Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet
Abstract
:1. Introduction
2. Methods
2.1. Encoder–Decoder Architecture
2.2. Backpropagation to Train Multilayer Architectures
2.3. DenseUNet
2.3.1. Network Architecture
2.3.2. Dense Block
3. Experiments
3.1. Model Preprocessing
3.1.1. Software and Hardware Environment
3.1.2. Data Augmentation
3.1.3. Hyper-Parameters Selection
3.2. Massachusetts Dataset
3.3. Conghua Dataset
3.4. Accuracy Evaluation
3.5. Model Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhang, X.; Sun, Y.; Zhang, P. Road Centerline Extraction from Very-High-Resolution Aerial Image and LiDAR Data Based on Road Connectivity. Remote Sens. 2018, 10, 1284. [Google Scholar] [CrossRef]
- Zhou, T.; Sun, C.; Fu, H. Road Information Extraction from High-Resolution Remote Sensing Images Based on Road Reconstruction. Remote Sens. 2019, 11, 79. [Google Scholar] [CrossRef]
- Bong, D.B.; Lai, K.C.; Joseph, A. Automatic Road Network Recognition and Extraction for Urban Planning. Int. J. Appl. Sci. Eng. Technol. 2009, 5, 209–215. [Google Scholar]
- Miao, Z.; Shi, W.; Zhang, H.; Wang, X. Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines. IEEE Geosci. Remote Sens. Lett. 2012, 10, 583–587. [Google Scholar] [CrossRef]
- Li, Z.; Huang, P. Quantitative measures for spatial information of maps. Int. J. Geogr. Inf. Sci. 2002, 16, 699–709. [Google Scholar] [CrossRef]
- Liu, B.; Wu, H.; Wang, Y.; Liu, W. Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas. PLoS ONE 2015, 10, e0138071. [Google Scholar] [CrossRef]
- Sujatha, C.; Selvathi, D. Connected component-based technique for automatic extraction of road centerline in high resolution satellite images. EURASIP J. Image Video Process. 2015, 2015, 8. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. Road centreline extraction from high—Resolution imagery based on multiscale structural features and support vector machines. Int. J. Remote Sens. 2009, 30, 1977–1987. [Google Scholar] [CrossRef]
- Mnih, V.; Hinton, G.E. Learning to detect roads in high-resolution aerial images. In Proceedings of the European Conference on Computer Vision (ECCV), Crete, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: New York, NY, USA, 2010; pp. 210–223. [Google Scholar]
- Unsalan, C.; Sirmacek, B. Road network detection using probabilistic and graph theoretical methods. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4441–4453. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, Y.; Gong, Y. Urban road extraction via graph cuts based probability propagation. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5072–5076. [Google Scholar]
- Saito, S.; Yamashita, T.; Aoki, Y. Multiple object extraction from aerial imagery with convolutional neural networks. J. Electron. Imaging 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Alshehhi, R.; Marpu, P.R. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images. ISPRS-J. Photogramm. Remote Sens. 2017, 126, 245–260. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, Y.; Xu, S. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322–3337. [Google Scholar] [CrossRef]
- Song, M.; Civco, D. Road extraction using SVM and image segmentation. Photogramm. Eng. Remote Sens. 2004, 70, 1365–1371. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Xue, B. Road Extraction from High-spatial-resolution Remote Sensing Image by Combining with GVF Snake with Salient Features. Acta Geod. Cartogr. Sin. 2017, 46, 1978–1985. [Google Scholar]
- Rianto, Y.; Kondo, S.; Kim, T. Detection of roads from satellite images using optimal search. Int. J. Pattern Recognit. Artif. Intell. 2000, 14, 1009–1023. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Liu, Z.; Shen, J. Semi-automatic road tracking by template matching and distance transformation in urban areas. Int. J. Remote Sens. 2011, 32, 8331–8347. [Google Scholar] [CrossRef]
- Movaghati, S.; Moghaddamjoo, A.; Tavakoli, A. Road extraction from satellite images using particle filtering and extended Kalman filtering. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2807–2817. [Google Scholar] [CrossRef]
- Gamba, P.; Dell’Acqua, F.; Lisini, G. Improving urban road extraction in high-resolution images exploiting directional filtering, perceptual grouping, and simple topological concepts. IEEE Geosci. Remote Sens. Lett. 2006, 3, 387–391. [Google Scholar] [CrossRef]
- Li, M.; Stein, A.; Bijker, W.; Zhang, Q.M. Region-based urban road extraction from VHR satellite images using binary partition tree. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 217–225. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Twenty-Sixth Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1915–1929. [Google Scholar] [CrossRef]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 1520–1528. [Google Scholar]
- Li, P.; Zang, Y.; Wang, C. Road network extraction via deep learning and line integral convolution. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1599–1602. [Google Scholar]
- Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Document modeling with gated recurrent neural network for sentiment classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, 17–21 September 2015; Lluís, M., Chris, C.-B., Jian, S., Eds.; Association for Computational Linguistics: Lisbon, Portugal, 2015; pp. 1422–1432. [Google Scholar]
- Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- He, H.; Yang, D.; Wang, S.; Wang, S.Y.; Li, Y.F. Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss. Remote Sens. 2019, 11, 1015. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y. JointNet: A Common Neural Network for Road and Building Extraction. Remote Sens. 2019, 11, 696. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Rao, J.; Guo, L.L.; Yan, Z.; Jin, S. A Y-Net deep learning method for road segmentation using high-resolution visible remote sensing images. Remote Sens. Lett. 2019, 10, 381–390. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Z.; Xu, M. Road structure refined CNN for road extraction in aerial image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 709–713. [Google Scholar] [CrossRef]
- Su, J.; Yang, L.; Jing, W. U-Net based semantic segmentation method for high resolution remote sensing image. Comput. Appl. 2019, 55, 207–213. [Google Scholar]
- Zhang, X.; Han, X.; Li, C.; Tang, X.; Zhou, H.; Jiao, L. Aerial Image Road Extraction Based on an Improved Generative Adversarial Network. Remote Sens. 2019, 11, 930. [Google Scholar] [CrossRef]
- Gao, L.; Song, W.; Dai, J.; Chen, Y. Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network. Remote Sens. 2019, 11, 552. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.F.; Huang, X.H. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 59, 7209–7220. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet With Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Bastani, F.; He, S.; Abbar, S.; Alizadeh, M.; Balakrishnan, H.; Chawla, S.; Madden, S.; DeWitt, D. Roadtracer: Automatic extraction of road networks from aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Li, Y.; Peng, B.; He, L.; Fan, K.; Tong, L. Road Segmentation of Unmanned Aerial Vehicle Remote Sensing Images Using Adversarial Network with Multiscale Context Aggregation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 2279–2287. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z.L. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 2018, 10, 1461. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Normalization, B. Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Efe, M.O.; Kaynak, O. A general backpropagation algorithm for feedforward neural networks learning. IEEE Trans. Neural Netw. 2002, 13, 251–254. [Google Scholar]
- He, K.; Zhang, X.; Ren, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Huang, G.; Liu, Z.; Van, D.M. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer vVision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. arXiv 2012, arXiv:1204.3968. [Google Scholar]
- LeCun, Y.; Boser, B.E.; Denker, J.S. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems 2; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1990; pp. 396–404. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, Scotland, 3–6 August 2003. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Weinzaepfel, P.; Revaud, J.; Harchaoui, Z. DeepFlow: Large displacement optical flow with deep matching. In Proceedings of the IEEE International Conference on Computer Vision (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Available online: https://www.cs.toronto.edu/~vmnih/data/ (accessed on 24 October 2019).
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.G.; Jia, J.Y. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.X.; Yu, G.; Song, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Information—Sverarbeitung; Strobl, J., Blaschke, T., Griesbner, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
Hardware | Software | ||||||
---|---|---|---|---|---|---|---|
memory | hard disk | CPU | GPU | OS | CUDA | TensorFlow | python |
16GB | 1TB | Core-i7-8700K | GTX1080Ti | Ubuntu16.04 | 9.0 | 1.5 | 2.7.12 |
Hyper-Parameter | Grid Search |
---|---|
batch size | (2, 4, 8, 16) |
epochs | (50, 100, 150, 200) |
learning rates | (1 × 10−9, 1 × 10−5, 1 × 10−3, 1 × 10−1) |
Model | M-Dataset | C-Dataset | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P (%) | R (%) | F1 (%) | IoU (%) | Kappa | P (%) | R (%) | F1 (%) | IoU (%) | Kappa | |
U-Net | 58.92% | 70.81% | 60.78% | 70.91% | 63.65% | 84.29% | 75.23% | 71.83% | 77.35% | 77.43% |
SegNet | 61.35% | 71.33% | 62.64% | 71.91% | 65.41% | 85.03% | 77.04% | 73.94% | 78.83% | 78.52% |
FRRN-B | 76.51% | 64.87% | 66.71% | 74.22% | 67.70% | 83.92% | 77.22% | 73.62% | 78.72% | 78.16% |
GL-Dense-U-Net | 78.48% | 70.09% | 73.98% | 72.73% | 70.19% | 85.33% | 79.07% | 76.41% | 80.67% | 80.35% |
DenseUNet | 78.25% | 70.41% | 74.07% | 74.47% | 70.32% | 85.55% | 78.51% | 76.25% | 80.89% | 80.11% |
G | M-Dataset | C-Dataset | ||||
---|---|---|---|---|---|---|
OA (%) | IoU (%) | Kappa (%) | OA (%) | IoU (%) | Kappa (%) | |
12 | 92.22% | 73.24% | 69.55% | 94.18% | 73.24% | 69.55% |
18 | 93.13% | 74.04% | 70.11% | 94.87% | 74.04% | 70.11% |
24 | 93.93% | 74.47% | 70.32% | 95.02% | 80.89% | 70.32% |
Model | Inference (ms) | Model Size (MB) | FPS |
---|---|---|---|
U-Net | 340 | 106 | 32 |
SegNet | 204 | 419 | 33 |
FRRN-B | 338 | 297 | 20 |
GL-Dense-U-Net | 1152 | 1690 | 22 |
DenseUNet-G-12 | 316 | 118 | 23 |
DenseUNet-G-18 | 450 | 279 | 17 |
DenseUNet-G-24 | 472 | 514 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Zhang, X.; Zhang, Z.; Fang, W. Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet. Remote Sens. 2019, 11, 2499. https://doi.org/10.3390/rs11212499
Xin J, Zhang X, Zhang Z, Fang W. Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet. Remote Sensing. 2019; 11(21):2499. https://doi.org/10.3390/rs11212499
Chicago/Turabian StyleXin, Jiang, Xinchang Zhang, Zhiqiang Zhang, and Wu Fang. 2019. "Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet" Remote Sensing 11, no. 21: 2499. https://doi.org/10.3390/rs11212499
APA StyleXin, J., Zhang, X., Zhang, Z., & Fang, W. (2019). Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet. Remote Sensing, 11(21), 2499. https://doi.org/10.3390/rs11212499