(0.374–0.500) | (0.018–0.164) | (0.007–0.059) | (SD 1.06) | (0.320–0.430) | ||||||
Loamy Sand | 338 | 0.437 | 0.125 | 0.055 | 6.11 | 198 | 0.61 | 201 | 0.390 | 4.38 |
(0.368–0.506) | (0.060–0.190) | (0.019–0.091) | (SD 1.16) | (0.320–0.460) | ||||||
Sandy Loam | 666 | 0.453 | 0.207 | 0.095 | 2.59 | 371 | 0.71 | 476 | 0.387 | 1.60 |
(0.351–0.555) | (0.126–0.288) | (0.031–0.159) | (SD 1.29) | (0.302–0.472) | ||||||
Loam | 383 | 0.463 | 0.270 | 0.117 | 0.68 | 203 | 0.52 | 242 | 0.399 | 0.50 |
(0.375–0.551) | (0.195–0.345) | (0.069–0.165) | (SD 0.99) | (0.301–0.497) | ||||||
Silt Loam | 1206 | 0.501 | 0.330 | 0.133 | 1.32 | 497 | 0.58 | 330 | 0.439 | 0.76 |
(0.420–0.582) | (0.258–0.402) | (0.078–0.188) | (SD 1.29) | (0.346–0.532) | ||||||
Silt | - | - | - | - | - | - | - | 6 | 0.489 | 1.82 |
(0.411–0.567) | ||||||||||
Sandy Clay Loam | 498 | 0.398 | 0.255 | 0.148 | 0.43 | 250 | 0.19 | 87 | 0.384 | 0.55 |
(0.332–0.464) | (0.186–0.324) | (0.085–0.211) | (SD 0.34) | (0.323–0.445) | ||||||
Clay Loam | 366 | 0.464 | 0.318 | 0.197 | 0.23 | 175 | 0.10 | 140 | 0.442 | 0.34 |
(0.409–0.519) | (0.250–0.386) | (0.115–0.279) | (SD 0.51) | (0.363–0.521) | ||||||
Silty Clay Loam | 689 | 0.471 | 0.366 | 0.208 | 0.15 | 209 | 0.13 | 172 | 0.482 | 0.46 |
(0.418–0.524) | (0.304–0.428) | (0.138–0.278) | (SD 0.42) | (0.396–0.568) | ||||||
Sandy Clay | 45 | 0.430 | 0.339 | 0.239 | 0.12 | 61 | 0.38 | 11 | 0.385 | 0.47 |
(0.370–0.490) | (0.245–0.433) | (0.162–0.316) | (SD 1.20) | (0.339–0.431) | ||||||
Silty Clay | 127 | 0.479 | 0.387 | 0.250 | 0.09 | - | - | 28 | 0.481 | 0.40 |
(0.425–0.533) | (0.332–0.442) | (0.193–0.307) | (0.401–0.561) | |||||||
Clay | 291 | 0.475 | 0.396 | 0.272 | 0.06 | 72 | 0.38 | 84 | 0.459 | 0.61 |
(0.427–0.523) | (0.326–0.466) | (0.208–0.336) | (SD 0.83) | (0.380–0.538) |
Geophysical Method | Physical Property | Potential Application |
---|---|---|
Resistivity | Electrical resistivity | Soil drainage Soil salinity Spatial variation Soil water content |
Electromagnetic induction | Electrical conductivity | Clay-pan depth Soil nutrient Soil salinity Spatial variations Soil water content |
GPR | Dielectric constant and electrical conductivity | Soil classification Vertical microvariability Bedrock depth Plant root biomass Flow pathways Drainage pipes |
Magnetometry | Magnetic susceptibility | Drainage pipes Soil pollution and iron content |
Self-potential | Electric potential gradient | Soil salinity Soil water content |
Seismic | Density and elastic moduli | Soil compaction Soil porosity |
Material | Conductivity S/m | Relative Permittivity | |
---|---|---|---|
Air | 0 | 1 | |
Water | Fresh | 1 × 10−5 | 81 |
Sea | 1 × 103 | ||
Sand | Dry | 1 × 10−6 | 4 |
Wet | 1 × 10−2 | 20 | |
Clay | Dry | 1 × 10−2 | 4 |
Wet | 1 | 25 | |
Limestone | Dry | 1 × 10−8 | 7 |
Wet | 1 × 10−3 | 8 | |
Soil sandy | Dry | 1 × 10−4 | 7 |
Wet | 1 × 10−2 | 20 | |
Soil loamy | Dry | 1 × 10−4 | 7 |
Wet | 1 × 10−2 | 20 | |
Soil clayey | Dry | 1 × 10−2 | 7 |
Wet | 1 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, F.; Ortuani, B.; Facchi, A.; Lualdi, M. Assessing the Perspectives of Ground Penetrating Radar for Precision Farming. Remote Sens. 2022, 14, 6066. https://doi.org/10.3390/rs14236066
Lombardi F, Ortuani B, Facchi A, Lualdi M. Assessing the Perspectives of Ground Penetrating Radar for Precision Farming. Remote Sensing. 2022; 14(23):6066. https://doi.org/10.3390/rs14236066
Chicago/Turabian StyleLombardi, Federico, Bianca Ortuani, Arianna Facchi, and Maurizio Lualdi. 2022. "Assessing the Perspectives of Ground Penetrating Radar for Precision Farming" Remote Sensing 14, no. 23: 6066. https://doi.org/10.3390/rs14236066
APA StyleLombardi, F., Ortuani, B., Facchi, A., & Lualdi, M. (2022). Assessing the Perspectives of Ground Penetrating Radar for Precision Farming. Remote Sensing, 14(23), 6066. https://doi.org/10.3390/rs14236066