GNSS Aided Long-Range 3D Displacement Sensing for High-Rise Structures with Two Non-Overlapping Cameras
Abstract
:1. Introduction
2. Methodology
2.1. Three-Dimensional Displacement Sensing with Two Non-Overlapping Cameras
2.2. Determining the Yaw Angles of the Cameras with GNSS
3. Experiments and Results
3.1. Three-Dimensional Displacement Simulation
3.2. Field Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, F.; Jafari, M. Investigation approaches to quantify wind-induced load and response of tall buildings: A review. Sustain. Cities Soc. 2020, 62, 102376. [Google Scholar] [CrossRef]
- Cheng, J.F.; Luo, X.Y.; Xiang, P. Experimental study on seismic behavior of rc beams with corroded stirrups at joints under cyclic loading. J. Build. Eng. 2020, 32, 101489. [Google Scholar] [CrossRef]
- Zhang, M.; McSaveney, M.; Shao, H.; Zhang, C.Y. The 2009 jiweishan rock avalanche, wulong, china: Precursor conditions and factors leading to failure. Eng. Geol. 2018, 233, 225–230. [Google Scholar] [CrossRef]
- Li, F.; Zou, L.H.; Song, J.; Liang, S.G.; Chen, Y. Investigation of the spatial coherence function of wind loads on lattice frame structures. J. Wind. Eng. Ind. Aerodyn. 2021, 215, 104675. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; Wang, T.; Bao, E. Study on shear force distribution in structural design of brbf structure with high β value. Eng. Struct. 2019, 193, 82–90. [Google Scholar] [CrossRef]
- Su, J.Z.; Xia, Y.; Weng, S. Review on field monitoring of high-rise structures. Struct. Control Health Monit. 2020, 27, e2629. [Google Scholar] [CrossRef]
- Moreno-Gomez, A.; Perez-Ramirez, C.A.; Dominguez-Gonzalez, A.; Valtierra-Rodriguez, M.; Chavez-Alegria, O.; Amezquita-Sanchez, J.P. Sensors used in structural health monitoring. Arch. Comput. Methods Eng. 2018, 25, 901–918. [Google Scholar] [CrossRef]
- Sekiya, H.; Kimura, K.; Miki, C. Technique for determining bridge displacement response using mems accelerometers. Sensors 2016, 16, 257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, X.; Xie, Z.; Shi, B.; Zhang, L.; Wang, R. Field measurement study on time-varying characteristics of modal parameters of super high-rise buildings during super typhoon. J. Wind Eng. Ind. Aerodyn. 2020, 200, 104139. [Google Scholar] [CrossRef]
- Zheng, W.; Dan, D.; Cheng, W.; Xia, Y. Real-time dynamic displacement monitoring with double integration of acceleration based on recursive least squares method. Measurement 2019, 141, 460–471. [Google Scholar] [CrossRef]
- Yu, J.; Meng, X.; Yan, B.; Xu, B.; Fan, Q.; Xie, Y. Global navigation satellite system-based positioning technology for structural health monitoring: A review. Struct. Control Health Monit. 2020, 27, e2467. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Olmo, N.; Jimenez-Martinez, M.J.; Farjas-Abadia, M. Real-time high-rise building monitoring system using global navigation satellite system technology. Measurement 2018, 123, 115–124. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, I.S.; Park, J.H.; Kim, Y.; Sohn, H.G.; Park, H.S. Evaluation of stiffness changes in a high-rise building by measurements of lateral displacements using gps technology. Sensors 2013, 13, 15489–15503. [Google Scholar] [CrossRef]
- Liao, M.; Liu, J.; Meng, Z.; You, Z. A sins/sar/gps fusion positioning system based on sensor credibility evaluations. Remote Sens. 2021, 13, 4463. [Google Scholar] [CrossRef]
- Hu, W.-H.; Xu, Z.-M.; Liu, M.-Y.; Tang, D.-H.; Lu, W.; Li, Z.-H.; Teng, J.; Han, X.-H.; Said, S.; Rohrmann, R.G. Estimation of the lateral dynamic displacement of high-rise buildings under wind load based on fusion of a remote sensing vibrometer and an inclinometer. Remote Sens. 2020, 12, 1120. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Li, H.; Tian, W.; Zhou, C. Pzt based piezoelectric sensor for structural monitoring. J. Electron. Mater. 2019, 48, 2916–2923. [Google Scholar] [CrossRef]
- Rao, R.K.; Sasmal, S. Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures. Sens. Actuators A-Phys. 2020, 311, 112088. [Google Scholar] [CrossRef]
- Qiu, Z.; Jiao, M.; Jiang, T.; Zhou, L. Dam structure deformation monitoring by gb-insar approach. IEEE Access 2020, 8, 123287–123296. [Google Scholar] [CrossRef]
- Hu, J.; Guo, J.; Xu, Y.; Zhou, L.; Zhang, S.; Fan, K. Differential ground-based radar interferometry for slope and civil structures monitoring: Two case studies of landslide and bridge. Remote Sens. 2019, 11, 2887. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, W.; Liu, G.; Yan, R.; Xu, H.; Qi, Y. A noncontact fmcw radar sensor for displacement measurement in structural health monitoring. Sensors 2015, 15, 7412–7433. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Aguilera, D.; Gomez-Lahoz, J.; Sanchez, J. A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors 2008, 8, 5866–5883. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Feng, M.Q.; Wu, Z.Y. Robust vision sensor for multi-point displacement monitoring of bridges in the field. Eng. Struct. 2018, 163, 255–266. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A review of computer vision-based structural health monitoring at local and global levels. Struct. Health Monit.-Int. J. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Zona, A. Vision-based vibration monitoring of structures and infrastructures: An overview of recent applications. Infrastructures 2021, 6, 4. [Google Scholar] [CrossRef]
- Kim, D.-H.; Gratchev, I. Application of optical flow technique and photogrammetry for rockfall dynamics: A case study on a field test. Remote Sens. 2021, 13, 4124. [Google Scholar] [CrossRef]
- Sanchez-Aparicio, L.J.; Herrero-Huerta, M.; Esposito, R.; Schipper, H.R.; Gonzalez-Aguilera, D. Photogrammetric solution for analysis of out-of-plane movements of a masonry structure in a large-scale laboratory experiment. Remote Sens. 2019, 11, 1871. [Google Scholar] [CrossRef] [Green Version]
- Shan, B.; Wang, L.; Huo, X.; Yuan, W.; Xue, Z. A bridge deflection monitoring system based on ccd. Adv. Mater. Sci. Eng. 2016, 2016, 4857373. [Google Scholar] [CrossRef] [Green Version]
- Jo, B.-W.; Lee, Y.-S.; Jo, J.H.; Khan, R.M.A. Computer vision-based bridge displacement measurements using rotation-invariant image processing technique. Sustainability 2018, 10, 1785. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Pan, J.; Lu, L.; Dai, M.; He, X.; Zhang, D. Refractive three-dimensional reconstruction for underwater stereo digital image correlation. Opt. Express 2021, 29, 12131–12144. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.Q.; Li, X.D.; Zou, Y.; Zhang, D.S. Development of monocular video deflectometer based on inclination sensors. Smart Struct. Syst. 2019, 24, 607–616. [Google Scholar]
- Fioriti, V.; Roselli, I.; Tati, A.; Romano, R.; De Canio, G. Motion magnification analysis for structural monitoring of ancient constructions. Measurement 2018, 129, 375–380. [Google Scholar] [CrossRef]
- Park, J.-W.; Lee, J.-J.; Jung, H.-J.; Myung, H. Vision-based displacement measurement method for high-rise building structures using partitioning approach. Ndt E Int. 2010, 43, 642–647. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, Y.; Fujita, K.; Takewaki, I. Vision-based building seismic displacement measurement by stratification of projective rectification using lines. Sensors 2020, 20, 5775. [Google Scholar] [CrossRef]
- Ye, X.-W.; Jin, T.; Ang, P.-P.; Bian, X.-C.; Chen, Y.-M. Computer vision-based monitoring of the 3-d structural deformation of an ancient structure induced by shield tunneling construction. Struct. Control Health Monit. 2021, 28, e2702. [Google Scholar] [CrossRef]
- Chen, X.; Achilli, V.; Fabris, M.; Menin, A.; Monego, M.; Tessari, G.; Floris, M. Combining sentinel-1 interferometry and ground-based geomatics techniques for monitoring buildings affected by mass movements. Remote Sens. 2021, 13, 452. [Google Scholar] [CrossRef]
- Schreier, H.; Orteu, J.-J.; Sutton, M.A. Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Su, Z.L.; Lu, L.; He, X.Y.; Yang, F.J.; Zhang, D.S. Recursive-iterative digital image correlation based on salient features. Opt. Eng. 2020, 59, 034111. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, X.L.; Zhu, P.A.; Hu, C.S. A Simple algorithm for distance and Azimuth of missile-to-target based on longitude and latitude. Ordnance Ind. Autom 2019, 38, 7–9. (In Chinese) [Google Scholar]
The Position of the Point C | Condition | Yaw Angle θ (North by East) |
---|---|---|
Quadrant 1 | BT > BC, LT < LC | ∠C |
Quadrant 2 | BT > BC, LT < LC | 360° + ∠C |
Quadrant 3 | BT < BC, LT < LC | 180° − ∠C |
Quadrant 4 | BT < BC, LT > LC | 180° − ∠C |
Positive half axis of latitude | BT > BC, LT = LC | 0 |
Positive half axis of longitude | BT = BC, LT > LC | 90° |
Negative half axis of latitude | BT < BC, LT = LC | 180° |
Negative half axis of longitude | BT = BC, LT < LC | 270° |
Location | Latitude and Longitude | Vertical Distance | Yaw Angle (North by East) |
---|---|---|---|
C1 | 31.31682517° N, 121.39229572° E | 13.63 m | 24.17° |
T1 | 31.31704024° N, 121.39240870° E | ||
C2 | 31.31703598° N, 121.39262626° E | 14.05 m | 271.75° |
T2 | 31.31704165°N, 121.39240998°E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Yu, Z.; Xu, Y.; Ding, L.; Ding, H.; Yu, Q.; Su, Z. GNSS Aided Long-Range 3D Displacement Sensing for High-Rise Structures with Two Non-Overlapping Cameras. Remote Sens. 2022, 14, 379. https://doi.org/10.3390/rs14020379
Zhang D, Yu Z, Xu Y, Ding L, Ding H, Yu Q, Su Z. GNSS Aided Long-Range 3D Displacement Sensing for High-Rise Structures with Two Non-Overlapping Cameras. Remote Sensing. 2022; 14(2):379. https://doi.org/10.3390/rs14020379
Chicago/Turabian StyleZhang, Dongsheng, Zhenyang Yu, Yan Xu, Li Ding, Hu Ding, Qifeng Yu, and Zhilong Su. 2022. "GNSS Aided Long-Range 3D Displacement Sensing for High-Rise Structures with Two Non-Overlapping Cameras" Remote Sensing 14, no. 2: 379. https://doi.org/10.3390/rs14020379