Node-Based Optimization of GNSS Tomography with a Minimum Bounding Box Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Observations Used in the Tomographic Model
2.2. Classical Tomographic Model
3. New Node-Based Tomographic Approach
3.1. Determination of a Tomographic Region
3.1.1. Convex Hull of the Pierce Points
3.1.2. Minimum Bounding Box Algorithm
3.2. Determination of the Position and Density of Nodes
3.3. Construction and Solution of Tomographic Equations
4. Test Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Rohm, W.; Zhang, K.; Bosy, J. Limited constraint, robust Kalman filtering for GNSS troposphere tomography. Atmos. Meas. Tech. 2014, 7, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J. Geod. 2014, 88, 691–703. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, S.B.; Wu, S.Q.; Wang, X.M.; Zhang, K.F. Adaptive Node Parameterization for Dynamic Determination of Boundaries and Nodes of GNSS Tomographic Models. J. Geophys. Res. Atmos. 2018, 123, 1990–2003. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Xia, P. An optimal tropospheric tomography approach with the support of an auxiliary area. Ann. Geophys. 2018, 36, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhang, K.; Yao, Y.; Li, X. A new troposphere tomography algorithm with a truncation factor model (TFM) for GNSS networks. GPS Solut. 2019, 23, 64. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, W.; Yao, Y.; Li, X. An improved GNSS tropospheric tomography method with the GPT2w model. GPS Solut. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Ding, N.; Ma, P. An improved tropospheric tomography method based on the dynamic node parametrized algorithm. Acta Geodyn. Geomater. 2020, 17, 191–206. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Ding, N.; Zhao, Q. A Tropospheric Tomography Method with a Novel Height Factor Model Including Two Parts: Isotropic and Anisotropic Height Factors. Remote Sens. 2020, 12, 1848. [Google Scholar] [CrossRef]
- Hirahara, K. Local GPS tropospheric tomography. Earth Planets Space 2000, 52, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Seko, H.; Shimada, S.; Nakamura, H.; Kato, T. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front. Earth Planets Space 2000, 52, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Champollion, C.; Masson, F.; Bouin, M.N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Tröller, M.; Geiger, A.; Brockmann, E.; Kahle, H.-G. Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks. Geophys. J. Int. 2006, 167, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Notarpietro, R.; Gabella, M.; Perona, G. Tomographic reconstruction of neutral atmospheres using Slant and Horizontal Wet Delays achievable through the processing of signals observed from small GPS networks. Ital. J. Remote Sens. 2008, 40, 63–74. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. Local tomography troposphere model over mountains area. Atmos. Res. 2009, 93, 777–783. [Google Scholar] [CrossRef]
- Perler, D. Water Vapor Tomography Using Global Navigation Satellite Systems. Doctoral Dissertation, ETH Zurich, Zurich, Switzerland, 2011. [Google Scholar] [CrossRef]
- Xia, P.; Cai, C.; Liu, Z. GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles. Ann. Geophys. 2013, 31, 1805–1815. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Xia, P.; Cai, C. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann. Geophys. 2016, 34, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Zhang, S.; Zhang, Q. New parameterized model for GPS water vapor tomography. Ann. Geophys. 2017, 35, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xin, L.; Zhao, Q. A new tropospheric tomography model combining the pixel-based and function-based models. Angeo 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Shoji, Y.; Nakamura, H.; Iwabuchi, T.; Aonashi, K.; Seko, H.; Mishima, K.; Itagaki, A.; Ichikawa, R.; Ohtani, R. Tsukuba GPS Dense Net Campaign Observation: Improvement in GPS Analysis of Slant Path Delay by Stacking One-way Postfit Phase Residuals. J. Meteorol. Soc. Jpn. 2004, 82, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Gradinarsky, L.P.; Jarlemark, P. Ground-Based GPS Tomography of Water Vapor: Analysis of Simulated and Real Data. J. Meteorol. Soc. Jpn. 2004, 82, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Zhu, W.; Ding, J.; Peng, J. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field. Chin. Sci. Bull. 2006, 51, 607–614. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. The verification of GNSS tropospheric tomography model in a mountainous area. Adv. Space Res. 2011, 47, 1721–1730. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorological data: Long-term experiment in Hong Kong. Ann. Geophys. 2014, 32, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Freeman, H.; Shapira, R. Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 1975, 18, 409–413. [Google Scholar] [CrossRef]
- Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]
- Bender, M.; Dick, G.; Ge, M.; Deng, Z.; Wickert, J.; Kahle, H.-G.; Raabe, A.; Tetzlaff, G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, 47, 1704–1720. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Zhang, S.; Wu, S.; Wang, X.; Kealy, A.; Zhang, K. A new approach for GNSS tomography from a few GNSS stations. Atmos. Meas. Tech. 2018, 11, 3511–3522. [Google Scholar] [CrossRef] [Green Version]
Paper | Flores et al. [1] | Hirahara [10] | Seko et al. [11] | Champollion et al. [12] |
---|---|---|---|---|
Tomographic region (km3) | 20 × 20 × 15 | 27 × 23 × 10 | 30 × 30 × 9 | 20 × 20 × 10 |
Paper | Troller et al. [13] | Notarpietro et al. [14] | Rohm et al. [15] | Perler [16] |
Tomographic region (km3) | 300 × 150 × 15 | 30 × 20 × 10 | 50 × 40 × 10 | 266 × 166 × 15 |
Paper | Xia et al. [17]; Ye et al. [18]; Ding et al. [19]; Yao [20] | |||
Tomographic region (km3) | The Hong Kong Satellite Positioning Reference Station Network (SatRef) roughly covers an area of 75 × 60 × 10 |
Height (m) | Below 2400 | 2800–4500 | 5000–5500 | 6500–8500 | 11000 |
---|---|---|---|---|---|
and (m) | 7000 | 8000 | 9000 | 9800 | 15000 |
Statistics | RMSE (g/m3) | Bias (g/m3) | PCC (%) | |
---|---|---|---|---|
Approach | ||||
CNT | 1.11 | −0.145 | 96.4 | |
NNT | 0.981 | −0.061 | 98.7 | |
Improvement (%) | 11.6 | 57.9 | 2.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Yan, X.; Zhang, S.; Wu, S.; Wang, X.; Zhang, Y.; Wang, Y.; Liu, X.; Zhang, W.; Holden, L.; et al. Node-Based Optimization of GNSS Tomography with a Minimum Bounding Box Algorithm. Remote Sens. 2020, 12, 2744. https://doi.org/10.3390/rs12172744
Ding N, Yan X, Zhang S, Wu S, Wang X, Zhang Y, Wang Y, Liu X, Zhang W, Holden L, et al. Node-Based Optimization of GNSS Tomography with a Minimum Bounding Box Algorithm. Remote Sensing. 2020; 12(17):2744. https://doi.org/10.3390/rs12172744
Chicago/Turabian StyleDing, Nan, Xiangrong Yan, Shubi Zhang, Suqin Wu, Xiaoming Wang, Yu Zhang, Yuchen Wang, Xin Liu, Wenyuan Zhang, Lucas Holden, and et al. 2020. "Node-Based Optimization of GNSS Tomography with a Minimum Bounding Box Algorithm" Remote Sensing 12, no. 17: 2744. https://doi.org/10.3390/rs12172744
APA StyleDing, N., Yan, X., Zhang, S., Wu, S., Wang, X., Zhang, Y., Wang, Y., Liu, X., Zhang, W., Holden, L., & Zhang, K. (2020). Node-Based Optimization of GNSS Tomography with a Minimum Bounding Box Algorithm. Remote Sensing, 12(17), 2744. https://doi.org/10.3390/rs12172744