New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation
Abstract
:1. Introduction
- An off-the-shelf Inertial Measurement Unit (IMU), designed for navigation purposes, can be used:
- The instrument simultaneously provides a high-resolution navigation solution
- As the market for navigation systems is much larger, the price is lower
- The mechanical platform is omitted:
- As processing methods evolve, a better orientation can be obtained
- No operation is required during flight
- Smaller size
- Less power consumption
- Lower fail rate
- Increased operational flexibility
2. Gravity Sensor Analysis
3. Survey Overview, Instrumentation and Operation
4. Data Processing
4.1. The GNSS Data
4.2. The ZLS Data
4.3. The iMAR Data
4.4. Merging of ZLS and iMAR Gravity Estimates
- Bias Adjustment: The iMAR gravity estimates are interpolated onto the time stamps of the ZLS estimates of the particular flight line. The mean value of the ZLS estimates and the interpolated iMAR estimates are determined. The iMAR mean value is subtracted from the iMAR estimates and the ZLS mean value is added instead
- Bias&Trend Adjustment: The iMAR gravity estimates are interpolated onto the time stamps of the ZLS estimates of the particular flight line. A straight line is fitted to the ZLS estimates and the interpolated iMAR estimates. The iMAR straight line fit is is subtracted from the iMAR estimates and the ZLS straight line is added instead
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CODE | Center for Orbit Determination in Europe |
DEM | Digital Elevation Model |
EGM2008 | Earth Gravitational Model 2008 |
EMODNet | European Marine Observation and Data Network |
ESA | European Space Agency |
GNSS | Global Navigation Satellite System |
GO_CONS_GCF_2_DIR_R6 | ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission |
GPS | Global Positioning System |
IGS | International GNSS Service |
IMU | Inertial Measurement Unit |
L&R | LaCoste&Romberg (platform-stabilised gravimeter) |
PPP | Precise Point Positioning |
RMS | Root Mean Square |
RMSE | Root Mean Square Error |
SRTM | Shuttle Radar Topography Mission |
Appendix A. Additional Data Sets for Validation
Appendix A.1. The EGM2008 and GOCE Release 6 Global Gravity Models
Appendix A.2. The DTU17 Satellite Altimetry Model
Appendix A.3. The Gravity Database of the Nordic Geodetic Commission
Appendix A.4. Topographic Effects
References
- Schwarz, K.P.; Li, Z. An introduction to airborne gravimetry and its boundary value problems. In Geodetic Boundary Value Problems in View of the One Centimeter Geoid; Sansó, F., Rummel, R., Eds.; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 1997; Volume 65, pp. 312–358. [Google Scholar] [CrossRef]
- Valliant, H.D. The LaCoste & Romberg Air/Sea Gravity Meter: An Overview. In Handbook of Geophysical Exploration at Sea; Geyer, R.A., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1991; pp. 141–176. [Google Scholar]
- LaCoste, L.; Ford, J.; Archer, K. Gravity measurements in an airplane using state-of-the-art navigation and altimetry. Geophysics 1982, 47, 832–838. [Google Scholar] [CrossRef]
- Brozena, J.M. The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent. In From Mars to Greenland: Charting Gravity With Space and Airborne Instruments; Colombo, O.L., Ed.; International Association of Geodesy Symposia; Springer: New York, NY, USA, 1992; Volume 110, pp. 203–214. [Google Scholar] [CrossRef]
- Bell, R.; Childers, V.A.; Arko, R.A.; Blankenship, D.D.; Brozena, J.M. Airborne gravity and precise positioning for geologic applications. J. Geophys. Res. 1999, 104, 15281–15292. [Google Scholar] [CrossRef]
- Stelkens-Kobsch, T.H. The Airborne Gravimeter Chekan-A at the Institute of Flight Guidance (IFF). In Gravity, Geoid and Space Missions; Jekeli, C., Bastos, L., Fernandes, J., Eds.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2005; Volume 129, pp. 113–118. [Google Scholar] [CrossRef]
- Studinger, M.; Bell, R.; Frearson, N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications. Geophysics 2008, 73, 151–161. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Blanchard, C.; Bonnin, A.; Cadoret, M.; Bresson, A.; Rouxel, D.; Lequentrec-Lalancette, M.F. Absolute marine gravimetry with matter-wave interferometry. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zachary, P.; Malek, B.S.; Nguyen, T.H.; Zi, F.; Scheirer, D.S.; Müller, H. Gravity surveys using a mobile atom interferometer. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.P. Inertial Surveying and Geodesy. Rev. Geophys. Space Phys. 1983, 21, 878–890. [Google Scholar] [CrossRef]
- Forsberg, R.; Vassiliou, A.A.; Schwarz, K.P.; Wong, R.V.C. Inertial gravimetry—A comparison of Kalman filtering-smoothing and post-mission adjustment techniques. Bull. Geod. 1986, 60, 129–142. [Google Scholar] [CrossRef]
- Wei, M.; Schwarz, K.P. Flight test results from a strapdown airborne gravity system. J. Geod. 1998, 72, 323–332. [Google Scholar] [CrossRef]
- Glennie, C.; Schwarz, K.P. A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems. J. Geod. 1999, 73, 311–321. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jekeli, C. A new approach for airborne vector gravimetry using GPS/INS. J. Geod. 2001, 74, 690–700. [Google Scholar] [CrossRef]
- Jordan, T.A.; Becker, D. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data. Phys. Earth Planet. Inter. 2018, 282, 77–88. [Google Scholar] [CrossRef]
- Glennie, C.L.; Schwarz, K.P.; Bruton, A.M.; Forsberg, R.; Olesen, A.V.; Keller, K. A comparison of stable platform and strapdown airborne gravity. J. Geod. 2000, 74, 383–389. [Google Scholar] [CrossRef]
- Jensen, T.E.; Nielsen, J.E.; Olesen, A.V.; Forsberg, R. Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates. In International Symposium on Gravity, Geoid and Height Systems 2016; Vergos, G., Pail, R., Barzaghi, R., Eds.; International Association of Geodesy Symposia; Springer: Cham, Switzerland, 2017; Volume 148, pp. 103–109. [Google Scholar] [CrossRef]
- Jensen, T.E.; Forsberg, R. Helicopter Test of a Strapdown Airborne Gravimetry System. Sensors 2018, 18, 3121. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.T.; Hammada, Y. Experiences with AIRGrav: Results from a New Airborne Gravimeter. In Gravity, Geoid and Geodynamics 2000; Sideris, M.G., Ed.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2001; Volume 123, pp. 211–216. [Google Scholar] [CrossRef]
- Huang, Y.; Olesen, A.V.; Wu, M.; Zhang, K. SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors 2012, 12, 9336–9348. [Google Scholar] [CrossRef] [PubMed]
- Becker, D. Advanced Calibration Methods for Strapdown Airborne Gravimetry. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2016. Available online: http://tuprints.ulb.tu-darmstadt.de/5691/ (accessed on 15 November 2019).
- Wenzel, H.G. The Nanogal Software: Earth Tide Data Processing Package ETERNA 3.30. Bulletin d’Informations Marees Terrestres 1996, 124, 9425–9439. [Google Scholar]
- Allan, D.W. Statistics of Atomic Frequency Standards. Proc. IEEE 1966, 52, 221–230. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- Jurado, J.; Schubert Kabban, C.M.; Raquet, J. A regression-based methodology to improve estimation of inertial sensor errors using Allan variance data. Navigation 2019, 66, 251–263. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data; V4; International Centre for Tropical Agriculture (CIAT): Cali, CA, USA, 2008; Available online: http://srtm.csi.cgiar.org (accessed on 15 November 2019).
- Becker, D.; Nielsen, J.E.; Ayres-Sampaio, D.; Forsberg, R.; Becker, M.; Bastos, L. Drift reduction in strapdown airborne gravimetry using a simple thermal correction. J. Geod. 2015, 89, 1133–1144. [Google Scholar] [CrossRef]
- Harlan, R.B. Eotvos corrections for airborne gravimetry. J. Geophys. Res. 1968, 73, 4675–4679. [Google Scholar] [CrossRef]
- Olesen, A. Improved Airborne Scalar Gravimetry for Regional Gravity Field Mapping and Geoid Determination. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2003. Available online: ftp.dsri.dk/pub/avo/AG/DOC/avo_techrep.pdf (accessed on 15 November 2019).
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; Artech House: Boston, MA, USA; London, UK, 2013; ISBN 978-1-60807-005-3. [Google Scholar]
- Nassar, S.; El-Sheimy, N. Accuracy Improvement of Stochastic Modeling of Inertial Sensor Errors. Zeitschrift tfur Geodäsie Geoinformation und Landmanagement (ZfV) 2005, 130, 146–155. [Google Scholar]
- Gelb, A. Applied Optimal Estimation; The M.I.T Press: Cambridge, MA, USA; London, UK, 2013; ISBN 0-262-20027-9. [Google Scholar]
- Pavlis, N.K.; Holmes, S.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Barthelmes, F. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models. In Scientific Technical Report STR09/02; Helmholtz-Zentrum: Potsdam, Germany, 2013. [Google Scholar] [CrossRef]
- Förste, C.; Abrykosov, O.; Bruinsma, S.; Dahle, C.; König, R.; Lemoine, J.-M. ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission. GFZ Data Serv. 2019. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P. The DTU17 Global Marine Gravity Field: First Validation Results. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Grombein, T.; Seitz, K.; Heck, B. Optimized formulas for the gravitational field of a tesseroid. J. Geod. 2013, 87, 645–660. [Google Scholar] [CrossRef]
iNAT-RQH-4001 | iTempStab-AddOn | |
---|---|---|
dimensions | 19 × 13 × 30 cm | 25 × 22 × 38 cm |
weight | 8 kg | +10 kg |
power | 10–36 V, <25 W | 19–31 V, max. 175 W |
Error Term | Slope | Read-Off | Noise | Standard Dev. | |
---|---|---|---|---|---|
quantisation noise | −1 | 1325.91 | 53.21 | ||
velocity random walk | −1/2 | 1 | 145.11 | 14.58 | |
bias instability | 0 | minimum | 3.36 | 0.58 | |
acceleration random walk | 1/2 | 3 | 5.32 | 1.42 | |
drift rate ramp | 1 | 2.60 | 1.62 |
ZLS | iMAR | iMAR | iMAR | ||
---|---|---|---|---|---|
No Adjustment | Bias Adjusted | Bias&Trend Adjusted | |||
no. of crossings | 12 | 63 | 63 | 63 | |
mean | 0.3 | −0.1 | −0.3 | −0.4 | mGal |
standard dev. | 2.6 | 1.5 | 1.1 | 1.9 | mGal |
minimum | −3.0 | −4.2 | −4.0 | −9.4 | mGal |
maximum | 6.2 | 3.5 | 1.8 | 4.5 | mGal |
RMS | 2.5 | 1.5 | 1.1 | 2.0 | mGal |
RMSE | 1.8 | 1.0 | 0.8 | 1.4 | mGal |
Mean | Standard Dev. | Minimum | Maximum | ||
---|---|---|---|---|---|
iMAR (no adj.) | 13.6 | 12.6 | −11.0 | 52.6 | mGal |
iMAR (bias adj.) | 13.7 | 12.8 | −11.0 | 52.6 | mGal |
iMAR (bias & trend adj.) | 13.6 | 12.9 | −12.3 | 52.6 | mGal |
ZLS | 13.6 | 11.9 | −11.1 | 40.6 | mGal |
EGM2008 | 16.1 | 13.1 | −9.5 | 52.2 | mGal |
GO_CONS_GCF_2_DIR_R6 | 15.5 | 11.7 | −11.4 | 48.7 | mGal |
No adjustment | |||||
iMAR - ZLS | 0.5 | 1.6 | −6.9 | 14.5 | mGal |
iMAR - EGM2008 | −2.5 | 2.2 | −17.6 | 8.3 | mGal |
iMAR - GO_CONS_GCF_2_DIR_R6 | −2.0 | 6.5 | −19.4 | 16.5 | mGal |
iMAR - DTU17 | −1.8 | 1.9 | −10.1 | 9.1 | mGal |
iMAR - NKG15 | 1.4 | 1.3 | −3.1 | 8.1 | mGal |
Bias adjustment | |||||
iMAR - ZLS | 0.0 | 1.3 | −5.5 | 6.2 | mGal |
iMAR - EGM2008 | −3.0 | 2.1 | −17.6 | 7.8 | mGal |
iMAR - GO_CONS_GCF_2_DIR_R6 | −2.4 | 6.4 | −20.5 | 16.5 | mGal |
iMAR - DTU17 | −1.2 | 1.8 | −10.2 | 10.2 | mGal |
iMAR - NKG15 | 0.9 | 1.3 | −3.4 | 7.8 | mGal |
Bias & trend adjustment | |||||
iMAR - ZLS | 0.0 | 1.2 | −5.4 | 6.4 | mGal |
iMAR - EGM2008 | −3.2 | 2.5 | −17.0 | 7.4 | mGal |
iMAR - GO_CONS_GCF_2_DIR_R6 | −2.6 | 6.6 | −24.2 | 16.5 | mGal |
iMAR - DTU17 | −1.0 | 2.2 | −10.0 | 9.6 | mGal |
iMAR - NKG15 | 0.7 | 2.1 | −10.3 | 11.5 | mGal |
ZLS platform estimates | |||||
ZLS - EGM2008 | −3.1 | 2.2 | −16.1 | 6.5 | mGal |
ZLS - GO_CONS_GCF_2_DIR_R6 | −2.0 | 6.2 | −19.3 | 6.5 | mGal |
ZLS - DTU17 | −1.4 | 2.0 | −10.3 | 4.0 | mGal |
ZLS - NKG15 | 0.9 | 1.5 | −4.0 | 6.6 | mGal |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, T.E.; Olesen, A.V.; Forsberg, R.; Olsson, P.-A.; Josefsson, Ö. New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation. Remote Sens. 2019, 11, 2682. https://doi.org/10.3390/rs11222682
Jensen TE, Olesen AV, Forsberg R, Olsson P-A, Josefsson Ö. New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation. Remote Sensing. 2019; 11(22):2682. https://doi.org/10.3390/rs11222682
Chicago/Turabian StyleJensen, Tim E., Arne V. Olesen, Rene Forsberg, Per-Anders Olsson, and Örjan Josefsson. 2019. "New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation" Remote Sensing 11, no. 22: 2682. https://doi.org/10.3390/rs11222682
APA StyleJensen, T. E., Olesen, A. V., Forsberg, R., Olsson, P.-A., & Josefsson, Ö. (2019). New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation. Remote Sensing, 11(22), 2682. https://doi.org/10.3390/rs11222682