Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas
Abstract
:1. Introduction
2. Sites, Data and Methods
2.1. Study Regions
2.1.1. Teshekpuk Lake (Alaska)
2.1.2. Ilulissat (Greenland)
2.1.3. Lena River Delta (Russia)
2.1.4. Byers Peninsula on Livingston Island (South Shetlands Islands)
2.2. Data
2.3. Methods
3. Results
3.1. Teshekpuk Lake (Alaska)
3.2. Ilulissat (Greenland)
3.3. Lena River Delta (Russia)
3.4. Byers Peninsula on Livingston Island (South Shetlands Islands)
4. Discussion
4.1. Error Assessment
4.2. Intercomparison of InSAR Results
4.3. In-Situ Validation
4.4. Interpretation of Results
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anisimov, O.; Nelson, F. Permafrost distribution in the Northern Hemisphere under scenarios of climate change. Glob. Planet. Chang. 1999, 14, 59–72. [Google Scholar] [CrossRef]
- Bartsch, A.; Grosse, G.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C.; Seifert, F.M.; Obu, J.; Goler, R. GlobPermafrost—How space-based earth observation supports understanding of permafrost. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Trofaier, A.M.; Westermann, S.; Bartsch, A. Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach. Remote Sens. Environ. 2017, 203, 55–70. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment, 3rd ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2007. [Google Scholar]
- Günther, F.; Overduin, P.P.; Yakshina, I.A.; Opel, T.; Baranskaya, A.V.; Grigoriev, M.N. Observing Muostakh disappear: Permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 2015, 9, 151–178. [Google Scholar]
- Shiklomanov, N.I.; Streletskiy, D.A.; Little, J.D.; Nelson, F.E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett. 2013, 40, 6356–6361. [Google Scholar] [CrossRef] [Green Version]
- Rykhus, R.P.; Lu, Z. InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain. Can. J. Remote Sens. 2008, 34, 100–112. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J. Geophys. Res. 2010, 115, F03023. [Google Scholar] [CrossRef]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Strozzi, T.; Grosse, G.; Streletskiy, D. SAR Interferometry for surface deformation monitoring on permafrost areas in Alaska. In Proceedings of the Earth Observation and Cryosphere Science, Frascati, Italy, 13–16 November 2012. [Google Scholar]
- Short, N.; LeBlanc, A.-M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Jacome, A.; Poulin, J.; Ludwig, R. Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry With Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4074–4093. [Google Scholar] [CrossRef]
- Beck, I.; Ludwig, R.; Bernier, M.; Strozzi, T.; Boike, J. Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry. Earth Surf. Dyn. 2015, 3, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Antonova, S.; Sudhaus, H.; Strozzi, T.; Zwieback, S.; Kääb, A.; Heim, B.; Langer, M.; Bornemann, N.; Boike, J. Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry. Remote Sens. 2018, 10, 494. [Google Scholar] [CrossRef]
- Schaefer, K.; Liu, L.; Parsekian, A.; Jafarov, E.; Chen, A.; Zhang, T.J.; Gusmeroli, A.; Panda, S.; Zebker, H.; Schaefer, T. Remotely sensed active layer thickness (ReSALT) at Barrow, Alaska using interferometric synthetic aperture radar. Remote Sens. 2015, 7, 3735–3759. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Jones, B.; Arp, C. Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafr. Periglac. Process. 2015, 26, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, L.; Mann, D.H.; Grosse, G.; Jones, B.; Romanovsky, V. Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 2016, 273. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.; Arp, C.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef]
- Streletskiy, D.; Shiklomanov, N.; Little, J.; Nelson, F.; Brown, J.; Nyland, K.; Klene, A. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015. Permafr. Periglac. Process. 2016, 28, 566–572. [Google Scholar] [CrossRef]
- Weather Archive on Stolb Island. Available online: https://rp5.ru/Weather_archive_on_Stolb_Island (accessed on 5 July 2018).
- Boike, J.; Kattenstroth, B.; Abramova, K.; Bornemann, N.; Chetverova, A.; Fedorova, I.; Fröb, K.; Grigoriev, M.; Grüber, M.; Kutzbach, L.; et al. Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences 2013, 10, 2105–2128. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, J.; Martínez de Pisón, E.; Serrano, E.; Arche, A. Geomorphological Map of Byers Peninsula, Livingston Island; Geomap Series, Sheet 5-A; British Antarctic Survey: Cambridge, UK, 1996. [Google Scholar]
- Oliva, M.; Hrbacek, F.; Ruiz-Fernández, J.; de Pablo, M.Á.; Vieira, G.; Ramos, M.; Antoniades, D. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena 2016, 149, 548–559. [Google Scholar] [CrossRef]
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [Green Version]
- Vera, M.L. Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Res. 2011, 30, 7146. [Google Scholar] [CrossRef] [Green Version]
- Interferometric Synthetic Aperture Radar (IFSAR) Alaska. Data Available from the U.S. Geological Survey. Available online: https://lta.cr.usgs.gov/IFSAR_Alaska (accessed on 16 April 2018).
- Grohmann, C. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Rem. Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B. TanDEM-X Ground Segment—DEM Products Specification Document, EOC, DLR, Oberpfaffenhofen, Germany, Public Document TD-GS-PS-0021, Issue 3.1. 2016. Available online: https://tandemx-science.dlr.de (accessed on 5 July 2018).
- Strozzi, T.; Wegmüller, U.; Mätzler, C. Mapping Wet Snowcovers with SAR Interferometry. Int. J. Remote Sens. 1999, 20, 2395–2403. [Google Scholar] [CrossRef]
- Silvan, L.; Hajnsek, I. Opportunities of snow property extraction based on single and multi pass SAR interferometry: TanDEM-X. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T. Deformation time-series of the Lost-Hills oil field using a multi-baseline interferometric SAR inversion algorithm with finite difference smoothing constraints. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Zan, F.D.; Guarnieri, A.M.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Wegmüller, U.; Strozzi, T.; Werner, C. Ionespheric Path Delay Estimation using Split-Beam Interferometry. In Proceedings of the IGARSS 2012, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Gomba, G.; Parizzi, A.; De Zan, F.; Eineder, M.; Bamler, R. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1446–1461. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Heiner, M. (Cartographer); Ecosystems of northern Alaska; Unpublished 1:1.5 Million-Scale Map; ABR., Inc.: Fairbanks, AK, USA; The Nature Conservancy: Seattle, WA, USA, 2003. [Google Scholar]
- Fuchs, M.; Lenz, J.; Jock, S.; Nitze, I.; Jones, B.; Strauss, J.; Günther, F.; Grosse, G. Impacts on successive thermokarst lake stages on soil organic matter, Arctic Alaska. J. Geophys. Res. 2018. in review. [Google Scholar]
- Jessen, S.; Holmslykke, H.; Rasmussen, K.; Richardt, N.; Holm, P. Hydrology and pore water chemistry in a permafrost wetland, Ilulissat, Greenland. Water Resour. Res. 2013, 50, 4760–4774. [Google Scholar] [CrossRef]
- Foged, N.; Ingeman-Nielsen, T. Permafrost in Marine Deposits at Ilulissat Airport in Greenland, Revisited. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 445–450. [Google Scholar]
- Morgenstern, A.; Röhr, C.; Grosse, G.; Grigoriev, M. The Lena River Delta—Inventory of Lakes and Geomorphological Terraces; Alfred Wegener Institute—Research Unit Potsdam: Potsdam, Germany, 2011. [Google Scholar] [CrossRef]
- Correia, A.; Oliva, M.; Ruiz-Fernández, J. Evaluation of frozen ground conditions along a coastal topographic gradient at Byers Peninsula (Livingston Island, Antarctica) by geophysical and geoecological methods. Catena 2017, 149, 529–537. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, J.; Serrano, E.; Schmid, T.; Mink, S.; Linés, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 2012, 155, 62–79. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Bremmer, C.; Hanssen, R.; Capes, R.; Marsh, S. Ground motion monitoring using SAR interferometry: Quality assessment. Eur. Geol. 2009, 26, 12–15. [Google Scholar]
- Zwieback, S.; Hensley, S.; Hajnsek, I. Soil Moisture Estimation Using Differential Radar Interferometry: Toward Separating Soil Moisture and Displacements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5069–5083. [Google Scholar] [CrossRef]
- Zwieback, S.; Liu, X.; Antonova, S.; Heim, B.; Bartsch, A.; Boike, J.; Hajnsek, I. A Statistical Test of Phase Closure to Detect Influences on DInSAR Deformation Estimates besides Displacements and Decorrelation Noise: Two Case Studies in High-Latitude Regions. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5588–5601. [Google Scholar] [CrossRef]
- Gunirriesen, T.; Hogda, K.A.; Johnsen, H.; Lauknes, I. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2101–2108. [Google Scholar] [CrossRef]
- Zwieback, S.; Hajnsek, I. Influence of Vegetation Growth on the Polarimetric Zero-Baseline DInSAR Phase Diversity—Implications for Deformation Studies. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3070–3082. [Google Scholar] [CrossRef]
- Barboux, C.; Strozzi, T.; Delaloye, R.; Wegmüller, U.; Collet, C. Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods. J. Photogramm. Remote Sens. 2015, 109, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Günther, F.; Grosse, G.; Ulrich, M.; Nitze, I.; Sachs, T.; Jones, B. Combining terrestrial, air- and space-borne remote sensing for permafrost thaw subsidence change detection in Arctic Alaska. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Jones, B.; Stoker, J.; Gibbs, A.; Grosse, G.; Romanovsky, V.; Douglas, T.; Kinsman, N.; Richmand, B. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Ingeman-Nielsen, T.; Foged, N.N.; Butzbach, R.; Jørgensen, A.S. Geophysical Investigations of Saline Permafrost at Ilulissat, Greenland. In Proceedings of the 9th International Conference on Permafrost, Alaska Fairbanks, AK, USA, 29 June–3 July 2008; pp. 773–778. [Google Scholar]
- Strozzi, T.; Teatini, P.; Tosi, L.; Wegmüller, U.; Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surf. 2013, 118, 1–15. [Google Scholar] [CrossRef]
Study Region | Sentinel-1 Time Period |
---|---|
Teshekpuk Lake (Alaska) | 07/07/2016 → 05/09/2016 |
14/06/2017 → 30/09/2017 | |
Ilulissat (Greenland) | 26/07/2015 → 24/09/2015 |
02/06/2016 → 30/10/2016 | |
03/06/2017 → 25/10/2017 | |
Lena River Delta (Siberia) | 22/07/2016 → 26/09/2016 |
29/06/2017 → 15/10/2017 | |
Byers Peninsula (South Shetlands Islands) | 30/12/2016 → 17/04/2017 |
25/12/2017 → 12/04/2018 |
Sentinel-1 2016 | Sentinel-1 2017 | TSX 2013 | In-Situ 2014 | |
---|---|---|---|---|
Sentinel-1 2016 | 1 | −0.27 | 0.15 | −0.01 |
Sentinel-1 2017 | 1 | 0.59 | −0.27 | |
TSX 2013 | 1 | −0.14 | ||
In-situ 2014 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sens. 2018, 10, 1360. https://doi.org/10.3390/rs10091360
Strozzi T, Antonova S, Günther F, Mätzler E, Vieira G, Wegmüller U, Westermann S, Bartsch A. Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sensing. 2018; 10(9):1360. https://doi.org/10.3390/rs10091360
Chicago/Turabian StyleStrozzi, Tazio, Sofia Antonova, Frank Günther, Eva Mätzler, Gonçalo Vieira, Urs Wegmüller, Sebastian Westermann, and Annett Bartsch. 2018. "Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas" Remote Sensing 10, no. 9: 1360. https://doi.org/10.3390/rs10091360
APA StyleStrozzi, T., Antonova, S., Günther, F., Mätzler, E., Vieira, G., Wegmüller, U., Westermann, S., & Bartsch, A. (2018). Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sensing, 10(9), 1360. https://doi.org/10.3390/rs10091360