The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Schematic Diagram of Concept and Mechanism and the Research Framework
2.3. Data Sources and Metrics
2.3.1. Air Pollution
2.3.2. Urban Form Indicators
2.3.3. Control Variables
2.4. Statistical Methods
2.4.1. Econometric Models
2.4.2. Subsample Modeling for City in the Context of Various Natural and Social Conditions
2.4.3. Linear Regression Model with Multiplicative Interaction
3. Results
3.1. Change Trends in Air Pollution Level and Urban Form Indicators
3.2. Panel Data Model Estimations
3.3. The Relationships between Air Pollution and Urban Form Factors in Cities with Different Conditions
3.4. The Internal Interactions of Urban Form Factors
4. Discussion
4.1. The Influence of Urban Form on Air Pollution
4.2. The Influences of Natural Conditions and Urban Characteristics and Their Implications for Urban Planning
4.3. Implications of Interactions among Urban Form Indicators for Urban Planning
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Model of PM2.5 | Model of NO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area Size | Elevation | Road Density | Area Size | Elevation | Road Density | |||||||
Small | Medium/Large | Low | Medium/High | Low | High | Small | Medium/Large | Low | Medium/High | Low | High | |
ln(NLI) | 0.268 *** | 0.556 * | 0.245 *** | 0.165 | 0.325 *** | 0.187 *** | 0.440 *** | 0.968 | 0.551 *** | −0.0936 | 0.496 *** | 0.326 *** |
(9.47) | (2.36) | (9.56) | (1.76) | (8.63) | (4.95) | (8.03) | (1.73) | (9.23) | (-0.67) | (6.99) | (4.26) | |
ln(POPDEN) | 0.932 *** | 0.451 * | 1.032 *** | 6.921 *** | 1.301 *** | 0.673 *** | 2.522 *** | 0.651 | 2.260 *** | 10.90 *** | 4.306 *** | 1.186 *** |
(7.58) | (2.14) | (10.98) | (3.83) | (6.76) | (5.29) | (10.58) | (1.30) | (10.32) | (4.02) | (11.90) | (4.60) | |
ln(AI) | 5.031 ** | 6.050 | 2.872 | 5.243 | 5.643 * | 4.344 * | 10.56 ** | −4.887 | 8.875 * | 12.72 | 7.047 | 12.41 ** |
(3.03) | (0.95) | (1.93) | (0.91) | (2.53) | (2.01) | (3.27) | (−0.32) | (2.56) | (1.47) | (1.68) | (2.83) | |
ln(FRAC) | 1.842 *** | 3.607 | 1.222 ** | 3.511 | 1.914 ** | 1.419 * | 5.352 *** | 7.690 | 5.151 *** | 1.264 | 3.906 ** | 4.869 *** |
(3.51) | (1.84) | (2.73) | (1.62) | (2.77) | (2.06) | (5.25) | (1.65) | (4.94) | (0.39) | (3.01) | (3.48) | |
ln(AREA) | 0.149 *** | 0.644 ** | 0.0981 ** | 0.188 | 0.0740 | 0.245 *** | 0.642 *** | 2.031 *** | 0.533 *** | 0.705 * | 0.310 *** | 0.981 *** |
(3.43) | (3.37) | (2.91) | (0.95) | (1.52) | (4.09) | (7.61) | (4.47) | (6.78) | (2.38) | (3.39) | (8.05) | |
ln(WIND) | −0.0943 * | −0.0271 | −0.112 ** | 0.162 | −0.137 * | −0.00764 | −0.308 *** | −0.313 | −0.298 *** | −0.433 | −0.368 *** | −0.170 |
(−2.16) | (−0.28) | (−3.10) | (0.80) | (−2.50) | (-0.13) | (−3.64) | (−1.34) | (-3.54) | (-1.43) | (−3.59) | (−1.47) | |
ln(PREC) | 0.0915 ** | 0.0421 | 0.0588 * | −0.272 * | 0.0868 * | 0.0758 | −0.0501 | −0.324 | −0.0942 | −0.127 | −0.0802 | −0.109 |
(2.81) | (0.50) | (2.07) | (−2.09) | (2.09) | (1.74) | (−0.79) | (−1.63) | (−1.42) | (−0.65) | (−1.03) | (−1.23) | |
ln(NDVI) | 0.0450 | 0.0124 | 0.0151 | 0.310 | 0.0196 | 0.117 | −0.184 | 0.192 | −0.266 * | 0.142 | −0.255 * | −0.00773 |
(0.85) | (0.09) | (0.34) | (1.71) | (0.31) | (1.51) | (−1.79) | (0.58) | (−2.54) | (0.52) | (−2.16) | (−0.05) | |
Cons. | −28.18 *** | −33.87 | −18.58 ** | −71.02 * | −33.81 ** | −23.50 * | −67.62 *** | 3.172 | −58.63 *** | −129.3 ** | −63.67 ** | −68.26 *** |
(−3.72) | (−1.19) | (−2.76) | (−2.41) | (−3.31) | (−2.40) | (−4.60) | (0.05) | (−3.73) | (−2.93) | (−3.31) | (−3.44) | |
N | 546 | 54 | 516 | 84 | 328 | 272 | 546 | 54 | 516 | 84 | 328 | 272 |
R2 | 0.623 | 0.854 | 0.660 | 0.783 | 0.654 | 0.647 | 0.714 | 0.831 | 0.709 | 0.753 | 0.751 | 0.713 |
References
- Friedrich, M. WHO’s Top Health Threats for 2019. JAMA 2019, 321, 1041. [Google Scholar] [CrossRef] [PubMed]
- Nations, U. 2018 Revision of World Urbanization Prospects; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Marquez, L.; Smith, N.C. A framework for linking urban form and air quality. Environ. Model. Softw. 1999, 14, 541–548. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar]
- Stone, B., Jr. Urban sprawl and air quality in large US cities. J. Environ. Manag. 2008, 86, 688–698. [Google Scholar] [CrossRef]
- Ahlfeldt, G.; Pietrostefani, E. The Effects of Compact Urban Form: A Qualitative and Quantitative Evidence Review; The Coalition for Urban Transitions: Washington, DC, USA; London, UK, 2017. [Google Scholar]
- Mccarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air quality and urban form in US urban areas: Evidence from regulatory monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Effects of income and urban form on urban NO2: Global evidence from satellites. Environ. Sci. Technol. 2011, 45, 4914–4919. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Does urban form affect urban NO2? Satellite-based evidence for more than 1200 cities. Environ. Sci. Technol. 2017, 51, 12707–12716. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Y.; Huang, Y.; Hong, S.; Huang, L. Exploring the association between urban form and air quality in China. J. Plan. Educ. Res. 2017, 38, 413–426. [Google Scholar] [CrossRef]
- Burton, E. The compact city: Just or just compact? A preliminary analysis. Urban Stud. 2000, 37, 1969–2006. [Google Scholar] [CrossRef]
- Neuman, M. The compact city fallacy. J. Plan. Educ. Res. 2005, 25, 11–26. [Google Scholar] [CrossRef]
- Bennett, M.; Saab, A. Modelling of the urban heat island and of its interaction with pollutant dispersal. Atmos. Environ. 1982, 16, 1797–1822. [Google Scholar] [CrossRef]
- Eliasson, I.; Holmer, B. Urban Heat Island Circulation in Göteborg, Sweden. Theor. Appl. Clim. 1990, 42, 187–196. [Google Scholar] [CrossRef]
- Vukovich, F.M.; King, W.J.; Dunn, J.W.; Word, J.J.B. Observations and Simulations of the Diurnal Variation of the Urban Heat Island Circulation and Associated Variations of the Ozone Distribution: A Case Study. J. Appl. Meteorol. 2010, 18, 836–854. [Google Scholar] [CrossRef]
- Cairnes and Lorraine. The Compact City: A Sustainable Urban Form. Urban Des. Int. 1996, 1, 293–294. [Google Scholar] [CrossRef]
- Rydin, Y. Environmental dimensions of residential development and the implications for local planning practice. J. Environ. Plan. Manag. 1992, 35, 43–61. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Wooldridge, J. Introductory Econometrics: A Modern Approach; Thomson/South-Western: Mason, OH, USA, 2006. [Google Scholar]
- Brambor, T.; Clark, W.R.; Golder, M. Understanding interaction models: Improving empirical analyses. Political Anal. 2006, 14, 63–82. [Google Scholar] [CrossRef] [Green Version]
- Braumoeller, B.F. Hypothesis testing and multiplicative interaction terms. Int. Organ. 2004, 58, 807–820. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Zhu, L.; Gan, Q.; Liu, Y.; Yan, Z. The impact of foreign direct investment on SO2 emissions in the Beijing-Tianjin-Hebei region: A spatial econometric analysis. J. Clean. Prod. 2017, 166, 189–196. [Google Scholar] [CrossRef]
- Gong, Y.; Li, J.; Li, Y. Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990–2015. Socio-Econ. Plan. Sci. 2019, 100720. [Google Scholar] [CrossRef]
- He, H.S.; Dezonia, B.E.; Mladenoff, D.J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; Mandelbrot, B.B., Ed.; WH Freeman & Co.: San Francisco, CA, USA, 1979. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983; Volume 173. [Google Scholar]
- Milne, B.T. Lessons from applying fractal models to landscape patterns. Ecol. Stud. 1991, 82, 199–235. [Google Scholar]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998–2016; NASA Socioeconomic Data and Applications Center (SEDAC): New York, NY, USA, 2018.
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; LevyiD, R.; Lyapustin, A.; Sayer, A.M.; Winker, D. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Geddes, J.; Martin, R.V.; Boys, B.L.; Van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 2016, 124, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Pandey, B.; Seto, K.C. A Robust Method to Generate a Consistent Time Series from DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Space Phys. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Al-mulali, U. Factors affecting CO2 emission in the Middle East: A panel data analysis. Energy 2012, 44, 564–569. [Google Scholar] [CrossRef]
- Du, L.; Wei, C.; Cai, S. Economic development and carbon dioxide emissions in China: Provincial panel data analysis. China Econ. Rev. 2012, 23, 371–384. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Shi, K.; Wang, H.; Yang, Q.; Wang, L.; Sun, X.; Li, Y. Exploring the relationships between urban forms and fine particulate (PM2.5) concentration in China: A multi-perspective study. J. Clean. Prod. 2019, 231, 990–1004. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, B.; Dhakal, S.; Pei, S.; Liu, C.; Shi, X.; Hu, F. CO2 emission data for Chinese cities. Resour. Conserv. Recycl. 2017, 126, 198–208. [Google Scholar] [CrossRef]
- Giussani, D.A.; Phillips, P.S.; Anstee, S.; Barker, D.J.P. Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth. Pediatr. Res. 2001, 49, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Hainmueller, J.; Mummolo, J.; Xu, Y. How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice. Political Anal. 2019, 27, 163–192. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hainmueller, J.; Mummolo, J.; Liu, L. INTERFLEX: Stata Module to Estimate Multiplicative Interaction Models with Diagnostics and Visualization; Statistical Software Components: Boston, MA, USA, 2017. [Google Scholar]
- Zhai, Q.; Guo, Z.; Li, Y.; Li, R. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 95–102. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Yu, D. Disentangling the complex effects of socioeconomic, climatic, and urban form factors on air pollution: A case study of China. Sustainability 2018, 10, 776. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, J.; Yu, D.; Ma, Q. The relationship between urban form and air pollution depends on seasonality and city size. Environ. Sci. Pollut. Res. 2018, 25, 15554–15567. [Google Scholar] [CrossRef] [PubMed]
- She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Jia, W.; Zhou, T.; Han, J.; Xiang, W. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Bereitschaft, B.; Debbage, K. Urban form, air pollution, and CO2 emissions in large US metropolitan areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, H.; Duan, X.; Zhao, J.; Su, B. Quantitative association analysis between PM2.5 concentration and factors on industry, energy, agriculture, and transportation. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Larkin, A.; Van Donkelaar, A.; Geddes, J.; Martin, R.V.; Hystad, P. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 50, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.Y.; Zhao, C.S.; Ran, L.; Deng, Z.Z.; Liu, P.F.; Ma, N.; Lin, W.L.; Xu, X.B.; Yan, P.; He, X.; et al. Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North China Plain. Atmos. Chem. Phys. 2011, 11, 4353–4369. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Khan, A.Q. Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries. Renew. Sustain. Energy Rev. 2016, 63, 556–567. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J.; Li, S. The relationship between urban form and heat island intensity along the urban development gradients. Sci. Total. Environ. 2020, 708, 135011. [Google Scholar] [CrossRef] [PubMed]
- Avner, P.; Rentschler, J.; Hallegatte, S. Carbon Price Efficiency: Lock-in and Path Dependence in Urban Forms and Transport Infrastructure; No.6941; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Ürge-Vorsatz, D.; Rosenzweig, C.; Dawson, R.; Rodriguez, R.S.; Bai, X.; Barau, A.S.; Seto, K.C.; Dhakal, S. Locking in positive climate responses in cities. Nat. Clim. Chang. 2018, 8, 174–177. [Google Scholar] [CrossRef] [Green Version]
Indicator | Full Name | Description |
---|---|---|
AREA | Urban Area Size | AREA indicates the area of urban expansion. |
FRAC | Fractal Dimension Index | FRAC helps to quantify the degree of complexity of the planar shapes. |
AI | Aggregation Index | AI increases as the focal patch type is increasingly aggregated and equals 100 when the patch type is maximally aggregated into a single, compact patch. |
POPDEN | Population Density | POPDEN is the number of people living in each unit of area. |
NLI | Nighttime Light Intensity | NLI shows the lights generated from electricity. Areas of high economic prosperity are generally the areas that are well illuminated. |
Fitness (FE) | F Test | Hausman Test | ||||
---|---|---|---|---|---|---|
R2 | Adj R2 | F Value | p Value | Chi-Squared | p Value | |
PM2.5 | 0.6338 | 0.5037 | 37.37 | <0.001 | 22.38 | <0.01 |
NO2 | 0.6919 | 0.5824 | 19.69 | <0.001 | 24.32 | <0.01 |
PM2.5 | NO2 | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | Statistic | p | Estimate | Std. Error | Statistic | p | |
ln(NLI) | 0.27 | 0.03 | 10.38 | 0.000 | 0.47 | 0.05 | 8.76 | 0.000 |
ln(POPDEN) | 0.90 | 0.10 | 8.65 | 0.000 | 2.19 | 0.21 | 10.38 | 0.000 |
ln(AI) | 5.06 | 1.57 | 3.21 | 0.001 | 9.69 | 3.18 | 3.04 | 0.002 |
ln(FRAC) | 1.85 | 0.49 | 3.77 | 0.000 | 5.17 | 0.99 | 5.21 | 0.000 |
ln(AREA) | 0.13 | 0.04 | 3.57 | 0.000 | 0.59 | 0.08 | 7.78 | 0.000 |
ln(WIND) | −0.07 | 0.04 | −1.72 | 0.086 | −0.25 | 0.08 | −3.07 | 0.003 |
ln(PREC) | 0.09 | 0.03 | 2.91 | 0.004 | −0.07 | 0.06 | −1.21 | 0.292 |
ln(NDVI) | 0.04 | 0.05 | 0.74 | 0.457 | −0.24 | 0.10 | −2.41 | 0.018 |
PM2.5 | NO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FE Panel Model | Pooled Sectional Linear Model | FE Panel Model | Pooled Sectional Linear Model | |||||||||
Model_A1 | Model_A2 | Model_A3 | Model_B1 | Model_B2 | Model_B3 | Model_C1 | Model_C2 | Model_C3 | Model_D1 | Model_D2 | Model_D3 | |
ln(NLI) | 0.754 *** | 0.257 *** | 0.262 *** | 2.212 *** | 0.166 ** | 0.175 ** | 0.179 | 0.429 *** | 0.435 *** | 2.915 *** | 0.171 * | 0.165 |
ln(POPDEN) | 2.087 *** | 14.03 * | 1.429 *** | 2.639 *** | 81.74 *** | 0.189 | 2.487 *** | 22.76 | 2.734 *** | 3.580 *** | 119.6 *** | 0.520 ** |
ln(AI) | 3.994 ** | 23.09 * | 4.319 ** | 14.07 *** | 134.5 *** | 15.46 *** | 8.426 ** | 37.96 | 8.072 ** | 8.815 | 184.9 *** | 12.35 * |
ln(FRAC) | 1.502 *** | 1.444 ** | 2.948 | 0.941 | 0.534 | 5.659 | 4.804 *** | 4.709 *** | -0.369 | 2.057 | 1.442 | 21.50 * |
ln(AREA) | 0.0971 ** | 0.0972 ** | 0.101 ** | 0.262 *** | 0.234 *** | 0.141 * | 0.496 *** | 0.485 *** | 0.500 *** | 0.460 *** | 0.435 *** | 0.317 ** |
ln(WIND) | 0.731 *** | 0.711 *** | 0.717 *** | −0.243 | −0.417 *** | −0.387 ** | 1.026 *** | 1.022 *** | 1.038 *** | 0.122 | −0.114 | −0.0445 |
ln(PREC) | 0.0268 *** | 0.0263 *** | 0.0269 *** | 0.00275 | 0.00208 | 0.00184 | 0.0436 *** | 0.0431 *** | 0.0428 *** | −0.0673 ** | −0.0682 ** | −0.0671 ** |
ln(NDVI) | 0.0460 | 0.0509 | 0.0460 | 0.840 *** | 0.925 *** | 0.982 *** | −0.343 *** | −0.339 *** | −0.337 *** | 0.890 *** | 0.995 *** | 1.041 *** |
ln(POPDEN) × ln(NLI) | −0.0754 ** | −0.312*** | 0.0395 | −0.418 *** | ||||||||
ln(POPDEN) × ln(AI) | −2.747 * | −17.80 *** | −4.330 | −26.05 *** | ||||||||
ln(POPDEN) × ln(FRAC) | −0.204 | −0.625 | 0.731 | −2.638 * | ||||||||
Cons. | −33.93 *** | −117.1 ** | −31.08 *** | −86.00 *** | −621.8 *** | −77.11 *** | −59.98 *** | −198.1 * | −60.01 *** | −71.90 *** | −857.2 *** | −68.90 ** |
R2 | 0.6969 | 0.6939 | 0.6914 | 0.4225 | 0.443 | 0.3841 | 0.7192 | 0.7202 | 0.7192 | 0.3512 | 0.3775 | 0.3238 |
R2(without interation item) | 0.6338 | 0.6338 | 0.6338 | 0.4225 | 0.4225 | 0.4225 | 0.6919 | 0.6919 | 0.6919 | 0.3512 | 0.3512 | 0.3512 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wei, F.; Wang, Y.; Huang, J.; Jiang, H.; Sun, F.; Li, S. The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis. Remote Sens. 2020, 12, 1793. https://doi.org/10.3390/rs12111793
Liang Z, Wei F, Wang Y, Huang J, Jiang H, Sun F, Li S. The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis. Remote Sensing. 2020; 12(11):1793. https://doi.org/10.3390/rs12111793
Chicago/Turabian StyleLiang, Ze, Feili Wei, Yueyao Wang, Jiao Huang, Hong Jiang, Fuyue Sun, and Shuangcheng Li. 2020. "The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis" Remote Sensing 12, no. 11: 1793. https://doi.org/10.3390/rs12111793
APA StyleLiang, Z., Wei, F., Wang, Y., Huang, J., Jiang, H., Sun, F., & Li, S. (2020). The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis. Remote Sensing, 12(11), 1793. https://doi.org/10.3390/rs12111793