Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Modelling Algorithms
3.1.1. Information Value Model
3.1.2. Logistic Regression
3.1.3. Decision Tree
3.1.4. Random Forest
3.1.5. Support Vector Machine
3.1.6. Analytic Hierarchy Process
3.2. Proposed Framework for LSM
4. Data Preparation
4.1. Regional Geospatial Database
4.1.1. Landslide Inventory
4.1.2. Landslide Conditioning Factors
4.2. Geospatial Database of G69
5. Results
5.1. Regional Landslide Susceptibility Modelling
5.1.1. Factor Selection
Multicollinearity Analysis
Importance Analysis
5.1.2. Modelling
5.1.3. Accuracy Comparison
5.2. Landslide Susceptibility Modelling of G69
5.3. Fusion of Landslide Susceptibility Maps
6. Discussion
6.1. Landslide Distribution Partten
6.2. Comparison of the Final Map and the Original Map
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Ma, S.Y.; Xu, C.; Xu, X.W.; He, X.L.; Qian, H.T.; Jiao, Q.S.; Gao, W.; Yang, H.N.; Cui, Y.L.; Zhang, P.F.; et al. Characteristics and causes of the landslide on July 23, 2019 in Shuicheng, Guizhou Province, China. Landslides 2020, 17, 1441–1452. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; Feng, Z.; He, K. Characteristics and Numerical Runout Modeling Analysis of the Jiweishan Landslide, Chongqing, China. Environ. Eng. Geosci. 2018, 24, 413–423. [Google Scholar]
- Weidinger, J.T. Predesign, failure and displacement mechanisms of large rockslides in the Annapurna Himalayas, Nepal. Eng. Geol. 2006, 83, 201–216. [Google Scholar] [CrossRef]
- Khanna, K.; Martha, T.R.; Roy, P.; Kumar, K.V. Effect of time and space partitioning strategies of samples on regional landslide susceptibility modelling. Landslides 2021, 18, 2281–2294. [Google Scholar] [CrossRef]
- Corominas, J.; Westen, C.V.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bulletin of engineering geology and the environment. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar]
- Castellanos, A.; Enrique, A.; Van Westen, C.J. Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 2008, 94, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.R.; Zhang, T.H.; Guan, X.D.; Hu, X.M.; Duan, A.M.; Liu, J.C. The dominant role of snow/ice albedo feedback strengthened by black carbon in the enhanced warming over the Himalayas. J. Clim. 2019, 32, 5883–5899. [Google Scholar] [CrossRef]
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J.; et al. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V. Conditioning factors determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In Proceedings of the Earth Resources and Environmental Remote Sensin, Strasbourg, France, 10–12 September 2019. [Google Scholar]
- Sharma, L.; Patel, N.; Ghose, M.; Debnath, P. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Modell. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H. Landslide susceptibility modeling applying machine learning methods: Acase study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci. 2018, 112, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Fu, R.; Niu, R. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the three gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Hong, H. Application of Alternating Decision Tree with AdaBoost and Bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- San, B.T. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya, Turkey). Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 399–412. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.M.; Jung, H.S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Xu, J.; Wen, H.; Wang, Y. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China. J. Earth Sci. 2020, 31, 1068–1086. [Google Scholar] [CrossRef]
- Bui, D.T.; Tran, A.T.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide characterization applying Sentinel-1 images and InSAR technique: The Muyubao landslide in the three gorges reservoir area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Song, Y.H. Failure Models and Instability of Slopes with Soft and Hard Interbedded Laminated Structure in Southwest China; Chengdu University of Technology: Chengdu, China, 2011. [Google Scholar]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomat. Nat. Hazards 2017, 8, 1012–1033. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.; Lee, D. Landslide Susceptibility Mapping using Relative Frequency and Predictor Rate along Araniko Highway. J. Civ. Eng. 2019, 23, 763–776. [Google Scholar] [CrossRef]
- Keller, S.; Atzl, A. Assessment of forest road conditions in terms of landslide susceptibility: A case study in Yigilca Forest Directorate (Turkey). Turk. J. Agric. For. 2014, 38, 281–290. [Google Scholar]
- Wang, J.J.; Xiao, L.L.; Zhang, J.; Zhu, Y.B. Deformation characteristics and failure mechanisms of a rainfall-induced complex landslide in Wanzhou County, Three Gorges Reservoir, China. Landslides 2019, 17, 419–431. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Lee, S. Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar]
- Marjanovic, M.; Kovacevic, M.; Bajat, B.; Vozenilek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Du, J.; Glade, T.; Woldai, T.; Chai, B.; Zeng, B. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 2020, 270, 105572. [Google Scholar] [CrossRef]
- Huang, D.; Luo, S.; Zhong, Z.; Gu, D.; Song, Y.; Tomas, R. Analysis and modeling of the combined effects of hydrological factors on a reservoir bank slope in the Three Gorges Reservoir area, China. Eng. Geol. 2020, 279, 105858. [Google Scholar] [CrossRef]
- Li, Y.; Utili, S.; Milledge, D.; Chen, L.; Yin, K. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow-moving Liangshuijing landslide. Eng. Geol. 2020, 28, 10597. [Google Scholar] [CrossRef]
- He, K.; Li, X.; Yan, X.; Guo, D. The landslides in the Three Gorges Reservoir Region, China and the effects of water storage and rain on their stability. Environ. Geol. 2008, 55, 55–63. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Beven, K.J.; Moore, I.D. Terrain Analysis and Distributed Modelling in Hydrology; Wiley Sons: London, UK, 1993. [Google Scholar]
- Yu, L.; Cao, Y.; Zhou, C.; Wang, Y.; Huo, Z. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines: A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Appl. Sci. 2019, 9, 4756. [Google Scholar] [CrossRef] [Green Version]
- Hencher, S. Preferential flow paths through soil and rock and their association with landslides. Hydrol. Process. 2010, 24, 1610–1630. [Google Scholar] [CrossRef]
- Peng, L.; Niu, R.; Bo, H.; Wu, X.; Zhao, Y.; Ye, R. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 2014, 204, 287–301. [Google Scholar] [CrossRef]
- Bhandary, N.P.; Dahal, R.K.; Timilsina, M.; Yatabe, R. Rainfall event-based landslide susceptibility zonation mapping. Nat. Hazards. 2020, 69, 365–388. [Google Scholar] [CrossRef]
- Li, S.; Xu, Q.; Tang, M.; Iqbal, J.; Liu, J.; Zhu, X.; Liu, F.; Zhu, D. Characterizing the spatial distribution and fundamental controls of landslides in the three gorges reservoir area, China. Bull. Eng. Geol. Environ. 2019, 78, 4275–4290. [Google Scholar] [CrossRef]
- Bi, R.; Schleier, M.; Rohn, J.; Ehret, D.; Xiang, W. Landslide susceptibility analysis based on ArcGIS and Artificial Neural Network for a large catchment in Three Gorges region, China. Environ. Earth Sci. 2014, 72, 1925–1938. [Google Scholar] [CrossRef]
- Maldonado, S.; López, J. Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for svm classification. Appl. Soft. Comput. 2018, 67, 94–105. [Google Scholar] [CrossRef]
- Liu, L.; Yang, C.; Wang, X. Landslide susceptibility assessment using feature selection-based machine learning models. Geomech. Eng. 2021, 25, 1–16. [Google Scholar]
- Gong, W.; Wang, P.; Chen, L. Analysis of sensitivity factors to stability of bedding rock cutting slope. Rock Soil Mech. 2007, 28, 812–816. [Google Scholar]
- Chai, B.; Yin, K.L. Influence of intersection angle between trend of slope and strata on stability of bedding slope. Chin. J. Rock Mech. Eng. 2009, 28, 624–628. [Google Scholar]
- Cheng, Q.; Zhou, P.D.; Feng, Z.J. Research on shear creep property of typical weak intercalation in red bed soft rock. Chin. J. Rock Mech. Eng. 2009, 28, 3176. [Google Scholar]
- Li, S.L. Study on the Reactivation Characteristic and Deformation Self-Adaptive of Landslide in the Three Gorges Reservoir Area; Chengdu University of Technology: Chengdu, China, 2020. [Google Scholar]
Factors | Class | PL | PTD | PLTL | PDTD | IV | Normalised Class |
---|---|---|---|---|---|---|---|
Altitude (m) | <250 | 7427 | 24,137 | 0.64 | 0.20 | 1.15 | 0.99 |
250~425 | 3907 | 44,856 | 0.33 | 0.37 | −0.11 | 0.65 | |
425~500 | 194 | 22,932 | 0.02 | 0.19 | −2.44 | 0.01 | |
500~550 | 164 | 9773 | 0.01 | 0.08 | −1.76 | 0.19 | |
>550 | 0 | 18,344 | 0.00 | 0.15 | ∞ | 0.01 | |
Slope (°) | <6 | 1992 | 7874 | 0.17 | 0.07 | 0.95 | 0.99 |
6~15 | 5706 | 38,648 | 0.49 | 0.32 | 0.42 | 0.83 | |
15~24 | 2961 | 38,401 | 0.25 | 0.32 | −0.23 | 0.63 | |
24~36 | 938 | 24,642 | 0.08 | 0.21 | −0.94 | 0.41 | |
36~48 | 95 | 9145 | 0.01 | 0.08 | −2.24 | 0.01 | |
48~69 | 0 | 1332 | 0.00 | 0.01 | ∞ | 0.01 | |
Aspect (°) | 0~45 | 951 | 17,278 | 0.08 | 0.14 | −0.57 | 0.67 |
45~90 | 212 | 9860 | 0.02 | 0.08 | −1.51 | 0.39 | |
90~135 | 22 | 3713 | 0.00 | 0.03 | −2.80 | 0.01 | |
135~180 | 331 | 8321 | 0.03 | 0.07 | −0.89 | 0.57 | |
180~225 | 1495 | 17,495 | 0.13 | 0.15 | −0.13 | 0.8 | |
225~270 | 2145 | 18,064 | 0.18 | 0.15 | 0.19 | 0.9 | |
270~315 | 4793 | 28,871 | 0.41 | 0.24 | 0.53 | 0.99 | |
315~360 | 1743 | 16,440 | 0.15 | 0.14 | 0.08 | 0.86 | |
Curvature | −15 to −125 | 107 | 2973 | 0.01 | 0.02 | −1.00 | 0.01 |
0 to −15 | 2029 | 24,461 | 0.17 | 0.20 | −0.16 | 0.71 | |
0~5 | 8299 | 71,077 | 0.71 | 0.59 | 0.18 | 0.99 | |
5~66 | 1257 | 21,531 | 0.11 | 0.18 | −0.51 | 0.41 | |
Plan curvature | −58 to −35 | 0 | 35 | 0.00 | 0.00 | ∞ | 0.01 |
−35 to −5 | 262 | 5881 | 0.02 | 0.05 | −0.78 | 0.01 | |
−5 to 0 | 6159 | 55,862 | 0.53 | 0.47 | 0.12 | 0.99 | |
0~25 | 5271 | 58,249 | 0.45 | 0.49 | −0.07 | 0.78 | |
25~30 | 0 | 15 | 0.00 | 0.00 | ∞ | 0.01 | |
Profile curvature | −53 to −40 | 0 | 16 | 0.00 | 0.00 | ∞ | 0.01 |
−2 to −40 | 2261 | 32,064 | 0.19 | 0.27 | −0.32 | 0.07 | |
−2 to 5 | 8588 | 75,401 | 0.73 | 0.63 | 0.15 | 0.99 | |
5~30 | 843 | 12,423 | 0.07 | 0.10 | −0.36 | 0.01 | |
30~76 | 0 | 138 | 0.00 | 0.00 | ∞ | 0.01 | |
Topographic roughness index | 0~1.1 | 10,748 | 86,559 | 0.92 | 0.72 | 0.24 | 0.99 |
1.1~1.2 | 751 | 19,303 | 0.06 | 0.16 | −0.92 | 0.67 | |
1.2~1.3 | 170 | 8041 | 0.01 | 0.07 | −1.53 | 0.49 | |
>1.3 | 23 | 6139 | 0.00 | 0.05 | −3.26 | 0.01 | |
Topographic wetness index | −3.4 to −2 | 714 | 13,159 | 0.06 | 0.11 | −0.58 | 0.01 |
−2 to 1 | 1308 | 7989 | 0.11 | 0.07 | 0.52 | 0.99 | |
1~5 | 3760 | 53,213 | 0.32 | 0.44 | −0.32 | 0.24 | |
5~15 | 5910 | 45,661 | 0.51 | 0.38 | 0.28 | 0.78 | |
15~17 | 0 | 20 | 0.00 | 0.00 | ∞ | 0.01 | |
Distance to rivers (m) | 0~100 | 1119 | 16,968 | 0.10 | 0.14 | −0.39 | 0.29 |
100~250 | 5542 | 44,602 | 0.47 | 0.37 | 0.24 | 0.99 | |
250~500 | 4500 | 48,041 | 0.38 | 0.40 | −0.04 | 0.68 | |
>500 | 531 | 10,431 | 0.05 | 0.09 | −0.65 | 0.01 | |
Distance to roads (m) | 0~100 | 3919 | 38,865 | 0.34 | 0.32 | 0.03 | 0.95 |
100~250 | 5690 | 54,083 | 0.49 | 0.45 | 0.08 | 0.99 | |
250~450 | 1859 | 21,821 | 0.16 | 0.18 | −0.13 | 0.76 | |
>450 | 224 | 5273 | 0.02 | 0.04 | −0.83 | 0.01 | |
Lithology | L1 | 0 | 6666 | 0.00 | 0.06 | ∞ | 0.01 |
L2 | 2722 | 27,915 | 0.23 | 0.23 | 0.01 | 0.46 | |
L3 | 6020 | 50,556 | 0.51 | 0.42 | 0.20 | 0.60 | |
L4 | 750 | 15,173 | 0.06 | 0.13 | −0.67 | 0.01 | |
L5 | 545 | 10,365 | 0.05 | 0.09 | −0.61 | 0.04 | |
L6 | 413 | 1908 | 0.04 | 0.02 | 0.80 | 0.99 | |
L7 | 1242 | 7500 | 0.11 | 0.06 | 0.53 | 0.82 | |
Bedding structure | BS1 | 705 | 6852 | 0.06 | 0.06 | 0.06 | 0.72 |
BS2 | 5111 | 19,535 | 0.44 | 0.16 | 0.99 | 0.99 | |
BS3 | 1883 | 24,231 | 0.16 | 0.20 | −0.23 | 0.64 | |
BS4 | 1747 | 24,366 | 0.15 | 0.20 | −0.31 | 0.61 | |
BS5 | 1930 | 29,408 | 0.17 | 0.24 | −0.39 | 0.58 | |
BS6 | 268 | 10,457 | 0.02 | 0.09 | −1.33 | 0.30 | |
BS7 | 48 | 5193 | 0.00 | 0.04 | −2.35 | 0.01 |
Factor | Original Factor | New Factor | ||
---|---|---|---|---|
Tolerances | VIF | Tolerances | VIF | |
Altitude | 0.797 | 1.254 | 0.629 | 1.590 |
Slope | 0.234 | 4.271 | 0.632 | 1.583 |
Aspect | 0.909 | 1.100 | 0.824 | 1.214 |
Plan curvature | 0.873 | 1.145 | 0.731 | 1.369 |
Profile curvature | 0.643 | 1.555 | 0.647 | 1.544 |
TRI | 0.252 | 4.969 | / | / |
TWI | 0.807 | 1.240 | 0.899 | 1.112 |
Lithology | 0.918 | 1.090 | 0.951 | 1.051 |
Bedding structure | 0.748 | 1.337 | 0.639 | 1.565 |
Distance to rivers | 0.975 | 1.026 | 0.844 | 1.185 |
Distance to road | 0.944 | 1.059 | 0.879 | 1.138 |
Model | Eliminating Less Important Factors | Accuracy |
---|---|---|
Model 1 | Without eliminating any factor | 0.824 |
Model 2 | Profile curvature | 0.914 |
Model 3 | Plan curvature | 0.917 |
Model 4 | Profile curvature, plan curvature | 0.907 |
Model 5 | Curvature | 0.904 |
Model 6 | TWI, profile curvature, plan curvature, curvature | 0.901 |
Model 7 | TWI, slope, profile curvature, plan curvature, curvature | 0.901 |
Factors | Weight | Categories (Normalised Values) |
---|---|---|
Altitude (m) | 0.108 | <250(0.35), 250~425(0.3), 425~500(0.17), 500~550(0.15), >550(0.03) |
Slope (°) | 0.161 | <6(0.24), 6~15(0.32), 15~24(0.21), 24~36(0.1), 36~48(0.05), 48~69(0.05) |
Aspect (°) | 0.096 | 0~45(0.07), 45~90(0.03), 90~135(0.07), 135~180(0.11), 180~225(0.11), 225~270(0.17), 270~315(0.27), 315~360(0.17) |
Curvature | 0.021 | −125 to −15(0.21), −15 to 0(0.27), 0~5(0.31), 5~66(0.21) |
Profile curvature | 0.014 | −53 to −40(0.11), −40 to −2(0.17), −2 to 5(0.4), 5~30(0.21), 30~76(0.11) |
TWI | 0.021 | −3.4 to −2(0.07), −2 to 1(0.37), 1~5(0.25), 5~15(0.2), 15~17(0.11) |
Distance to rivers (m) | 0.156 | 0~100(0.45), 100~250(0.31), 250~500(0.15), >500(0.09) |
Distance to roads (m) | 0.041 | 0~100(0.35), 100~250(0.25), 250~450(0.22), >450(0.18) |
Lithology | 0.161 | L1(0.05), L2(0.11), L3(0.11), L4(0.05), L5(0.11), L6(0.37), L7(0.3) |
Bedding structure | 0.221 | BS1(0.2), BS2(0.32), BS3(0.15), BS4(0.11), BS5(0.07), BS6(0.11), BS7(0.05) |
Model | Parameters | Notes |
---|---|---|
LR | C = 0.3 | C is the reciprocal of regularisation strength. |
DT | max_depth = 4 | Max_depth is the maximum depth of the tree. |
RF | n_estimators = 73, max_depth = 30 | n_estimators is the number of trees in random forests, max_depth is the maximum depth of the tree. |
SVM | C = 5, gamma = 0.45 | C is the penalty term coefficient of the relaxation coefficient, and gamma is the coefficient of the kernel function. |
Factors | Weight | Categories | Normalised Values | Factors | Weight | Categories | Normalised Values |
---|---|---|---|---|---|---|---|
Slope/(°) | 0.1194 | <10 | 0.130 | Overburden thickness/(m) | 0.081 | <0.5 | 0.123 |
10~20 | 0.193 | 0.5~1 | 0.198 | ||||
20~30 | 0.252 | 1~1.5 | 0.316 | ||||
>30 | 0.425 | >1.5 | 0.363 | ||||
Rock association | 0.2287 | RA1 | 0.155 | Rock mass structure | 0.148 | Massive structure | 0.068 |
RA2 | 0.072 | Interlayer structure | 0.149 | ||||
RA3 | 0.145 | Layer structure | 0.115 | ||||
RA4 | 0.07 | Fragmented structure | 0.163 | ||||
RA5 | 0.101 | Thin layer structure | 0.145 | ||||
RA6 | 0.103 | Blocky structure | 0.079 | ||||
RA7 | 0.075 | Scattered structure | 0.281 | ||||
RA8 | 0.087 | Bedding structure | 0.2829 | BS1 | 0.086 | ||
RA9 | 0.053 | BS2 | 0.110 | ||||
Cutting height/(m) | 0.14 | 0 | 0.061 | BS3 | 0.119 | ||
0~5 | 0.104 | BS4 | 0.131 | ||||
5~10 | 0.165 | BS5 | 0.139 | ||||
10~20 | 0.251 | BS6 | 0.179 | ||||
>20 | 0.418 | BS7 | 0.234 |
Susceptibility Level | Original Map (RF) | Final Map (AHP + RF) | Variation | ||
---|---|---|---|---|---|
Pixels | Proportion | Pixels | Proportion | ||
Very low | 82, 421 | 68.66% | 82,738 | 68.92% | +0.23% |
Low | 13, 589 | 11.32% | 10,950 | 9.12% | −2.24% |
Moderate | 8, 415 | 7.01% | 8251 | 6.87% | −0.14% |
High | 5, 210 | 4.34% | 4815 | 4.01% | −0.25% |
Very high | 10, 408 | 8.67% | 13,289 | 11.07% | +2.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Zhou, C.; Wang, Y.; Cao, Y.; Peres, D.J. Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China. Remote Sens. 2022, 14, 774. https://doi.org/10.3390/rs14030774
Yu L, Zhou C, Wang Y, Cao Y, Peres DJ. Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China. Remote Sensing. 2022; 14(3):774. https://doi.org/10.3390/rs14030774
Chicago/Turabian StyleYu, Lanbing, Chao Zhou, Yang Wang, Ying Cao, and David J. Peres. 2022. "Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China" Remote Sensing 14, no. 3: 774. https://doi.org/10.3390/rs14030774
APA StyleYu, L., Zhou, C., Wang, Y., Cao, Y., & Peres, D. J. (2022). Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China. Remote Sensing, 14(3), 774. https://doi.org/10.3390/rs14030774