Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021)
Abstract
:1. Introduction
2. Observation, Methodology and Experiments
2.1. AGRI Radiance Data and Pre-process
2.1.1. Quality Control and Bias Correction
- (1)
- Rejecting all channels with mixed surface types of observation data.
- (2)
- Rejecting the observations of channel 8 and channels 11–13 that are greatly affected by uncertain surface parameters [30].
- (3)
- Rejecting the observation pixels where satellite zenith angels are larger than 60°.
- (4)
- Rejecting the observations if the absolute innovation (bias-corrected observation minus simulated background) exceeds 3 times the observation error under clear-sky conditions, and if it exceeds 15 K.
- (5)
- Rejecting cloudy pixels with the PF cloud-detection method, which is described in Section 2.3.
2.1.2. Cloud Detection
2.2. The Data Assimilation System
2.3. Overview of Typhoon In-Fa
2.4. Experiment Setup
3. Results and Discussion
3.1. Channel Sensitivity
3.2. Cloud Detection
3.3. Data Assimilation Design Strategies
3.3.1. Impact on the Analysis
3.3.2. Impacts on the Typhoon Forecasts
4. Summary and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deber, J.C.; Wu, W.-S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Poli, P. Assimilation of satellite observations of the atmosphere. Comptes Rendus Geosci. 2010, 342, 357–369. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Q.F.; Hu, X.Q.; Gu, S.Y.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.G.; et al. Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- Bormann, N.; Duncan, D.; English, S.; Healy, S.; Lonitz, K.; Chen, K.; Lawrence, H.; Lu, Q.F. Growing operational use of FY-3 data in the ECMWF system. Adv. Atmos. Sci. 2021, 38, 1285–1298. [Google Scholar] [CrossRef]
- Carminati, F.B.; Migliorini, S. All-sky Data Assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System. Adv. Atmos. Sci. 2021, 38, 1682–1694. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Schwartz, C.S.; Snyder, C.; Ha, S.Y. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Ackerman, S.A.; Gurka, J.J. High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Ocean. Technol. 2009, 26, 2273–2292. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.Q.; Gao, F.; Childs, P.P.; Min, J.Z. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico. J. Geophys. Res. Atmos. 2017, 122, 5472–5490. [Google Scholar] [CrossRef]
- Zou, X.L.; Qin, Z.K.; Weng, F.Z. Improved coastal precipitation forecasts with direct assimilation of GOES-11/12 imager radiances. Mon. Wea. Rev. 2011, 39, 3711–3729. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.L.; Qin, Z.K.; Zheng, Y. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev. 2015, 143, 2485–2505. [Google Scholar] [CrossRef]
- Qin, Z.K.; Zou, X.L. Direct Assimilation of ABI Infrared Radiances in NWP Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2022–2033. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Zou, X.L.; Weng, F.Z.; Qin, Z.K.; Symposium, R.S. Direct assimilation of AHI and ABI infrared radiances in NWP models. IEEE Trans. Geosci. Remote Sens. 2017, 290–292. [Google Scholar]
- Sawada, Y.; Okamoto, K.; Kunii, M.; Miyoshi, T. Assimilating every-10-min himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res. Atmos. 2019, 124, 2546–2561. [Google Scholar] [CrossRef]
- Xu, D.M.; Liu, Z.Q.; Fan, S.Y.; Chen, M.; Shen, F.F. Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci. 2021, 38, 661–676. [Google Scholar] [CrossRef]
- Thibaut, M.; Florence, R.; Claude, F. Relative impact of polar-orbiting and geostationary satellite radiances in the Aladin/France numerical prediction system. Quart. J. Roy. Meteor. Soc. 2007, 133, 655–671. [Google Scholar]
- Hutt, A.; Schraff, C.; Anlauf, H.; Bach, L.; Baldauf, M.; Bauernschubert, E.; Cress, A.; Faulwetter, R.; Fundel, F.; Köpken-Watts, C.; et al. Assimilation of SEVIRI Water Vapor Channels with an Ensemble Kalman Filter on the Convective Scale. Front. Earth Sci. 2020, 8, 2296–6463. [Google Scholar] [CrossRef]
- Otkin, J.A.; Potthast, R. Assimilation of All-Sky SEVIRI Infrared Brightness Temperatures in a Regional-Scale Ensemble Data Assimilation System. Mon. Wea. Rev. 2019, 147, 4481–4509. [Google Scholar] [CrossRef]
- Stengel, M.; Undén, P.; Lindskog, M.; Dahlgren, P.; Gustafsson, N.; Bennartz, R. Assimilation of SEVIRI infrared radiance with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc. 2009, 135, 2100–2109. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Li, L.Z.; Lim, A.N.H.; Li, J.L.; Schmit, T.J.; Goldberg, M.D. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts. J. Geophys. Res. Atmos. 2017, 122, 13201–13218. [Google Scholar] [CrossRef]
- Honda, T.; Miyoshi, T.; Lien, G.; Nishizawa, S.; Yoshida, R.; Adachi, S.A.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Honda, T.; Takino, S.; Miyoshi, T. Improving a precipitation forecast by assimilating all-sky himawari-8 satellite radiances: A case of Typhoon Malakas (2016). J. Meteorol. Soc. Jpn. 2019, 15, 7–11. [Google Scholar] [CrossRef]
- Wang, Y.B.; He, J.Y.; Chen, Y.D.; Min, J.Z. The Potential Impact of Assimilating Synthetic Microwave Radiances Onboard a Future Geostationary Satellite on the Prediction of Typhoon Lekima Using the WRF Model. Remote Sens. 2021, 13, 886. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.Q.; Wei, C.Y.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Chen, Y.D.; Shen, J.; Fan, S.Y.; Meng, D.M.; Wang, C. Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation. Adv. Atmos. Sci. 2020, 37, 1222–1238. [Google Scholar] [CrossRef]
- Zhang, W.J.; Hui, W.; Lyu, W.T.; Cao, D.J.; Li, P.F.; Zheng, D.; Fang, X.; Zhang, Y.J. FY-4A LMI observed lightning activity in Super Typhoon Mangkhut (2018) in comparison with WWLLN data. J. Meteorol. Res. 2020, 34, 336–352. [Google Scholar] [CrossRef]
- Yin, R.Y.; Han, W.; Gao, Z.Q.; Li, J. Impact of High Temporal Resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Radiance Measurements on Typhoon Forecasts: Maria (2018) Case with GRAPES Global 4D-Var Assimilation System. Geophys. Res. Lett. 2021, 48, e2021GL093672. [Google Scholar] [CrossRef]
- Geng, X.W.; Min, J.Z.; Yang, C.; Wang, Y.B.; Xu, D.M. Analysis of FY-4A AGRI Radiance Data Bias Characteristics and a Correction Experiment. Chin. J. Atmos. Sci. 2020, 44, 679–694. [Google Scholar]
- Zhu, J.; Shu, J.; Guo, W. Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun-4A Geostationary Satellite. Remote Sens. 2020, 12, 2871. [Google Scholar] [CrossRef]
- Lan, X.; Cheng, W.; Deng, Z.; Liu, J.J.; Wang, B.; Lu, B.; Wang, S.D.; Dong, L. Assimilation of the FY-4A AGRI Clear-Sky Radiance Data in a Regional Numerical Model and Its Impact on the Forecast of the “21·7” Henan Extremely Persistent Heavy Rainfall. Adv. Atmos. Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Bauer, P.; Auligné, T.; Bell, W.; Geer, A.; Guidard, V.; Heilliette, S.; Kazumori, M.; Kim, M.-J.; Liu, E.; McNally, A.; et al. Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc. 2011, 137, 1934–1951. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Johansson, E.; Devasthale, A. Advancing the uncertainty characterisation of cloud masking in passive satelite imagery: Probabilistic formulations for NOAA AVHRR data. Remote Sens. Environ. 2015, 158, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- English, S.J.; Eyre, J.R.; Smith, J.A. A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Quart. J. Roy. Meteor. Soc. 1999, 125, 2359–2378. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc. 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments. Mon. Wea. Rev. 2014, 142, 4383–4398. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments. Mon. Wea. Rev. 2014, 142, 4399–4415. [Google Scholar] [CrossRef]
- Xu, D.M.; Auligne, T.; Descombes, G.; Snyder, C. A method for retrieving clouds with satellite infrared radiances using the particle filter. Geosci. Model. Dev. 2016, 9, 3919–3932. [Google Scholar] [CrossRef]
- Dong, Y.H. FY-4 meteorological satellite and its application prospect. J. Aerosp. Shanghai 2016, 33, 1–8. (In Chinese) [Google Scholar]
- Geer, A.J.; Bauer, P. Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc. 2011, 137, 2024–2037. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.Y.; Liu, Z.Q.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.S.; et al. The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Lupu, C.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Inter comparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. Wea. Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 13 May–25 June 2004; pp. 11–15. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
Channel | Channel Type | Central Wavelength /μm | Spectral Band /μm | Spatial Resolution /km | Main Application |
---|---|---|---|---|---|
1 | VIS/NIR | 0.47 | 0.45–0.49 | 1 | Aerosol, visibility |
2 | 0.65 | 0.55–0.75 | 0.5–1 | Fog, clouds | |
3 | 0.825 | 0.75–0.90 | 1 | Aerosol, vegetation | |
4 | Shortwave IR | 1.375 | 1.36–1.39 | 2 | Cirrus |
5 | 1.61 | 1.58–1.64 | 2 | Cloud, snow | |
6 | 2.25 | 2.10–2.35 | 2–4 | Cloud phase, aerosol, vegetation | |
7 | Midwave IR | 3.75 | 3.50–4.00 | 2 | Clouds, fire, moisture, snow |
8 | 3.75 | 3.50–4.00 | 4 | Land surface | |
9 | Water vapor | 6.25 | 5.8–6.7 | 4 | Upper-level WV |
10 | 7.1 | 6.9–7.3 | 4 | Midlevel WV | |
11 | Longwave IR | 8.5 | 8.0–9.0 | 4 | Volcanic ash, cloud-top phase |
12 | 10.7 | 10.3–11.3 | 4 | SST, LST | |
13 | 12.0 | 11.5–12.5 | 4 | Clouds, low-level WV | |
14 | 13.5 | 13.2–13.8 | 4 | Clouds, air temperature |
Experiment | Cloud-Detection Scheme | DA Cycling Scheme | Channel Selection | Purpose of Experiments |
---|---|---|---|---|
SingleDA_06 | PF | No DA cycling, valid at 0600 UTC | Channel 9/10 | Sensitivity of data assimilation design strategies |
SingleDA_12 | No DA cycling, valid at 1200 UTC | |||
Cyc_CLM0 | CLM_0: reject cloudy pixels | Inter-3 h DA cycling, valid at 0600, 0900, 1200 UTC | Sensitivity of cloud-detection schemes | |
Cyc_CLM2 | CLM_2: reject cloudy pixels, probably cloudy, and probably clear pixels | |||
Cyc | PF | Benchmark for sensitivity experiments | ||
Cyc_Ch9/10/14 | Channel 9/10/14 | Sensitivity of channel selection | ||
Cyc_Ch10 | Channel 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xu, D.; Liu, R.; Shen, F. Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sens. 2022, 14, 4718. https://doi.org/10.3390/rs14194718
Zhang X, Xu D, Liu R, Shen F. Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sensing. 2022; 14(19):4718. https://doi.org/10.3390/rs14194718
Chicago/Turabian StyleZhang, Xuewei, Dongmei Xu, Ruixia Liu, and Feifei Shen. 2022. "Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021)" Remote Sensing 14, no. 19: 4718. https://doi.org/10.3390/rs14194718
APA StyleZhang, X., Xu, D., Liu, R., & Shen, F. (2022). Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sensing, 14(19), 4718. https://doi.org/10.3390/rs14194718