Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study
Abstract
:1. Introduction
1.1. Characteristics of the FL Approach
1.2. Use of Remote Sensing in Learning Spaces
- −
- Development of maps and realization of tours at a geographical level;
- −
- Calculation of distances, geometry, and temporal graphs in mathematics;
- −
- Development of multidisciplinary projects that include photographs, murals, and maps;
- −
- UAV manufacturing for students of specific subjects, such as trigonometry, robotics, programming, or electronics;
- −
- Recording of events for inclusion in digital and written media (school blog, university newspaper, educational television);
- −
- Development of fine motor skills and hand-eye coordination through specific UAV driving along an obstacle course;
- −
- Recording of physical education sessions for the optimization of student exercises, strategies, and movements.
1.3. Justification and Objectives
2. Materials and Methods
2.1. Research Design and Data Analysis
2.2. Participants
2.3. Instrument
2.4. Procedure
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maldonado, G.A.; García, J.; Sampedro-Requena, B. The effect of ICT and social networks on university students. RIED 2019, 22, 153–176. [Google Scholar] [CrossRef]
- Area, M.; Hernández, V.; Sosa, J.J. Modelos de integración didáctica de las TIC en el aula. Comunicar 2016, 24, 79–87. [Google Scholar] [CrossRef]
- Garrote, D.; Arenas, J.A.; Jiménez-Fernández, S. ICT as tools for the development of intercultural competence. EDMETIC 2018, 7, 166–183. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yamaguchi, S.; Sukhbaatar, J.; Takada, J. The Influence of Teachers’ Professional Development Activities on the Factors Promoting ICT Integration in Primary Schools in Mongolia. Educ. Sci. 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Fillol, J.; Moura, P. El aprendizaje de los jóvenes con medios digitales fuera de la escuela: De lo informal a lo formal. Comunicar 2019, 1, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Cabero, J.; Barroso, J. Los escenarios tecnológicos en Realidad Aumentada (RA): Posibilidades educativas en estudios universitarios. Aula Abierta 2018, 47, 327–336. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, M.D.; Bellido-Márquez, M.D.; Atencia-Barrero, P. Teaching though ICT in Obligatory Secundary Education. Analysis of online teaching tools. RED 2019, 1, 1–19. [Google Scholar] [CrossRef]
- Khine, M.S.; Ali, N.; Afari, E. Exploring relationships among TPACK constructs and ICT achievement among trainee teachers. Educ. Infor. Technol. 2017, 22, 1605–1621. [Google Scholar] [CrossRef]
- López-Quintero, J.L.; Pontes-Pedrajas, A.; Varo-Martínez, M. The role of ICT in Hispanic American scientific and technological education: A review of literature. Dig. Educ. Rev. 2019, 1, 229–243. [Google Scholar]
- Nogueira, F.; Shigueo, E.; Abdala, H. Collaborative Teaching and Learning Strategies for Communication Networks. Int. J. Eng. Educ. 2018, 34, 527–536. [Google Scholar]
- Mat, N.S.; Abdul, A.; Mat, M.; Abdul, S.Z.; Nun, N.F.; Hamdan, A. An evaluation of content creation for personalised learning using digital ICT literacy module among aboriginal students (MLICT-OA). TOJDE 2019, 20, 41–58. [Google Scholar]
- Escobar, J.C.; Sánchez, P.A. Limitaciones conceptuales para la evaluación de la competencia digital. Espacios 2018, 39, 1–11. [Google Scholar]
- Nikolopoulou, K.; Akriotou, D.; Gialamas, V. Early Reading Skills in English as a Foreign Language Via ICT in Greece: Early Childhood Student Teachers’ Perceptions. Early Child. Educ. J. 2019, 47, 597–606. [Google Scholar] [CrossRef]
- Cuevas, R.E.; Feliciano, A.; Alarcón, A.; Catalán, A.; Alonso, G.A. The integration of ICT tools to the profile of the Computer Engineer of the Autonomous University of Guerrero, Mexico. Virtualidad Educación y Ciencia 2019, 10, 20–32. [Google Scholar]
- López, J.; Pozo, S.; Fuentes, A.; López, J.A. Creación de contenidos y flipped learning: Un binomio necesario para la educación del nuevo milenio. REP 2019, 77, 535–555. [Google Scholar] [CrossRef] [Green Version]
- Mengual, S.; López, J.; Fuentes, A.; Pozo, S. Modelo estructural de factores extrínsecos influyentes en el flipped learning. Educ. XX1. 2020. Available online: http://revistas.uned.es/index.php/educacionXX1/article/view/23840/20031 (accessed on 12 January 2020).
- He, W.; Holton, A.; Farkas, G.; Warschauer, M. The effects of flipped instruction on out-of-class study time, exam performance, and student perceptions. Learn. Instr. 2016, 45, 61–71. [Google Scholar] [CrossRef] [Green Version]
- López, J.; Pozo, S.; Del Pino, M.J. Projection of the Flipped Learning Methodology in the Teaching Staff of Cross-Border Contexts. NAER 2019, 8, 184–200. [Google Scholar] [CrossRef]
- Zainuddin, Z.; Habiburrahim, H.; Muluk, S.; Keumala, C.M. How do students become self-directed learners in the EFL flipped-class pedagogy? A study in higher education. Indones. J. Appl. Linguist. 2019, 8, 678–690. [Google Scholar] [CrossRef]
- El Miedany, Y. Flipped learning. In The Flipped Classroom: Practice and Practices in Higher Education, 1st ed.; Reidsema, C., Kavanagh, L., Hadgraft, R., Smith, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 285–303. [Google Scholar]
- Khadri, H.O. Flipped learning as a new educational paradigm: An analytical critical study. Eur. Sci. J. 2016, 12, 417–444. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, J.; Sams, A. Flip Your Classroom: Reach Every Student in Every Class Every Day, 1st ed.; ISTE: Washington, DC, USA, 2012; pp. 34–40. [Google Scholar]
- Abeysekera, L.; Dawson, P. Motivation and cognitive load in the flipped classroom: Definition, rationale and a call for research. High. Educ. Res. Dev. 2015, 34, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Cummins, J.; Waugh, M. Use of the flipped classroom instructional model in higher education: Instructors’ perspectives. J. Comput. High. Educ. 2017, 29, 179–200. [Google Scholar] [CrossRef]
- Schmidt, S.M.; Ralph, D.L. The Flipped Classroom: A Twist on Teaching. Contemp. Issues Educ. Res. 2016, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bognar, B.; Sablić, M.; Škugor, A. Flipped learning and Online Discussion in Higher Education Teaching. In The Flipped Classroom: Practice and Practices in Higher Education, 1st ed.; Reidsema, C., Kavanagh, L., Hadgraft, R., Smith, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 371–392. [Google Scholar]
- Long, T.; Logan, J.; Waugh, M. Students’ perceptions of the value of using videos as a pre-class learning experience in the flipped classroom. TechTrends 2016, 60, 245–252. [Google Scholar] [CrossRef]
- Tourón, J.; Santiago, R. El modelo Flipped learning y el desarrollo del talento en la escuela. Rev. Educ. 2015, 1, 196–231. [Google Scholar] [CrossRef]
- López, J.; Fuentes, A.; López, J.A.; Pozo, S. Formative Transcendence of Flipped Learning in Mathematics Students of Secondary Education. Mathematics 2019, 7, 1226. [Google Scholar] [CrossRef] [Green Version]
- Tse, W.S.; Choi, L.Y.; Tang, W.S. Effects of video-based flipped class instruction on subject reading motivation. Br. J. Educ. Technol. 2019, 50, 385–398. [Google Scholar] [CrossRef]
- Báez, C.I.; Clunie, C.E. Una mirada a la Educación Ubicua. RIED 2019, 22, 325–344. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.E.; Woo, H.R. The Impact of Flipped learning on Cooperative and Competitive Mindsets. Sustainability 2017, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Foon, K.; Kwan, C. Investigating the effects of gamification-enhanced flipped learning on undergraduate students’ behavioral and cognitive engagement. Int. Learn. Environ. 2018, 1, 1–21. [Google Scholar] [CrossRef]
- Castellanos, A.; Sánchez, C.; Calderero, J.F. Nuevos modelos tecnopedagógicos. Competencia digital de los alumnos universitarios. REDIE 2017, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hwang, G.J.; Lai, C.L.; Wang, S.Y. Seamless flipped learning: A mobile technology-enhanced flipped classroom with effective learning strategies. J. Comput. Educ. 2015, 2, 449–473. [Google Scholar] [CrossRef]
- Chyr, W.L.; Shen, P.D.; Chiang, Y.C.; Lin, J.B.; Tsia, C.W. Exploring the effects of online academic help-seeking and flipped learning on improving students’ learning. J. Educ. Technol. Soc. 2017, 20, 11–23. [Google Scholar]
- Cerezo, R.; Bernardo, A.; Esteban, M.; Sánchez, M.; Tuero, E. Programas para la promoción de la autorregulación en educación superior: Un estudio de la satisfacción diferencial entre metodología presencial y virtual. Eur. J. Educ. Psychol. 2015, 8, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, T.; Davis, R.O. What affects learner engagement in flipped learning and what predicts its outcomes? Br. J. Educ. Technol. 2018, 1, 1–18. [Google Scholar] [CrossRef]
- Hinojo, F.J.; Mingorance, Á.C.; Trujillo, J.M.; Aznar, I.; Cáceres, M.P. Incidence of the Flipped Classroom in the Physical Education Students’ Academic Performance in University Contexts. Sustainability 2018, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.; Ross, B.; LaFerriere, R.; Maritz, A. Flipped learning, flipped satisfaction, getting the balance right. Teach. Learn. Inq. 2017, 5, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.; Jaramillo, N.; Hassall, L. Flipping to engage students: Instructor perspectives on flipping large enrolment courses. Australas. J. Educ. Technol. 2018, 34, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Awidi, I.T.; Paynter, M. The impact of a flipped classroom approach on student learning experience. Comput. Educ. 2019, 128, 269–283. [Google Scholar] [CrossRef]
- Nortvig, A.M.; Petersen, A.K.; Hattesen, S. A Literature Review of the Factors Influencing E-Learning and Blended Learning in Relation to Learning Outcome, Student Satisfaction and Engagement. Electron. J. E-Learn. 2018, 16, 46–55. [Google Scholar]
- Yoshida, H. Perceived usefulness of “flipped learning” on instructional design for elementary and secondary education: With focus on pre-service teacher education. Int. J. Inf. Educ. Technol. 2016, 6, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Hinojo, F.J.; López, J.; Fuentes, A.; Trujillo, J.M.; Pozo, S. Academic Effects of the Use of Flipped Learning in Physical Education. Int. J. Environ. Res. Public Health 2020, 17, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, C. A Study on Digital Media Technology Courses Teaching Based on Flipped Classroom. Am. J. Educ. Res. 2016, 4, 264–267. [Google Scholar] [CrossRef]
- Pozo, S.; López, J.; Moreno, A.J.; López, J.A. Impact of Educational Stage in the Application of Flipped Learning: A Contrasting Analysis with Traditional Teaching. Sustainability 2019, 11, 5968. [Google Scholar] [CrossRef] [Green Version]
- Sola, T.; Aznar, I.; Romero, J.M.; Rodríguez, A.M. Eficacia del método flipped classroom en la universidad: Meta-análisis de la producción científica de impacto. REICE 2019, 17, 25–38. [Google Scholar] [CrossRef]
- Thai, N.T.; De Wever, B.; Valcke, M. The impact of a flipped classroom design on learning performance in higher education: Looking for the best “blend” of lectures and guiding questions with feedback. Comput. Educ. 2017, 107, 113–126. [Google Scholar] [CrossRef]
- Zhang, X.L. Practice Teaching of Landscape Survey Course Based on e-cognition Remote sensing Image Interpretation Technology. Educ. Sci. Theory Pract. 2018, 18, 1411–1423. [Google Scholar] [CrossRef]
- Blake, L.; Warner, T.A. The information milieu of remote sensing: An overview. Ref. Serv. Rev. 2014, 42, 351–363. [Google Scholar] [CrossRef]
- Coll, C.; Utrillas, M.P.; Gandía, S. Remote sensing Master and Doctorate (PhD) at the Valencia University, Spain. IEEE Geosci. Remote Sens. Mag. 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Murillo, L.R.; López, J.A.; Godoy, A.L. How the flipped classroom affects knowledge, skills, and engagement in higher education: Effects on students’ satisfaction. Comput. Educ. 2019, 141, 103608. [Google Scholar] [CrossRef]
- Wu, L.; Liu, H.Y.; Peng, P. Application of Remote sensing in Training Geospatial Cognitive Abilities of Secondary Students. Int. J. Online Eng. 2014, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.; Lindner, C.; Hodam, H.; Ortwein, A.; Selg, F.; Weppler, J.; Rienow, A. Augmenting Pupil’s Reality from Space–Digital Learning Media based on Earth Observation Data from the ISS. In Proceedings of the 68th International Astronautical Congress, Adelaide, Australia, 25–29 September 2017; pp. 25–29. [Google Scholar]
- Rienow, A.; Hodam, H.; Lindner, C.; Ortwein, A.; Schultz, J.; Selg, F. Satellite-Borne and ISS-Borne Remote sensing in School Lessons: Lessons Learned and New Mediation Ways. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6556–6559. [Google Scholar]
- Lindner, C.; Rienow, A.; Jürgens, C. Augmented Reality applications as digital experiments for education–An example in the earth-moon system. Acta Astronaut 2019, 161, 66–74. [Google Scholar] [CrossRef]
- Lindner, C.; Müller, C.; Hodam, H.; Jürgens, C.; Ortwein, A.; Schultz, J.; Rienow, A. Expanding STEM Education in Secondary Schools: An Innovative Geography-Physics Course Focusing on Remote sensing. Geoinformatics Forum 2019, 7, 153–162. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, H.M.; Buchanan, G. Remote sensing training in African conservation. Remote Sens. Ecol. Conserv. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Green, D.R. Remote sensing, GIS, the geospatial technologies, and Unmanned Airborne Vehicles at Aberdeen University. Scott. Geogr. J. 2019, 135, 316–327. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Castro-García, M.; Pérez-Romero, A.M.; García-Cruz, A.; Novas, N. Alternative methods for teaching cadastre and remote sensing. Surv. Rev. 2016, 48, 450–459. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.J.; Pérez, F.; Trivino-Tarradas, P.; Merono, J.E.; García-Ferrer, A. Project-Based Learning Applied to Unmanned Aerial Systems and Remote sensing. Remote Sens. 2019, 11, 2413. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Griffiths, D.; DeBell, L.; Hancock, S.; Duffy, J.P.; Shutler, J.D.; Reinhardt, W.J.; Griffiths, A. A Grassroots Remote sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones. PLoS ONE 2016, 11, e0151564. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Triantakonstantis, D. Inquiry-Based Learning in Remote sensing: A Space Balloon Educational Experiment. J. Geogr. High. Educ. 2012, 36, 358–401. [Google Scholar] [CrossRef]
- D’Acqua, F. An Education Experience in Data Fusion and Remote sensing: The Pavia International Summer School Series. IEEE Geosci. Remote Sens. Mag. 2015, 3, 1564. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.A.; Jiang, Y.; Zhang, A.; Zhao, X. Development and application of the multi-dimensional integrated geography curricula from the perspective of regional remote sensing. J. Geogr. High. Educ. 2019, in press. [Google Scholar] [CrossRef]
- Parra-González, M.E.; López, J.; Segura-Robles, A.; Fuentes, A. Active and Emerging Methodologies for Ubiquitous Education: Potentials of Flipped Learning and Gamification. Sustainability 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Larionova, V.; Brown, K.; Bystrova, T.; Sinitsyn, E. Russian perspectives of online learning technologies in higher education: An empirical study of a MOOC. Res. Compar. Int. Educ. 2018, 13, 70–91. [Google Scholar] [CrossRef] [Green Version]
- Hinojo, F.J.; Aznar, I.; Romero, J.M.; Marín, J.A. Influencia del aula invertida en el rendimiento académico. Una revisión sistemática. Campus Virtuales 2019, 8, 9–18. [Google Scholar]
- Fernández, M.; Espada, M. Formación inicial y percepción del profesorado sobre los estilos de enseñanza en Educación Física. Retos 2017, 1, 69–75. [Google Scholar]
- Pérez, A. Uso de smartphones y redes sociales en alumnos/as de educación primaria. Prism. Soc. 2018, 1, 76–91. [Google Scholar]
- Hernández, R.; Fernández, C.; Baptista, M.P. Metodología de la Investigación, 6th ed.; McGraw Hill: Madrid, Spain, 2014; pp. 129–168. [Google Scholar]
- Rodríguez, N. Diseños experimentales en educación. REP 2011, 32, 147–158. [Google Scholar]
- Chou, P.N.; Feng, S.T. Using a Tablet Computer Application to Advance High School Students’ Laboratory Learning Experiences: A Focus on Electrical Engineering Education. Sustainability 2019, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, A.; Soyer, F. Effect of Physical Education and Play Applications on School Social Behaviors of Mild-Level Intellectually Disabled Children. Educ. Sci. 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, T. Flipped Learning and Democratic Education. Ph.D. Thesis, Columbia University, New York, NY, USA, 2012. [Google Scholar]
- Martín, D.; Sáenz, M.; Santiago, R.; Chocarro, E. Diseño de un instrumento para evaluación diagnóstica de la competencia digital docente: Formación flipped classroom. DIM 2016, 1, 1–15. [Google Scholar]
- Jöreskog, K.G. Analysis of Ordinal Variables 2: Cross-Sectional Data; Text of the Workshop “Structural Equation Modelling with LISREL 8.51”; Friedrich-Schiller-Universität Jena: Jena, Germany, 2001; pp. 116–119. [Google Scholar]
Group | n | Composition | Pretest | Treatment | Post-Test |
---|---|---|---|---|---|
1—Control | 30 | Natural | - | - | O1 |
2—Experimental | 29 | Natural | - | X | O2 |
Likert Scale n (%) | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | None | Few | Enough | Completely | M | SD | Skw | Kme | |
Control group | Motivation | 8(26.7) | 10(33.3) | 8(26.7) | 4(13.3) | 2.27 | 1.11 | 0.266 | −0.975 |
Teacher-student | 6(20) | 16(53.3) | 6(20) | 2(6.7) | 2.13 | 0.819 | 0.547 | 0.201 | |
Student-content | 11(36.7) | 12(40) | 4(13.3) | 3(10) | 1.97 | 0.964 | 0.812 | −0.127 | |
Student-student | 6(20) | 18(60) | 4(13.3) | 2(6.7) | 2.07 | 0.785 | 0.796 | 0.993 | |
Autonomy | 13(43.3) | 14(46.7) | 3(10) | 0(0) | 1.67 | 0.661 | 0.484 | −0.620 | |
Collaboration | 10(33.3) | 13(43.3) | 7(23.3) | 0(0) | 1.90 | 0.759 | 0.172 | −1.18 | |
Deepening | 15(50) | 9(30) | 4(13.3) | 2(6.7) | 1.77 | 0.935 | 1.04 | 0.223 | |
Resolution | 8(26.7) | 12(40) | 4(13.3) | 6(20) | 2.27 | 1.08 | 0.478 | −0.974 | |
Classtime | 17(56.7) | 8(26.7) | 3(10) | 2(6.7) | 1.67 | 0.922 | 1.30 | 0.897 | |
Ratingsa | 10(33.3) | 7(23.3) | 10(33.3) | 3(10) | 2.20 | 1.03 | 0.017 | −1.21 | |
Experimental group | Motivation | 2(6.9) | 9(31) | 9(31) | 9(31) | 2.86 | 0.953 | −0.239 | −0.987 |
Teacher-student | 5(17.2) | 5(17.2) | 15(51.7) | 4(13.8) | 2.62 | 0.942 | −0.513 | −0.534 | |
Student-content | 7(24.1) | 13(44.8) | 7(24.1) | 2(6.9) | 2.14 | 0.875 | 0.403 | −0.359 | |
Student-student | 5(17.2) | 10(34.5) | 11(37.9) | 3(10.3) | 2.41 | 0.907 | −0.033 | −0.698 | |
Autonomy | 6(20.7) | 8(27.6) | 6(20.7) | 9(31) | 2.62 | 1.14 | −0.089 | −1.42 | |
Collaboration | 3(10.3) | 8(27.6) | 8(27.6) | 10(34.5) | 2.86 | 1.03 | −0.346 | −1.05 | |
Deepening | 7(24.1) | 6(20.7) | 12(41.4) | 4(13.8) | 2.45 | 1.02 | −0.175 | −1.09 | |
Resolution | 4(13.8) | 6(20.7) | 12(41.4) | 7(24.1) | 2.76 | 0.988 | −0.431 | −0.703 | |
Class-time | 3(10.3) | 4(13.8) | 10(34.5) | 12(41.4) | 3.07 | 0.998 | −0.841 | −0.257 | |
Ratingsa | 16(20.7) | 5(17.2) | 11(37.9) | 7(24.1) | 2.66 | 1.07 | −0.341 | −1.09 |
Variables | µ(X1−X2) | tn1+n2-2 | df | d | rxy |
---|---|---|---|---|---|
Motivation | −0.595(2.27−2.86) | −2.321* | 57 | 0.058 | 0.294 |
Teacher-student | −0.487(2.13−2.62) | −2.123* | 57 | −0.114 | 0.271 |
Student-content | −0.171(1.97−2.14) | n.s. | 57 | 0.068 | 0.094 |
Student-student | −0.347(2.07−2.41) | n.s. | 57 | −0.085 | 0.204 |
Autonomy | −0.954(1.67−2.62) | −3.898** | 57 | 0.014 | 0.462 |
Collaboration | −0.962(1.90−2.86) | −4.085** | 57 | 0.025 | 0.478 |
Deepening | −0.682(1.77−2.45) | −2.676** | 57 | 0.060 | 0.334 |
Resolution | −0.492(2.27−2.76) | n.s. | 57 | −0.022 | 0.235 |
Class-time | −1.40(1.67−3.07) | −5.609** | 57 | 0.115 | 0.596 |
Ratingsa | −0.455(2.20−2.66) | n.s. | 57 | 0.021 | 0.214 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Núñez, J.A.; López Belmonte, J.; Moreno Guerrero, A.J.; Pozo Sánchez, S. Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study. Remote Sens. 2020, 12, 897. https://doi.org/10.3390/rs12050897
López Núñez JA, López Belmonte J, Moreno Guerrero AJ, Pozo Sánchez S. Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study. Remote Sensing. 2020; 12(5):897. https://doi.org/10.3390/rs12050897
Chicago/Turabian StyleLópez Núñez, Juan Antonio, Jesús López Belmonte, Antonio José Moreno Guerrero, and Santiago Pozo Sánchez. 2020. "Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study" Remote Sensing 12, no. 5: 897. https://doi.org/10.3390/rs12050897
APA StyleLópez Núñez, J. A., López Belmonte, J., Moreno Guerrero, A. J., & Pozo Sánchez, S. (2020). Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study. Remote Sensing, 12(5), 897. https://doi.org/10.3390/rs12050897