Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Airborne Images
2.2.1. Overview
2.2.2. Thermal Images
2.2.3. Hyperspectral Optical Images
2.3. Meteorological Data
2.4. Chamber Flux Measurements
2.5. Statistical Analysis
3. Results
3.1. Meteorological Data
3.2. Chamber Flux Measurements
3.3. Thermal Images
3.3.1. Accuracy of Temperature Images
3.3.2. Temperature-Based Indices
3.4. VNIR/SWIR Indices and Sun-Induced Fluorescence (SIF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Flight | Treat | Ts | Ts–Tair | CWSI | PRI | NDVI | SR | WI | MSI | LWI | F687 | F760 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | CR | 301.43 | 0.97 | 0.08 | 0.04 | 0.88 | 15.7 | 1.04 | 0.44 | 4.7 | 1.08 | 1.29 | |
sd | 0.21 | 0.21 | 0.04 | 0.01 | 0.01 | 1.75 | 0.01 | 0.02 | 0.12 | 0.40 | 0.25 | ||
KA | 301.03 | 0.57 | 0.01 | 0 | 0.65 | 4.82 | 1.01 | 0.47 | 3.43 | 0.03 | 1.52 | ||
sd | 0.1 | 0.1 | 0.02 | 0 | 0.03 | 0.46 | 0.01 | 0.02 | 0.18 | 0.40 | 0.39 | ||
VG | 302.42 | 1.96 | 0.27 | 0.05 | 0.89 | 17.1 | 1.04 | 0.45 | 4.71 | 1.02 | 1.07 | ||
sd | 0.23 | 0.23 | 0.04 | 0.01 | 0.01 | 1.1 | 0.01 | 0.01 | 0.09 | 0.29 | 0.26 | ||
2 | CR | 307.53 | 3.5 | 0.44 | 0.04 | 0.88 | 16.14 | 1.05 | 0.43 | 4.76 | 1.48 | 1.66 | |
sd | 0.44 | 0.44 | 0.20 | 0.01 | 0.01 | 1.39 | 0.01 | 0.03 | 0.13 | 0.55 | 0.48 | ||
KA | 306.65 | 2.62 | 0.05 | 0 | 0.62 | 4.33 | 1.03 | 0.47 | 3.33 | −0.13 | 1.02 | ||
sd | 0.51 | 0.51 | 0.22 | 0 | 0.02 | 0.28 | 0.01 | 0.02 | 0.12 | 0.36 | 0.46 | ||
VG | 307.75 | 3.72 | 0.54 | 0.05 | 0.89 | 16.65 | 1.05 | 0.45 | 4.73 | 1.16 | 1.45 | ||
Sd | 0.48 | 0.48 | 0.21 | 0.01 | 0.01 | 0.9 | 0.01 | 0.01 | 0.09 | 0.28 | 0.42 | ||
3 | CR | 307.99 | 2.3 | 0.11 | 0.04 | 0.87 | 15.07 | 1.04 | 0.44 | 4.65 | 1.38 | 2.28 | |
sd | 0.14 | 0.14 | 0.04 | 0.01 | 0.01 | 1.55 | 0.01 | 0.02 | 0.13 | 0.43 | 0.39 | ||
KA | 307.41 | 1.72 | −0.08 | 0 | 0.63 | 4.4 | 1.02 | 0.48 | 3.29 | 0.09 | 1.55 | ||
sd | 0.23 | 0.23 | 0.08 | 0 | 0.02 | 0.34 | 0.01 | 0.02 | 0.12 | 0.61 | 0.34 | ||
VG | 308.34 | 2.65 | 0.22 | 0.05 | 0.88 | 15.5 | 1.04 | 0.45 | 4.6 | 1.44 | 2.12 | ||
sd | 0.24 | 0.24 | 0.08 | 0.01 | 0.01 | 1.15 | 0.01 | 0.01 | 0.09 | 0.40 | 0.46 |
Index | Comparison | Mean Difference | p-Value | |
---|---|---|---|---|
Ts | 1.CR | 1.KA | 0.4 | 0.7334 |
1.VG | 0.99 | 0.01 * | ||
2.CR | 2.KA | 0.86 | 0.04 * | |
2.VG | 0.24 | 0.9765 | ||
3.CR | 3.KA | 0.58 | 0.3081 | |
3.VG | 0.37 | 0.8139 | ||
Ts–Tair | 1.CR | 1.KA | 0.4 | 0.7337 |
1.VG | 0.99 | 0.01 * | ||
2.CR | 2.KA | 0.86 | 0.04 * | |
2.VG | 0.24 | 0.9766 | ||
3.CR | 3.KA | 0.58 | 0.3085 | |
3.VG | 0.37 | 0.8141 | ||
CWSI | 1.CR | 1.KA | 0.08 | 1 |
1.VG | 0.19 | 0.59 | ||
2.CR | 2.KA | 0.38 | 0.02 * | |
2.VG | 0.11 | 0.963 | ||
3.CR | 3.KA | 0.19 | 0.602 | |
3.VG | 0.12 | 0.940 |
Index | Comparison | Mean Difference | p-Value | |
---|---|---|---|---|
PRI | 1.CR | 1.KA | 0.04 | <0.001 *** |
1.VG | 0.01 | 0.65 | ||
2.CR | 2.KA | 0.04 | <0.001 *** | |
2.VG | 0.01 | 0.18 | ||
3.CR | 3.KA | 0.04 | <0.001 *** | |
3.VG | 0.01 | 0.11 | ||
NDVI | 1.CR | 1.KA | 0.23 | <0.001 *** |
1.VG | 0.01 | 0.99 | ||
2.CR | 2.KA | 0.26 | <0.001 *** | |
2.VG | 0 | 1 | ||
3.CR | 3.KA | 0.25 | <0.001 *** | |
3.VG | 0 | 1 | ||
SR | 1.CR | 1.KA | 10.9 | <0.001 *** |
1.VG | 1.34 | 0.74 | ||
2.CR | 2.KA | 11.74 | <0.001 *** | |
2.VG | 0.57 | 1 | ||
3.CR | 3.KA | 10.61 | <0.001 *** | |
3.VG | 0.39 | 1 | ||
WI | 1.CR | 1.KA | 0.02 | <0.01 ** |
1.VG | 0 | 1 | ||
2.CR | 2.KA | 0.02 | <0.01 ** | |
2.VG | 0 | 1 | ||
3.CR | 3.KA | 0.02 | <0.01 ** | |
3.VG | 0 | 1 | ||
MSI | 1.CR | 1.KA | 0.04 | 0.16 |
1.VG | 0.01 | 1 | ||
2.CR | 2.KA | 0.04 | 0.04 * | |
2.VG | 0.02 | 0.92 | ||
3.CR | 3.KA | 0.05 | 0.02 * | |
3.VG | 0.01 | 0.95 | ||
LWI | 1.CR | 1.KA | 1.28 | <0.001 *** |
1.VG | 0 | 1 | ||
2.CR | 2.KA | 1.42 | <0.001 *** | |
2.VG | 0.02 | 1 | ||
3.CR | 3.KA | 1.36 | <0.001 *** | |
3.VG | 0.05 | 1 | ||
F687 | 1.CR | 1.KA | 1.02 | <0.001 *** |
1.VG | 0.07 | 1 | ||
2.CR | 2.KA | 1.57 | <0.001 *** | |
2.VG | 0.28 | 0.81 | ||
3.CR | 3.KA | 1.28 | <0.001 *** | |
3.VG | 0.05 | 1 | ||
F760 | 1.CR | 1.KA | 0.22 | 0.88 |
1.VG | 0.24 | 0.84 | ||
2.CR | 2.KA | 0.63 | 0.02 * | |
2.VG | 0.22 | 0.88 | ||
3.CR | 3.KA | 0.70 | <0.01 ** | |
3.VG | 0.11 | 1 |
References
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant Responses To Drought and Stress Tolerance. Bulg. J. Plant. Phys. 2003, 38, 187–206. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Fereres, E.; Acevedo, E.; Henderson, D.W. Water Stress and Dynamics of Growth and Yield of Crop Plants. In Water and Plant Life SE-18; Lange, O.L., Kappen, L., Schulze, E.-D., Eds.; Ecological Studies; Springer: Berlin, Germany, 1976; Volume 19, pp. 281–305. ISBN 978-3-642-66431-1. [Google Scholar]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2004; Volume 41, pp. 107–163. [Google Scholar]
- Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 2007, 58, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Kimball, B.A.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J. Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry. Agric. For. Meteorol. 1990, 51, 21–33. [Google Scholar] [CrossRef]
- Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013, 64, 3937–3949. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Rossini, M.; Panigada, C.; Cilia, C.; Meroni, M.; Busetto, L.; Cogliati, S.; Amaducci, S.; Colombo, R. Discriminating Irrigated and Rainfed Maize with Diurnal Fluorescence and Canopy Temperature Airborne Maps. ISPRS Int. J. Geo Inf. 2015, 4, 626–646. [Google Scholar] [CrossRef] [Green Version]
- Panigada, C.; Rossini, M.; Meroni, M.; Cilia, C.; Busetto, L.; Amaducci, S.; Boschetti, M.; Cogliati, S.; Picchi, V.; Pinto, F.; et al. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 167–178. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Schlerf, M.; Rock, G.; Lagueux, P.; Ronellenfitsch, F.; Gerhards, M.; Hoffmann, L.; Udelhoven, T. A Hyperspectral Thermal Infrared Imaging Instrument for Natural Resources Applications. Remote Sens. 2012, 4, 3995–4009. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, M.; Rock, G.; Schlerf, M.; Udelhoven, T. Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 27–39. [Google Scholar] [CrossRef]
- Stavros, E.N.; Schimel, D.; Pavlick, R.; Serbin, S.; Swann, A.; Duncanson, L.; Fisher, J.B.; Fassnacht, F.; Ustin, S.; Dubayah, R.; et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015. [Google Scholar] [CrossRef]
- Udelhoven, T.; Schlerf, M.; Bossung, C.; Retzlaff, R.; Rock, G.; Fischer, P.; Müller, A.; Storch, T.; Segl, K.; Eisele, A.; et al. A satellite-based imaging instrumentation study for hyperspectral thermal remote sensing. Sensors 2017, 17, 1542. [Google Scholar] [CrossRef] [PubMed]
- Hunt, E., Jr.; Rock, B. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A. Monitoring the Vernal Advancements and Retro Gradation of Natural Vegetation; Taxas A & M University: College Station, TX, USA, 1974. [Google Scholar]
- Gamon, J.; Peñuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–58. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–84. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Berni, J.A.J.; González-Dugo, V.; Fereres, E. Modelling PRI for water stress detection using radiative transfer models. Remote Sens. Environ. 2009, 113, 730–744. [Google Scholar] [CrossRef] [Green Version]
- Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; et al. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett. 2015, 42, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J.; et al. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Chang. Biol. 2015, 21, 4673–4684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francini, A.; Lorenzini, G.; Nali, C. The antitranspirant Di-1-p-menthene, a potential chemical protectant of ozone damage to plants. Water Air Soil Pollut. 2011, 219, 459–472. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Mikiciuk, M.; Ptak, P. The Effects of Anitranspirant Di-1-P-Menthene on Some Physiological Traits of Strawberry. J. Ecol. Eng. 2015, 16, 161–167. [Google Scholar] [CrossRef]
- Ouerghi, F.; Ben-Hammouda, M.; Teixeira Da Silva, J.A.; Albouchi, A.; Bouzaien, G.; Aloui, S.; Cheikh-M’hamed, H.; Nasraoui, B. The Effects of Vapor Gard on some Physiological Traits of Durum Wheat and Barley Leaves under Water Stress. Agric. Conspec. Sci. 2015, 79, 261–267. [Google Scholar]
- Plaut, Z.; Magril, Y.; Kedem, U. A new film forming material, which reduces water vapour conductance more than CO2 fixation in several horticultural crops. J. Hortic. Sci. Biotechnol. 2004, 79, 528–532. [Google Scholar] [CrossRef]
- Kahle, A.B.; Alley, R.E. Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sens. Environ. 1992, 42, 107–111. [Google Scholar] [CrossRef]
- Buitrago, M.F.; Groen, T.A.; Hecker, C.A.; Skidmore, A.K. Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS J. Photogramm. Remote Sens. 2016, 111, 22–31. [Google Scholar] [CrossRef]
- Rock, G.; Gerhards, M.; Schlerf, M.; Hecker, C.; Udelhoven, T. Plant species discrimination using emissive thermal infrared imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 16–26. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Lourakis, M.I.A. A Brief Description of the Levenberg-Marquardt Algorithm Implemened by Levmar. Available online: http://users.ics.forth.gr/lourakis/levmar/levmar.pdf (accessed on 20 March 2017).
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Meron, M.; Tsipris, J.; Charitt, D. Remote mapping of crop water status to assess spatial variability of crop stress. In Precision Agriculture; Stafford, J., Werner, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; ISBN 978-90-76998-21-3. [Google Scholar]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-Induced Fluorescence: A New Tool for Precision Farming. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; Schepers, J., VanToai, T., Eds.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2003; pp. 209–222. [Google Scholar]
- Alonso, L.; Gomez-Chova, L.; Vila-Frances, J.; Amoros-Lopez, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. In Remote Sensing of Clouds and the Atmosphere IX; Shen, S.S., Lewis, P.E., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; pp. 78–85. [Google Scholar]
- Verhoef, W.; Bach, H. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 2003, 87, 23–41. [Google Scholar] [CrossRef]
- Wieneke, S.; Ahrends, H.; Damm, A.; Pinto, F.; Stadler, A.; Rossini, M.; Rascher, U. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sens. Environ. 2016, 184, 654–667. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Seelig, H.-D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Adams, W.W.; Emery, W.J. Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sens. Environ. 2008, 112, 445–455. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Struthers, R.; Ivanova, A.; Tits, L.; Swennen, R.; Coppin, P. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 9–17. [Google Scholar] [CrossRef]
- Juszczak, R.; Humphreys, E.; Acosta, M.; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, J. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 2013, 366, 505–520. [Google Scholar] [CrossRef]
- Chojnicki, B.H.; Michalak, M.; Acosta, M.; Juszczak, R.; Augustin, J.; Drösler, M.; Olejnik, J. Measurements of Carbon Dioxide Fluxes by Chamber Method at the Rzecin Wetland Ecosystem, Poland. Pol. J. Environ. Stud. 2010, 19, 283–291. [Google Scholar]
- Acosta, M.; Juszczak, R.; Chojnicki, B.; Pavelka, M.; Havránková, K.; Lesny, J.; Krupková, L.; Urbaniak, M.; Machačová, K.; Olejnik, J. CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem. Wetlands 2017. [Google Scholar] [CrossRef]
- Hoffmann, M.; Jurisch, N.; Albiac Borraz, E.; Hagemann, U.; Drösler, M.; Sommer, M.; Augustin, J. Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: A standardized conceptual and practical approach. Agric. For. Meteorol. 2015, 200, 30–45. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 17 July 2018).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://ci.nii.ac.jp/naid/10025451956/ (accessed on 17 July 2018).
- Lenth, R. V Least-Squares Means: The {R} Package {lsmeans}. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; de Miguel, E. Land surface temperature derived from airborne hyperspectral scanner thermal infrared data. Remote Sens. Environ. 2006, 102, 99–115. [Google Scholar] [CrossRef]
- Nilsson, H.E. Hand-held radiometry and IR-thermography of plant diseases in field plot experiments. Int. J. Remote Sens. 1991, 12, 545–557. [Google Scholar] [CrossRef]
- Chiwaki, K.; Nagamori, S.; Inoue, Y. Predicting bacterial wilt disease of tomato plants using remotely sensed thermal imagery. J. Agric. Meteorol. 2005, 61, 153–0164. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote Sens. 2014, 6, 5107–5123. [Google Scholar] [CrossRef]
- Verrelst, J.; van der Tol, C.; Magnani, F.; Sabater, N.; Rivera, J.P.; Mohammed, G.; Moreno, J. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sens. Environ. 2016, 176, 139–151. [Google Scholar] [CrossRef]
Category | Index | Equation | Reference |
---|---|---|---|
Xanthophyll | PRI | PRI = (R570 − R531)/(R570 + R531) | Gamon et al. [24] |
Greenness | SR | SR = R800/R670 | Jordan [54] |
NDVI | NDVI = (R800 − R670)/(R800 + R670) | Rouse et al. [23] | |
Water content | WI | WI = R900/R970 | Peñuelas et al. [52] |
LWI | LWI = R1300/R1450 | Seelig et al. [53] | |
MSI | MSI = R1600/R820 | Hunt and Rock [22] |
Date | Flight | Tground | Tairborne | ∆T |
---|---|---|---|---|
11/06/2014 09:18 | 1 | 297.69 | 297.5 | 0.19 |
11/06/2014 10:48 | 2 | 299.41 | 299.79 | 0.38 |
11/06/2014 12:51 | 3 | 301.21 | 301.7 | 0.49 |
Treatment | Effect on VNIR/SWIR | Effect on TIR | Effect on SIF |
---|---|---|---|
CR | Normal | Normal | Normal |
VG | Indices sensitive to leaf water content and chlorophyll content remained unchanged. | Ts was increased due to reduced transpiration. | SIF indices remained unchanged probably due to too subtle changes in photosynthetic efficiency. |
KA | Indices were highly sensitive to an overall increase in reflectance and corresponding reduction of APAR (Absorbed Photosynthetically Active Radiation). | Ts was reduced due to a decrease in absorbed radiation. | SIF indices were reduced due to decreased overall available absorbed energy (APAR). |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y. Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sens. 2018, 10, 1139. https://doi.org/10.3390/rs10071139
Gerhards M, Schlerf M, Rascher U, Udelhoven T, Juszczak R, Alberti G, Miglietta F, Inoue Y. Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sensing. 2018; 10(7):1139. https://doi.org/10.3390/rs10071139
Chicago/Turabian StyleGerhards, Max, Martin Schlerf, Uwe Rascher, Thomas Udelhoven, Radoslaw Juszczak, Giorgio Alberti, Franco Miglietta, and Yoshio Inoue. 2018. "Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms" Remote Sensing 10, no. 7: 1139. https://doi.org/10.3390/rs10071139
APA StyleGerhards, M., Schlerf, M., Rascher, U., Udelhoven, T., Juszczak, R., Alberti, G., Miglietta, F., & Inoue, Y. (2018). Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sensing, 10(7), 1139. https://doi.org/10.3390/rs10071139