Developing an Automated Python Surface Energy Balance System (PySEBS) Software for Calculating Actual Evapotranspiration-Software Development and Application Case in Jilin Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Installing the PySEBS and Software Requirements
2.2. Graphical User Interface Introduction
2.3. PySEBS Software Theoretical Foundation
2.4. Initial Input Data
2.5. Output Results
2.6. PySEBS Case Study-Study Area
2.7. Calculation of ETa during Spring Maize Growing Season
3. Results
3.1. Extraction of Planting Area
3.2. Temporal and Spatial Distribution Patterns of ETa
4. Discussion
4.1. Comparison of the Calculated ETa Results with Similar Studies
4.2. Advantages and Disadvantages of PySEBS Software
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, L.Q.; Zeng, Z.Z.; Wei, Z.W.; Chen, A.P.; Wood, E.F.; Sheffield, J. Determinants of the ratio of actual to potential evapotranspiration. Glob. Change Biol. 2019, 25, 1326–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasumi, M. Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agric. Water Manag. 2019, 226, 105805. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Xiang, K.Y.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Gutierrez-Ninahuaman, C.; Gonzalez-Herrera, R. Software to analyze ETo. Compilation of indirect methods. Environ. Model. Softw. 2021, 142, 105056. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 1992. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Bowen, I.S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W.; Holzman, B. The determination of evaporation from land and water surfaces. Mon. Weather Rev. 1939, 67, 4–11. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Dolman, A.J. A multiple-source land surface energy balance model for use in general circulation models. Agric. For. Meteorol. 1993, 65, 21–45. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc. 2010, 114, 373–398. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. ASCE 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Du, J.; Song, K.S.; Wang, Z.M. Estimation of water consumption and productivity for rice through integrating remote sensing and census data in the Songnen Plain, China. Paddy Water Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef]
- Bhattarai, N.; Liu, T. LandMOD ET mapper: A new matlab-based graphical user interface (GUI) for automated implementation of SEBAL and METRIC models in thermal imagery. Environ. Model. Softw. 2019, 118, 76–82. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environ. Model. Softw. 2020, 133, 104845. [Google Scholar] [CrossRef]
- Ramirez-Cuesta, J.M.; Allen, R.G.; Intrigliolo, D.S.; Kilic, A.; Robison, C.W.; Trezza, R.; Santos, C.; Lorite, I.J. METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environ. Model. Softw. 2020, 131, 104770. [Google Scholar] [CrossRef]
- Ellsasser, F.; Roll, A.; Stiegler, C.; Hendrayanto; Hölscher, D. Introducing QWaterModel, a QGIS plugin for predicting evapotranspiration from land surface temperatures. Environ. Model. Softw. 2020, 130, 104739. [Google Scholar] [CrossRef]
- Wu, F.; Wu, B.; Zhu, W.; Yan, N.; Ma, Z.; Wang, L.; Lu, Y.; Xu, J. ETWatch cloud: APIs for regional actual evapotranspiration data generation. Environ. Model. Softw. 2021, 145, 105174. [Google Scholar] [CrossRef]
- Kayser, R.H.; Ruhoff, A.; Laipelt, L.; Kich, E.D.; Roberti, D.R.; Souza, V.D.; Rubert, G.C.D.; Collischonn, W.; Neale, C.M.U. Assessing geeSEBAL automated calibration and meteorological reanalysis uncertainties to estimate evapotranspiration in subtropical humid climates. Agric. For. Meteorol. 2022, 314, 108775. [Google Scholar] [CrossRef]
- Huang, C.L.; Li, Y.; Gu, J.; Lu, L.; Li, X. Improving estimation of evapotranspiration under water-limited conditions based on SEBS and MODIS data in arid regions. Remote Sens. 2015, 7, 16795–16814. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.P.; Huang, F.; Li, B.G. Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction. Agric. Water Manag. 2022, 263, 107468. [Google Scholar] [CrossRef]
- Han, X.P.; Wang, Y.Q.; Bao, L. Introduction of ILWIS functions and its scanning digital application. Lab. Sci. 2008, 2, 107–109. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Yang, X.T. Evapotranspiration Estimating using Remote Sensing and Spatial-Temporal Distribution of Evapotranspiration in Golmud River Basin Based on SEBS Model. Master’s Thesis, Chang’an University, Xi’an, China, 2017. [Google Scholar]
- Wu, Y.L. Research on Retrieving and Spatial-Temporal Changes of Evaporation Estimation in the Yellow River Delta Based on Refined SEBS Model. Master’s Thesis, China University of Petroleum, Beijing, China, 2010. [Google Scholar]
- Li, X. Estimation of Sensible Heat Flux Based on SEBS Model and Its Application for Drought Monitoring. Master’s Thesis, Nanjing University of Information Engineering, Nanjing, China, 2012. [Google Scholar]
- Hao, J.W. Study on Evapotranspiration Based on SEBS Model in Handan. Master’s Thesis, Hebei University of Engineering, Handan, China, 2018. [Google Scholar]
- Jobson; Harvey, E. Evaporation into the atmosphere: Theory, history, and applications. Eos Trans. Am. Geophys. Union 1982, 63, 1223. [Google Scholar] [CrossRef]
- Hogstrom, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound. Layer Meteor. 1988, 42, 55–78. [Google Scholar] [CrossRef]
- Kader, B.A.; Yaglom, A.M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 1990, 212, 637–662. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- VandenHurk, B.; Holtslag, A.A.M. On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Bound. Layer Meteor. 1997, 82, 119–134. [Google Scholar] [CrossRef]
- Brutsaert, W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions. Rev. Geophys. 1999, 37, 439–451. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. FIFE: The variation in energy partition at surface flux sites. IAHS 1989, 186, 67–74. [Google Scholar]
- Sugita, M.; Brutsaert, W. Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resour. Res. 1991, 27, 747–752. [Google Scholar] [CrossRef]
- Crago, R.D. Comparison of the evaporative fraction and the Priestley-Taylor alpha for parameterizing daytime evaporation. Water Resour. Res. 1996, 32, 1403–1409. [Google Scholar] [CrossRef]
- Li, G. Estimation Evapotranspiration in Yingtan Agricultural Watershed using SEBAL and SEBS Model. Master’s Thesis, Nanjing University of Information Engineering, Nanjing, China, 2014. [Google Scholar]
- Guo, C.M.; Ren, J.Q.; Zhang, T.L.; Yu, H. Dynamic change of evapotranspiration and influenced factors in the spring maize field in Northeast China. Chin. J. Agrometeorol. 2016, 37, 400–407. [Google Scholar] [CrossRef]
- Qiu, M.J.; Guo, C.M.; Wang, D.N.; Yuan, F.X.; Qu, S.M.; Ren, J.Q.; Li, Z.H.; Mu, J. Variation of effective precipitation and water deficit index in maize growing season in Jilin Province during 1960–2015. Agric. Res. Arid. Reg. 2018, 36, 237–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.X.; Li, Q.; Hu, Z.H.; Guo, C.M.; Ren, J.Q. Irrigation simulation of spring maize in central and western of Jilin Province based on WOFOST model. Chin. J. Agrometeorol. 2018, 39, 411–420. [Google Scholar] [CrossRef]
- Liu, Y. Simulation and Applications of Maize Evapotranspiration Based on SIMETAW Model. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2011. [Google Scholar]
- Jiang, H.; Liu, S.R.; Sun, P.S.; An, S.Q.; Zhou, G.Y.; Li, C.Y.; Wang, J.X.; Yu, H.; Tian, X.J. The influence of vegetation type on the hydrological process at the landscape scale. Can. J. Remote Sens. 2004, 30, 743–763. [Google Scholar] [CrossRef] [Green Version]
- Seguin, B.; Becker, F.; Phulpin, T.; Gu, X.F.; Guyot, G.; Kerr, Y.; King, C.; Lagouarde, J.P.; Ottle, C.; Stoll, M.P. IRSUTE: A minisatellite project for land surface heat flux estimation from field to regional scale. Remote Sens. Environ. 1999, 68, 357–369. [Google Scholar] [CrossRef]
- Schillaci, C.; Jones, A.; Vieira, D.; Munafò, M.; Montanarella, L. Evaluation of the United Nations sustainable development goal 15.3.1 indicator of land degradation in the European Union. Land Degrad. Dev. 2022, 1–19. [Google Scholar] [CrossRef]
Products | Surface Characteristics Parameters | Temporal Resolution | Spatial Resolution |
---|---|---|---|
MOD09A1 | Surface albedo (Band 1–7) Solar zenith angle (Szen) | 8 d | 500 m |
MOD11A2 | Surface temperature (lst) | 8 d | 1000 m |
Study Method | Scale | Crop | Value Range | Mean | Period | Area | Source |
---|---|---|---|---|---|---|---|
Weighting lysimeter | Farmland | Spring maize | - | 362 | 2013 | Yushu City, Jilin Province | Guo, [47] |
Penman–Monteith + Crop coefficient method | Regional | Spring maize | 452–637 | 523 | 1981–2014 | Jilin Province | Qiu, [48] |
Penman–Monteith + Crop coefficient method | Regional | Spring maize | 455–641 | 538 | 1961–2015 | Midwest Jilin Province | Zhang, [49] |
SIMETAW Model | Regional | Spring maize | 464–486 | 480 | 2007–2009 | Fuxin, Liaoning Province | Liu, [50] |
PySEBS Model | Regional | Spring maize | 391–693 | 517 | 2000–2017 | Jilin Province | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Huang, F.; Li, Y.; Ren, P.; Marek, G.W.; Ding, B.; Li, B.; Chen, Y. Developing an Automated Python Surface Energy Balance System (PySEBS) Software for Calculating Actual Evapotranspiration-Software Development and Application Case in Jilin Province, China. Remote Sens. 2022, 14, 5629. https://doi.org/10.3390/rs14215629
Liu H, Huang F, Li Y, Ren P, Marek GW, Ding B, Li B, Chen Y. Developing an Automated Python Surface Energy Balance System (PySEBS) Software for Calculating Actual Evapotranspiration-Software Development and Application Case in Jilin Province, China. Remote Sensing. 2022; 14(21):5629. https://doi.org/10.3390/rs14215629
Chicago/Turabian StyleLiu, Haipeng, Feng Huang, Yingxuan Li, Pinpin Ren, Gary W. Marek, Beibei Ding, Baoguo Li, and Yong Chen. 2022. "Developing an Automated Python Surface Energy Balance System (PySEBS) Software for Calculating Actual Evapotranspiration-Software Development and Application Case in Jilin Province, China" Remote Sensing 14, no. 21: 5629. https://doi.org/10.3390/rs14215629
APA StyleLiu, H., Huang, F., Li, Y., Ren, P., Marek, G. W., Ding, B., Li, B., & Chen, Y. (2022). Developing an Automated Python Surface Energy Balance System (PySEBS) Software for Calculating Actual Evapotranspiration-Software Development and Application Case in Jilin Province, China. Remote Sensing, 14(21), 5629. https://doi.org/10.3390/rs14215629