Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources
2.3. Data Pre-Processing
3. Methods
3.1. Remote Sensing Monitoring of Ecological Environment
3.1.1. Vegetation Cover Extraction
3.1.2. Identification of Characteristic Surface Types in Mining Areas
3.1.3. Landsat-Based Ecological Resource Changes Detection
3.2. Remote Sensing Monitoring of Economic Impact
4. Results
4.1. Influence of Ecological Environment in Mining Area
4.1.1. Time-Series Changes in Vegetation Cover
4.1.2. Time-Series Changes of Characteristic Surface Types in the Mining Area
4.1.3. Ecological Resource Occupation and Restoration
4.2. Influence of Economic Condition in Mining Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Dong, K.; Dong, X.; Jiang, Q. Research on the Carbon Emission Effect of the Seven Regions along the Belt and Road—Based on the Spillover and Feedback Effects Model. J. Clean. Prod. 2021, 319, 128758. [Google Scholar] [CrossRef]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, Framework and Assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar] [CrossRef]
- Saud, S.; Danish; Chen, S. An Empirical Analysis of Financial Development and Energy Demand: Establishing the Role of Globalization. Environ. Sci. Pollut. Res. 2018, 25, 24326–24337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Offensive for Defensive: The Belt and Road Initiative and China’s New Grand Strategy. Pac. Rev. 2016, 29, 445–463. [Google Scholar] [CrossRef]
- Chi, Y.; Yang, P.; Ren, S.; Yang, J. China’s Investments in Renewable Energy through the Belt and Road Initiative Stimulated Local Economy and Employment: A Case Study of Pakistan. Sci. Total Environ. 2020, 835, 138954. [Google Scholar] [CrossRef]
- Salman, M.; Wang, G.; Zha, D. Modeling the Convergence Analysis of Sustainable Production and Consumption in Terms of Ecological Footprints and Human Development Index in Belt and Road Initiative Countries. Sustain. Prod. Consum. 2022, 30, 233–254. [Google Scholar] [CrossRef]
- Report on Development of China’s outward Investment and Economic Cooperation; Ministry of Commerce of The People’s Republic of CHINA: Beijing, China, 2020.
- Centre for Economics and Business Research. Belt and Road Initiative to Boost World GDP by over $7 Trillion per Annum by 2040. Available online: https://cebr.com/reports/belt-and-road-initiative-to-boost-world-gdp-by-over-7-trillion-per-annum-by-2040/ (accessed on 1 June 2022).
- Kuzevic, S.; Bobikova, D.; Kuzevicova, Z. Land Cover and Vegetation Coverage Changes in the Mining Area—A Case Study from Slovakia. Sustainability 2022, 14, 1180. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Zhou, L.; Hou, H.; Zhang, Y.; Liang, J.; Zhang, S. Ecological Restoration in Mining Areas in the Context of the Belt and Road Initiative: Capability and Challenges. Environ. Impact Assess. Rev. 2022, 95, 106767. [Google Scholar] [CrossRef]
- Chin, G.T. China’s Bold Economic Statecraft. Curr. Hist. 2015, 114, 217–223. [Google Scholar] [CrossRef]
- Hirons, M.; Hilson, G.; Asase, A.; Hodson, M.E. Mining in a Changing Climate: What Scope for Forestry-Based Legacies? J. Clean. Prod. 2014, 84, 430–438. [Google Scholar] [CrossRef]
- Kobayashi, H.; Watando, H.; Kakimoto, M. A Global Extent Site-Level Analysis of Land Cover and Protected Area Overlap with Mining Activities as an Indicator of Biodiversity Pressure. J. Clean. Prod. 2014, 84, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Murguía, D.I.; Bringezu, S.; Schaldach, R. Global Direct Pressures on Biodiversity by Large-Scale Metal Mining: Spatial Distribution and Implications for Conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Hodge, R.A. Mining Company Performance and Community Conflict: Moving beyond a Seeming Paradox. J. Clean. Prod. 2014, 84, 27–33. [Google Scholar] [CrossRef]
- Aragón, F.M.; Rud, J.P. Natural Resources and Local Communities: Evidence from a Peruvian Gold Mine. Am. Econ. J. Econ. Policy 2013, 5, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Loayza, N.; Rigolini, J. The Local Impact of Mining on Poverty and Inequality: Evidence from the Commodity Boom in Peru. World Dev. 2016, 84, 219–234. [Google Scholar] [CrossRef]
- Lechner, A.M.; Chan, F.K.S.; Campos-Arceiz, A. Biodiversity Conservation Should Be a Core Value of China’s Belt and Road Initiative. Nat. Ecol. Evol. 2018, 2, 408–409. [Google Scholar] [CrossRef]
- Bao, N.; Lechner, A.; Fletcher, A.; Erskine, P.; Mulligan, D.; Bai, Z. SPOTing Long-Term Changes in Vegetation over Short-Term Variability. Int. J. Min. Reclam. Environ. 2014, 28, 2–24. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-Term Landsat Monitoring of Mining Subsidence Based on Spatiotemporal Variations in Soil Moisture: A Case Study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102447. [Google Scholar] [CrossRef]
- Lechner, A.M.; Kassulke, O.; Unger, C. Spatial Assessment of Open Cut Coal Mining Progressive Rehabilitation to Support the Monitoring of Rehabilitation Liabilities. Resour. Policy 2016, 50, 234–243. [Google Scholar] [CrossRef]
- Virgone, K.M.; Ramirez-Andreotta, M.; Mainhagu, J.; Brusseau, M.L. Effective Integrated Frameworks for Assessing Mining Sustainability. Environ. Geochem. Health 2018, 40, 2635–2655. [Google Scholar] [CrossRef] [PubMed]
- Everingham, J.A.; Rolfe, J.; Lechner, A.M.; Kinnear, S.; Akbar, D. A Proposal for Engaging a Stakeholder Panel in Planning Post-Mining Land Uses in Australia’s Coal-Rich Tropical Savannahs. Land Use Policy 2018, 79, 397–406. [Google Scholar] [CrossRef]
- Lechner, A.M.; Owen, J.; Ang, M.; Kemp, D. Spatially Integrated Social Sciences with Qualitative GIS to Support Impact Assessment in Mining Communities. Resources 2019, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976–2006 Landsat Time Series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Koruyan, K.; Deliormanli, A.H.; Karaca, Z.; Momayez, M.; Lu, H.; Yalçin, E. Remote Sensing in Management of Mining Land and Proximate Habitat. J. South. Afr. Inst. Min. Met. 2012, 112, 667–672. [Google Scholar]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of Land Use Change in Mining Regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the Dynamics of Vegetation Disturbance and Recovery in Surface Mining Area via Landsat Imagery and LandTrendr Algorithm. J. Clean. Prod. 2018, 178, 353. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital Change Detection Methods in Ecosystem Monitoring: A Review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; He, H.; Wang, L. Assessing Different Feature Sets’ Effects on Land Cover Classification in Complex Surface-Mined Landscapes by ZiYuan-3 Satellite Imagery. Remote Sens. 2018, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiao, L.P.; Shen, Y.Y.; Liu, Q.L. Land Use and Cover Change in Coal Mining Area by IFZ and NDVI. J. China Coal Soc. 2016, 41, 2822–2829. [Google Scholar] [CrossRef]
- Li, H.; Lei, J.; Wu, J. Analysis of Land Damage and Recovery Process in Rare Earth Mining Area Based on Multi-Source Sequential NDVI. Trans. Chin. Soc. Agric. Eng. 2018, 34, 232–240. [Google Scholar] [CrossRef]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface Coal Mine Area Monitoring Using Multi-Temporal High-Resolution Satellite Imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Jhanwar, M.L. Application of Remote Sensing for Environmental Monitoring in Bijolia Mining Area of Rajasthan. J. Indian Soc. Remote Sens. 1996, 24, 255–264. [Google Scholar] [CrossRef]
- Redondo-Vega, J.M.; Gómez-Villar, A.; Santos-González, J.; González-Gutiérrez, R.B.; Álvarez-Martínez, J. Changes in Land Use Due to Mining in the North-Western Mountains of Spain during the Previous 50 Years. Catena 2017, 149, 844–856. [Google Scholar] [CrossRef]
- Ang, M.L.E.; Arts, D.; Crawford, D.; Labatos, B.V.; Ngo, K.D.; Owen, J.R.; Gibbins, C.; Lechner, A.M. Socio-Environmental Land Cover Time-Series Analysis of Mining Landscapes Using Google Earth Engine and Web-Based Mapping. Remote Sens. Appl. Soc. Environ. 2021, 21, 100458. [Google Scholar] [CrossRef]
- Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the Landtrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. [Google Scholar] [CrossRef]
- Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1846. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Yue, C.; Xu, D.; Wei, Y.; Li, H. Rethinking the “Resource Curse”: New Evidence from Nighttime Light Data. Resour. Policy 2022, 76, 102617. [Google Scholar] [CrossRef]
- Lessmann, C.; Steinkraus, A. The Geography of Natural Resources, Ethnic Inequality and Civil Conflicts. Eur. J. Political Econ. 2019, 59, 33–51. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Hu, Y.; Huang, C.; Chen, Y.; Huang, Y.; Chen, Z.; Wu, J. Modeling and Mapping Total Freight Traffic in China Using NPP-VIIRS Nighttime Light Composite Data. GIScience Remote Sens. 2015, 52, 274–289. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS Night-Time Light Composite Data for Extracting Built-up Urban Areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Yu, L.; Xu, Y.; Xue, Y.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.J.; Yang, J.; Gong, P. Monitoring Surface Mining Belts Using Multiple Remote Sensing Datasets: A Global Perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X. Exploring Spatiotemporal Patterns of Electric Power Consumption in Countries along the Belt and Road. Energy 2018, 150, 847. [Google Scholar] [CrossRef]
- Wu, M.Q.; Wang, B.C.; Niu, Z.; Huang, W.J. Theoretical Framework and Research Progress of Big Earth Data Technology in Projects Construction. J. Geo-Inf. Sci. 2020, 22, 1408–1423. [Google Scholar] [CrossRef]
- Menhas, R.; Mahmood, S.; Tanchangya, P.; Safdar, M.N.; Hussain, S. Sustainable Development under Belt and Road Initiative: A Case Study of China-Pakistan Economic Corridor’s Socio-Economic Impact on Pakistan. Sustainability 2019, 11, 6143. [Google Scholar] [CrossRef] [Green Version]
- Ascensão, F.; Fahrig, L.; Clevenger, A.P.; Corlett, R.T.; Jaeger, J.A.G.; Laurance, W.F.; Pereira, H.M. Environmental Challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- Hughes, A.C. Understanding and Minimizing Environmental Impacts of the Belt and Road Initiative. Conserv. Biol. 2019, 33, 883–894. [Google Scholar] [CrossRef] [Green Version]
- CITIC Pacific Mining Management Pty Ltd. The Sino Iron. Available online: https://citicpacificmining.cn/our-operation/sino-iron-project/ (accessed on 29 May 2022).
- Bai, W.; Zhou, X. Why China’s Largest Overseas Mineral Project Has a Mixed Fate? Available online: http://www.23tm.com/archives/29454.html (accessed on 29 May 2022).
- Zhao, X.; Xue, C.; Chi, G.; Chu, H.; Li, Z.; Pak, N.; Wang, X.; Zhang, G.; Zu, B. Multi-Stage Gold Mineralization in the Taldybulak Levoberezhny Deposit, Tien Shan, Kyrgyzstan: Reply to Comment by Boris Trifonov on “Re–Os Pyrite and U–Pb Zircon Geochronology from the Taldybulak Levoberezhny Gold Deposit: Insight for Cambrian Metallogeny of the Kyrgyz Northern Tien Shan”. Ore Geol. Rev. 2017, 82, 217–231. [Google Scholar] [CrossRef]
- ZIJIN MINING Taldybulak Levoberezhny. Available online: https://www.zjky.cn/news/news-detail.jsp?id=118560 (accessed on 29 May 2022).
- ZIJIN MINING Taldybulak Levoberezhny. Available online: https://www.zjky.cn/news/news-detail.jsp?id=93505 (accessed on 29 May 2022).
- ZIJIN MINING Taldybulak Levoberezhny. Available online: https://www.zjky.cn/news/news-detail.jsp?id=90149 (accessed on 29 May 2022).
- United States Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 29 May 2022).
- Yu, L.; Gong, P. Google Earth as a Virtual Globe Tool for Earth Science Applications at the Global Scale: Progress and Perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the Capability of Remote Sensing and GIS Techniques for Monitoring Reclamation Success in Coal Mine Degraded Lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Landsat Normalized Difference V Egetation Index. Available online: https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index (accessed on 30 May 2022).
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, W.; Bai, Z. Vegetation Coverage Change and Stability in Large Open-Pit Coal Mine Dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Niu, Z.; Li, J.; Gao, Z.; Gong, E.; Zhang, S.; Zhang, J.; Liu, S.; Ouyang, X.; Zhang, R. Progress and Future of China’s Annual Report on Remote Sensing Monitoring of Global Ecosystem and Environment. J. Remote Sens. 2018, 22, 672–685. [Google Scholar] [CrossRef]
- National Remote Sensing Center of China. 2018 Global Ecosystems and Environment Observation Analysis Research Cooperation: Regional Ecosystem Trends along the Belt and Road; Ministry of Science and Technology of the People’s Republic of China: Beijing, China, 2019.
- Zhao, Y.; Liu, X.; Wang, S.; Ge, Y. Energy Relations between China and the Countries along the Belt and Road: An Analysis of the Distribution of Energy Resources and Interdependence Relationships. Renew. Sustain. Energy Rev. 2019, 107, 133–144. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Pu, Z. A Study of the Petroleum Trade Network of Countries along “The Belt and Road Initiative”. J. Clean. Prod. 2019, 222, 593. [Google Scholar] [CrossRef]
- Huang, Y. Environmental Risks and Opportunities for Countries along the Belt and Road: Location Choice of China’s Investment. J. Clean. Prod. 2019, 211, 14–26. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, X.; Zhang, S.; Chen, F.; Hou, H. Incorporating Ecological Vulnerability Assessment into Rehabilitation Planning for a Post-Mining Area. Environ. Earth Sci. 2017, 76, 245. [Google Scholar] [CrossRef]
- Fallis, A.G. Sustainable and Responsible Mining in Africa—A Getting Started Guide; International Finance Corporation World Bank Group: Washington, DC, USA, 2013; pp. 1689–1699. [Google Scholar]
- Matejicek, L.; Kopackova, V. Changes in Croplands as a Result of Large Scale Mining and the Associated Impact on Food Security Studied Using Time-Series Landsat Images. Remote Sens. 2010, 2, 1463–1480. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Kazak, J.; Han, Q.; de Vries, B. A Framework for Path-Dependent Industrial Land Transition Analysis Using Vector Data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
- Dávila, J.G.; Zhang, J.; Kørnøv, L. Challenges to Carry out Transboundary Environmental Assessment in ASEAN Countries. Environ. Impact Assess. Rev. 2020, 84, 106432. [Google Scholar] [CrossRef]
- Herrero, A.G.; Xu, J. China’s Belt and Road Initiative: Can Europe Expect Trade Gains? China World Econ. 2017, 25, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zhang, X.; Xu, X.; Yang, Q.; Wang, S. Does the “Belt and Road Initiative” Promote the Economic Growth of Participating Countries? Sustainability 2019, 11, 5240. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A New Source of Multi-Spectral High Spatial Resolution Night-Time Light Imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the Potential of LJ1-01 Nighttime Light Data for Modeling Socio-Economic Parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.J.; Satterfield, T. Environmental Governance: A Practical Framework to Guide Design, Evaluation, and Analysis. Conserv. Lett. 2018, 11, e12600. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ma, M.; Yang, H.; Ge, W. Modeling the Spatiotemporal Dynamics of Gross Domestic Product in China Using Extended Temporal Coverage Nighttime Light Data. Remote Sens. 2017, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Doll, C.N.H.; Muller, J.P.; Elvidge, C.D. Night-Time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. Ambio 2000, 29, 157–162. [Google Scholar] [CrossRef]
Level | Vegetation Cover | Vegetation Cover Class |
---|---|---|
I | [0–0.2] | Low vegetation cover |
II | [0.2–0.4] | Sub-Low vegetation cover |
III | [0.4–0.6] | Moderate vegetation cover |
IV | [0.6–0.8] | Sub-High vegetation cover |
V | [0.8–1.0] | High vegetation cover |
Mine Name | Year | Overall Classification Accuracy | Kappa Coefficient |
---|---|---|---|
Sino Iron | 2010 | 95.8452% | 0.9133 |
2020 | 95.5215% | 0.9049 | |
Taldybulak Levoberezhny | 2011 | 81.2932% | 0.6042 |
2020 | 89.8362% | 0.7644 |
Year | Land Use | Open-Pit | Dump | Vegetation | Auxiliary Production Land | Road | Contaminated Mine Site |
---|---|---|---|---|---|---|---|
2010 | Area (km2) | 0 | 0 | 0 | 0 | 0 | 0 |
Percentage (%) | 0 | 0 | 0 | 0 | 0 | 0 | |
2020 | Area (km2) | 15.09 | 0.83 | 0.30 | 1.49 | 2.64 | 0.23 |
Percentage (%) | 73.34 | 4.03 | 1.45 | 7.23 | 12.84 | 1.11 | |
2010–2020 | Area (km2) | 15.09 | 0.83 | 0.30 | 1.49 | 2.64 | 0.23 |
Percentage (%) | 73.34 | 4.03 | 1.45 | 7.23 | 12.84 | 1.11 |
Year | Land Use | Open-Pit | Dump | Vegetation | Auxiliary Production Land | Contaminated Mine Site | Water Conservancy Facilities | Unreclaimable Area | Road |
---|---|---|---|---|---|---|---|---|---|
2010 | Area (km2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Percentage (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2016 | Area (km2) | 0.29 | 0.41 | 0.23 | 0.42 | 0.04 | 0.34 | 0.73 | 0.33 |
Percentage (%) | 10.46 | 14.71 | 8.10 | 15.10 | 1.43 | 12.25 | 26.06 | 11.89 | |
2010–2016 | Area (km2) | 0.29 | 0.41 | 0.23 | 0.42 | 0.04 | 0.34 | 0.73 | 0.33 |
Percentage (%) | 10.46 | 14.71 | 8.10 | 15.10 | 1.43 | 12.25 | 26.06 | 11.89 |
Year | Type | Vegetation | Bare Ground | Water | Mining Land | Total |
---|---|---|---|---|---|---|
2010 | Area (km2) | 32.64 | 305.11 | 13.29 | 0 | 351.04 |
Percentage (%) | 9.25 | 86.47 | 3.77 | 0 | 99.49 | |
2020 | Area (km2) | 61.66 | 239.21 | 12.06 | 38.10 | 351.04 |
Percentage (%) | 17.48 | 67.79 | 3.42 | 10.80 | 99.49 |
Year | Type | Vegetation | Bare Ground | Mining Land | Residential Area | Total |
---|---|---|---|---|---|---|
2011 | Area (km2) | 422.55 | 63.83 | 0 | 11.74 | 498.12 |
Percentage (%) | 84.83 | 12.81 | 0.00 | 2.36 | 100.00 | |
2020 | Area (km2) | 423.02 | 59.49 | 1.39 | 14.22 | 498.12 |
Percentage (%) | 84.92 | 11.94 | 0.29 | 2.85 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Lin, W.; Wu, M.; Liu, K.; Yu, X.; Gao, J. Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny. Remote Sens. 2022, 14, 3308. https://doi.org/10.3390/rs14143308
Jiang Y, Lin W, Wu M, Liu K, Yu X, Gao J. Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny. Remote Sensing. 2022; 14(14):3308. https://doi.org/10.3390/rs14143308
Chicago/Turabian StyleJiang, Yue, Wenpeng Lin, Mingquan Wu, Ke Liu, Xumiao Yu, and Jun Gao. 2022. "Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny" Remote Sensing 14, no. 14: 3308. https://doi.org/10.3390/rs14143308
APA StyleJiang, Y., Lin, W., Wu, M., Liu, K., Yu, X., & Gao, J. (2022). Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny. Remote Sensing, 14(14), 3308. https://doi.org/10.3390/rs14143308