Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review
Abstract
:1. Introduction
2. Brief Overview of Plasma Conversion Processes
3. NOx Production
3.1. Type of Plasma and Reactors
3.2. Operation Parameters
3.3. Plasma-Catalysis for NOx Production
4. Ammonia Synthesis
4.1. Reactants and Composition
4.1.1. Direct Synthesis of Ammonia from N2 and H2
4.1.2. Plasma-Assisted Ammonia Synthesis with H2O
4.1.3. Other Reactants
4.2. Plasma/Reactor Types and Electrode Configurations
4.3. Catalysts Selection
5. Conclusion and Outlook
Author Contributions
Conflicts of Interest
References
- Wagner, S. Biological Nitrogen Fixation. Nat. Educ. Knowl. 2011, 3, 3–7. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Dise, N.B.; Sutton, M.A.; Bleeker, A.; Grizzetti, B.; Leach, A.M.; De Vries, W. Nitrogen: Too Much of a Vital Resource. Sci. Br. 2015, 48. [Google Scholar] [CrossRef]
- Galloway, J.N.; Cowling, E.B. Reactive Nitrogen and of The World: 200 Years of Change. Ambio 2002, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, A. The Nitrogen Cycle: Processes, Players, and Human Impact. Nat. Educ. Knowl. 2010, 2, 1–8. [Google Scholar]
- Klopsch, I.; Yuzik-Klimova, E.Y.; Schneider, S. Functionalization of N2 by Mid to Late Transition Metals via N–N Bond Cleavage; Springer: Cham, Switzerland, 2017; Volume 60, ISBN 9783319577135. [Google Scholar]
- Lehnert, N.; Hegg, E.; Coruzzi, G.; Seefeldt, L.; Stein, L.; Patten, T.; Popkin, G. Feeding the World in the 21 St Century: Grand Challenges in the Nitrogen Cycle; National Science Foundation: Arlington, VA, USA, 2015. [Google Scholar]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, N.; et al. The Global Nitrogen Cycle in the Twenty- First Century. Philos. Trans. R. Soc. B 2013, 368. [Google Scholar] [CrossRef] [Green Version]
- Fields, S. Global Nitrogen: Cycling out of Control. Environ. Health Perspect. 2004, 112, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How A Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Bezdek, M.J.; Chirik, P.J. Expanding Boundaries: N2 Cleavage and Functionalization beyond Early Transition Metals. Angew. Chem. Int. Ed. 2016, 55, 7892–7896. [Google Scholar] [CrossRef]
- Smill, V.; Streatfeild, R.A. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. Electron. Green J. 2002, 1, 383–384. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen and Food Production: Proteins for Human Diets. AMBIO A J. Hum. Environ. 2002, 31, 126. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs Population Division. World Population Prospects The 2017 Revision Key Findings and Advance Tables; United Nations Department of Economic and Social Affairs Population Division: New York, NY, USA, 2017; ISBN 9788578110796. [Google Scholar]
- Travis, A.S. Nitrogen, Novel High-Pressure Chemistry, and the German War Effort. In The Seventh Wheeler Lecture Royal Society of Chemistry, 22 October 2014; Burlington House: London, UK, 2015; pp. 1–14. [Google Scholar]
- Tamaru, K. Chapter 1 The History of The Development of Ammonia Synthesis. In Catalytic Ammonia Synthesis; Jennings, J.R., Ed.; Springer: Boston, MA, USA, 1991; pp. 1–18. ISBN 978-1-4757-9594-3. [Google Scholar]
- Travis, A.S. Chapter 2: Electric Arcs, Cyanamide, Carl Bosch and Fritz Haber. In The Synthetic Nitrogen Industry in World War I Its Emergence and Expansion; Travis, A.S., Ed.; Springer International Publishing: Fargo, ND, USA, 2015; pp. 17–72. ISBN 9783319193564. [Google Scholar]
- Leigh, G.J.; Fisher, K.; Newton, W.E. Chapter 1 Nitrogen Fixation—A General Overview. In Nitrogen Fixation at the Millennium; Elsevier B.V.: Brighton, UK, 2002; pp. 1–34. ISBN 9780444509659. [Google Scholar]
- Ernst, F. Chapter 3: The Arc Process. In Fixation of Atmospheric Nitrogen; Chapman & Hall: London, UK, 1928; pp. 21–31. [Google Scholar]
- Patil, B.S.; Wang, Q.; Hessel, V.; Lang, J. Plasma N2-Fixation: 1900–2014. Catal. Today 2015, 256, 49–66. [Google Scholar] [CrossRef]
- Appl, M. The Haber-Bosch Heritage: The Ammonia Production Technology. In Proceedings of the 50th Anniversary of the IFA Technical Conference, Sevilla, Spain, 25–26 September 1997; p. 25. [Google Scholar]
- Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A Review of The Existing and Alternative Methods for Greener Nitrogen Fixation. Chem. Eng. Process. Process Intensif. 2015, 90, 24–33. [Google Scholar] [CrossRef]
- Schrock, R.R. Reduction of Dinitrogen. Proc. Natl. Acad. Sci. USA 2006, 103, 17087. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Nishibayashi, Y. Developing More Sustainable Processes for Ammonia Synthesis. Coord. Chem. Rev. 2013, 257, 2551–2564. [Google Scholar] [CrossRef]
- Pfromm, P.H. Towards Sustainable Agriculture: Fossil-Free Ammonia. J. Renew. Sustain. Energy 2017, 9. [Google Scholar] [CrossRef]
- Barbir, F. PEM Electrolysis For Production of Hydrogen From Renewable Energy Sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Kk, B.Y.; Crookes, S.W. On The Oxidation of Atmospheric Nitrogen In Electric Arcs. Trans. Faraday Soc. 1906, 2, 98–116. [Google Scholar]
- Eyde, S. Oxidation of Atmospheric Nitrogen and Development of Resulting Industries in Norway. Ind. Eng. Chem. 1912, 4, 771–774. [Google Scholar] [CrossRef]
- Rusanov, V.D.; Fridman, A.A.; Sholin, G.V. The Physics of A Chemically Active Plasma With Nonequilibrium Vibrational Excitation of Molecules. Sov. Phys. Uspekhi 1981, 24, 447–474. [Google Scholar] [CrossRef]
- Rusanov, V.D.; Fridman, A.A. Plasma Chemistry; Atomizdat: Moscow, Russia, 1978. [Google Scholar]
- Fauchais, P.; Rakowitz, J. Physics on Plasma Chemistry. J. Phys. Colloq. 1979, 40, 289–312. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; Van Dijk, J.; Zimmermann, J.L. Plasma Medicine: An Introductory Review. New J. Phys. 2009, 11. [Google Scholar] [CrossRef]
- Mei, D.; Tu, X. Conversion of CO2 in a Cylindrical Dielectric Barrier Discharge Reactor: Effects of Plasma Processing Parameters and Reactor Design. J. CO2 Util. 2017, 19, 68–78. [Google Scholar] [CrossRef]
- Tao, X.; Bai, M.; Li, X.; Long, H.; Shang, S.; Yin, Y.; Dai, X. CH4–CO2 Reforming by Plasma—Challenges and Opportunities. Prog. Energy Combust. Sci. 2011, 37, 113–124. [Google Scholar] [CrossRef]
- Ashford, B.; Tu, X. Non-Thermal Plasma Technology for the Conversion of CO2. Curr. Opin. Green Sustain. Chem. 2017, 3, 45–49. [Google Scholar] [CrossRef]
- Yao, S.; Nakayama, A.; Suzuki, E. Acetylene and Hydrogen from Pulsed Plasma Conversion of Methane. Catal. Today 2001, 71, 219–223. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Sun, H.; Wang, R.; Tu, X.; Shao, T. Highly Efficient Conversion of Methane Using Microsecond and Nanosecond Pulsed Spark Discharges. Appl. Energy 2018, 226, 534–545. [Google Scholar] [CrossRef]
- Li, G.; Qian, M.; Kang, J.; Liu, S.; Ren, C.; Zhang, J.; Wang, D. A Mechanistic Study on Partial Oxidation of Methane to Methanol with Hydrogen Peroxide Vapor in Atmospheric Dielectric Barrier Discharge. Jpn. J. Appl. Phys. 2018, 57, 096204. [Google Scholar] [CrossRef]
- Lin, Q.; Ni, G.; Guo, Q.; Wu, W.; Li, L.; Zhao, P.; Xie, H.; Meng, Y. Reforming of CH4 and CO2 by Combination of Alternating Current-Driven Nonthermal Arc Plasma and Catalyst. IEEE Trans. Plasma Sci. 2018, 46, 2528–2535. [Google Scholar] [CrossRef]
- Scapinello, M.; Delikonstantis, E.; Stefanidis, G.D. Direct Methane-to-Ethylene Conversion in a Nanosecond Pulsed Discharge. Fuel 2018, 222, 705–710. [Google Scholar] [CrossRef]
- Brune, L.; Ozkan, A.; Genty, E.; Visart De Bocarmé, T.; Reniers, F. Dry Reforming of Methane via Plasma-Catalysis: Influence of the Catalyst Nature Supported on Alumina in a Packed-Bed DBD Configuration. J. Phys. D Appl. Phys. 2018, 51. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Wang, L.; Wu, C.F.; Wang, J.Q.; Shen, B.X.; Tu, X. Low Temperature Reforming of Biogas over K-, Mg- and Ce-Promoted Ni/Al2O3 catalysts for the Production of Hydrogen Rich Syngas: Understanding the Plasma-Catalytic Synergy. Appl. Catal. B Environ. 2018, 224, 469–478. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.; Sunkara, M.K.; Bogaerts, A. Plasma Catalysis: Synergistic Effects at the Nanoscale. Chem. Rev. 2015, 115, 13408–13446. [Google Scholar] [CrossRef] [PubMed]
- Ingels, R.; Graves, D.B. Air Plasma for Nitrogen Fixation: An Old Idea with New Promise. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 5–10 July 2015; pp. 6–8. [Google Scholar]
- Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; Okamoto, K. Production of Nitric Oxide Using a Pulsed Arc Discharge. IEEE Trans. Plasma Sci. 2002, 30, 1993–1998. [Google Scholar] [CrossRef]
- Hu, H.; Liang, H.; Li, J.; Zhao, Q.; He, J. Study on Production of Inhaled Nitric Oxide for Medical Applications by Pulsed Discharge. IEEE Trans. Plasma Sci. 2007, 35, 619–625. [Google Scholar] [CrossRef]
- Namihira, T.; Tsukamoto, S.; Wang, D.; Katsuki, S.; Akiyama, H.; Hackam, R.; Okamoto, K. Production of Nitric Monoxide in Dry Air Using Pulsed Discharge. In Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers, Monterey, CA, USA, 27–30 June 1999; Volume 2, pp. 1313–1316. [Google Scholar] [CrossRef]
- Ono, R.; Oda, T. NO Formation in a Pulsed Spark Discharge in N2/O2/Ar Mixture at Atmospheric Pressure. J. Phys. D Appl. Phys. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, A.; Starikovskiy, A.Y. Reactive Oxygen and Nitrogen Species Production and Delivery Into Liquid Media by Microsecond Thermal Spark-Discharge Plasma Jet. IEEE Trans. Plasma Sci. 2012, 40, 2163–2171. [Google Scholar] [CrossRef]
- Coudert, J.F. Contribution d l’ktude de La Synthese Des Oxydes d’azote Par Chalumeau d Plasma. Ph.D. Thesis, Universitt de Limoges, Limoges, France, 1978. [Google Scholar]
- Ammann, P.R.; Tlmmlns, R.S. Chemical Reactions During Rapid Quenching of Oxygen-Nitrogen Mixtures from Very High Temperatures. AIChE J. 1966, 12, 956–963. [Google Scholar] [CrossRef]
- Pavlovich, M.J.; Ono, T.; Galleher, C.; Curtis, B.; Clark, D.S.; Machala, Z.; Graves, D.B. Air Spark-like Plasma Source for Antimicrobial NOx Generation. J. Phys. D Appl. Phys. 2014, 47. [Google Scholar] [CrossRef]
- Wang, W.; Patil, B.S.; Heijkers, S.; Hessel, V.; Bogaerts, A. Nitrogen Fixation by Gliding Arc Plasma: Better Insight By Chemical Kinetics Modeling. ChemSusChem 2017, 10, 2145–2157. [Google Scholar] [CrossRef]
- Macheret, S.O.; Rusanov, V.D.; Fridman, A.A.; Sholin, G.V. Synthesis of Nitrogen Oxides in A Nonequilibrium Plasma. Pisma v Zhurnal Tekhnischeskoi Fiziki 1978, 4, 346–351. [Google Scholar]
- Rehbein, N.; Cooray, V. NOx Production in Spark and Corona Discharges. J. Electrostat. 2001, 51–52, 333–339. [Google Scholar] [CrossRef]
- Mok, Y.S. Oxidation of NO to NO2 Using the Ozonization Method for the Improvement of Selective Catalytic Reduction. J. Chem. Eng. Japan 2004, 37, 1337–1344. [Google Scholar] [CrossRef]
- Malik, M.A. Nitric Oxide Production by High Voltage Electrical Discharges for Medical Uses: A Review. Plasma Chem. Plasma Process. 2016, 36, 737–766. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Murphy, A.B.; McLean, K.M.; Kong, M.G.; Ostrikov, K. Atmospheric Pressure Plasmas: Infection Control and Bacterial Responses. Int. J. Antimicrob. Agents 2014, 43, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.B. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D Appl. Phys. 2012, 45. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Czernichowski, A. Gliding Arc: Applications to Engineering and Environment Control. Pure Appl. Chem. 1994, 66, 1301–1310. [Google Scholar] [CrossRef]
- Indarto, A.; Yang, D.R.; Choi, J.W.; Lee, H.; Song, H.K. Gliding Arc Plasma Processing of CO2 conversion. J. Hazard. Mater. 2007, 146, 309–315. [Google Scholar] [CrossRef]
- Nunnally, T.; Gutsol, K.; Rabinovich, A.; Fridman, A.; Gutsol, A.; Kemoun, A. Dissociation of CO2 in a Low Current Gliding Arc Plasmatron. J. Phys. D Appl. Phys. 2011, 44. [Google Scholar] [CrossRef]
- Petitpas, G.; Rollier, J.D.; Darmon, A.; Gonzalez-Aguilar, J.; Metkemeijer, R.; Fulcheri, L. A Comparative Study of Non-Thermal Plasma Assisted Reforming Technologies. Int. J. Hydrogen Energy 2007, 32, 2848–2867. [Google Scholar] [CrossRef]
- Pornmai, K.; Jindanin, A.; Sekiguchi, H.; Chavadej, S. Synthesis Gas Production from CO2-Containing Natural Gas by Combined Steam Reforming and Partial Oxidation in an AC Gliding Arc Discharge. Plasma Chem. Plasma Process. 2012, 32, 723–742. [Google Scholar] [CrossRef]
- Tu, X.; Whitehead, J.C. Plasma Dry Reforming of Methane in an Atmospheric Pressure AC Gliding Arc Discharge: Co-Generation of Syngas and Carbon Nanomaterials. Int. J. Hydrogen Energy 2014, 39, 9658–9669. [Google Scholar] [CrossRef]
- Burlica, R.; Kirkpatrick, M.J.; Locke, B.R. Formation of Reactive Species in Gliding Arc Discharges with Liquid Water. J. Electrostat. 2006, 64, 35–43. [Google Scholar] [CrossRef]
- Cormier, J.M.; Aubry, O.; Khacef, A. Degradation of Organics Compounds and Production of Activated Species in Dielectric Barrier Discharges and Glidarc Reactors. In Plasma Assisted Decontamination of Biological and Chemical Agents; Gibson, K., Güçeri, S., Haas, C., Fridman, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 125–134. ISBN 9781402084393. [Google Scholar]
- Bo, Z.; Yan, J.; Li, X.; Chi, Y.; Cen, K. Nitrogen Dioxide Formation in the Gliding Arc Discharge-Assisted Decomposition of Volatile Organic Compounds. J. Hazard. Mater. 2009, 166, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Patil, B.S.; Rovira Palau, J.; Hessel, V.; Lang, J.; Wang, Q. Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters. Plasma Chem. Plasma Process. 2016, 36, 241–257. [Google Scholar] [CrossRef]
- Patil, B.S.; Peeters, F.J.J.; van Rooij, G.J.; Medrano, J.A.; Gallucci, F.; Lang, J.; Wang, Q.; Hessel, V. Plasma Assisted Nitrogen Oxide Production from Air: Using Pulsed Powered Gliding Arc Reactor for a Containerized Plant. AIChE J. 2018, 64, 526–537. [Google Scholar] [CrossRef]
- Mizukoshi, Y.; Katagiri, R.; Horibe, H.; Hatanaka, S.; Asano, M.; Nishimura, Y. Nitrogen Fixation in an Aqueous Solution by a Novel Flow Plasma System. Chem. Lett. 2015, 44, 495–496. [Google Scholar] [CrossRef]
- Janda, M.; Martišovitš, V.; Hensel, K.; Machala, Z. Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge. Plasma Chem. Plasma Process. 2016, 36, 767–781. [Google Scholar] [CrossRef]
- Janda, M.; Hoder, T.; Sarani, A.; Brandenburg, R.; Machala, Z. Cross-Correlation Spectroscopy Study of the Transient Spark Discharge in Atmospheric Pressure Air. Plasma Sources Sci. Technol. 2017, 26. [Google Scholar] [CrossRef]
- Janda, M.; Martišovitš, V.; Hensel, K.; Dvonč, L.; Machala, Z. Measurement of the Electron Density in Transient Spark Discharge. Plasma Sources Sci. Technol. 2014, 23. [Google Scholar] [CrossRef]
- Janda, M.; Martišovitš, V.; Hensel, K.; Machala, Z. Study of Transient Spark Discharge Focused at NOx Generation for Biomedical Applications. J. Phys. Conf. Ser. 2016, 768. [Google Scholar] [CrossRef]
- Collet, G.; Robert, E.; Lenoir, A.; Vandamme, M.; Darny, T.; Dozias, S.; Kieda, C.; Pouvesle, J.M. Plasma Jet-Induced Tissue Oxygenation: Potentialities for New Therapeutic Strategies. Plasma Sources Sci. Technol. 2014, 23. [Google Scholar] [CrossRef]
- Pekárek, S. Experimental Study of Nitrogen Oxides and Ozone Generation by Corona-Like Dielectric Barrier Discharge with Airflow in a Magnetic Field. Plasma Chem. Plasma Process. 2017, 37, 1313–1330. [Google Scholar] [CrossRef]
- Lee, J.; Sun, H.; Im, S.K.; Soo Bak, M. Formation of Nitrogen Oxides from Atmospheric Electrodeless Microwave Plasmas in Nitrogen-Oxygen Mixtures. J. Appl. Phys. 2017, 122. [Google Scholar] [CrossRef]
- Han, Y.; Wen, S.; Tang, H.; Wang, X.; Zhong, C. Influences of Frequency on Nitrogen Fixation of Dielectric Barrier Discharge in Air. Plasma Sci. Technol. 2018, 20. [Google Scholar] [CrossRef]
- Tang, X.; Wang, J.; Yi, H.; Zhao, S.; Gao, F.; Chu, C. Nitrogen Fixation and NO Conversion Using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chem. Plasma Process. 2018, 38, 485–501. [Google Scholar] [CrossRef]
- Patil, B.S.; Cherkasov, N.; Lang, J.; Ibhadon, A.O.; Hessel, V.; Wang, Q. Low Temperature Plasma-Catalytic NOxsynthesis in a Packed DBD Reactor: Effect of Support Materials and Supported Active Metal Oxides. Appl. Catal. B Environ. 2016, 194, 123–133. [Google Scholar] [CrossRef]
- Malik, M.A.; Jiang, C.; Heller, R.; Lane, J.; Hughes, D.; Schoenbach, K.H. Ozone-Free Nitric Oxide Production Using an Atmospheric Pressure Surface Discharge—A Way to Minimize Nitrogen Dioxide Co-Production. Chem. Eng. J. 2016, 283, 631–638. [Google Scholar] [CrossRef]
- Park, D.P.; Davis, K.; Gilani, S.; Alonzo, C.A.; Dobrynin, D.; Friedman, G.; Fridman, A.; Rabinovich, A.; Fridman, G. Reactive Nitrogen Species Produced in Water by Non-Equilibrium Plasma Increase Plant Growth Rate and Nutritional Yield. Curr. Appl. Phys. 2013, 13 (Suppl. 1), S19–S29. [Google Scholar] [CrossRef]
- Takahashi, K.; Satoh, K.; Itoh, H.; Kawaguchi, H.; Timoshkin, I.; Given, M.; MacGregor, S. Production Characteristics of Reactive Oxygen/Nitrogen Species in Water Using Atmospheric Pressure Discharge Plasmas. Jpn. J. Appl. Phys. 2016, 55, 07LF01-1–07LF01-6. [Google Scholar] [CrossRef]
- Tang, X.; Wang, J.; Yi, H.; Zhao, S.; Gao, F.; Huang, Y.; Zhang, R.; Yang, Z. N2O Formation Characteristics in Dielectric Barrier Discharge Reactor for Environmental Application: Effect of Operating Parameters. Energy Fuels 2017, 31. [Google Scholar] [CrossRef]
- Heuer, K.; Hoffmanns, M.A.; Demir, E.; Baldus, S.; Volkmar, C.M.; Röhle, M.; Fuchs, P.C.; Awakowicz, P.; Suschek, C.V.; Opländer, C. The Topical Use of Non-Thermal Dielectric Barrier Discharge (DBD): Nitric Oxide Related Effects on Human Skin. Nitric Oxide Biol. Chem. 2015, 44, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Mattson, A.M.; Edelblute, C.M.; Malik, M.A.; Heller, L.C.; Kolb, J.F. Nitric Oxide Generation with an Air Operated Non-Thermal Plasma Jet and Associated Microbial Inactivation Mechanisms. Plasma Process. Polym. 2014, 11, 1044–1056. [Google Scholar] [CrossRef]
- Ji, S.H.; Kim, T.; Panngom, K.; Hong, Y.J.; Pengkit, A.; Park, D.H.; Kang, M.H.; Lee, S.H.; Im, J.S.; Kim, J.S.; et al. Assessment of the Effects of Nitrogen Plasma and Plasma-Generated Nitric Oxide on Early Development of Coriandum Sativum. Plasma Process. Polym. 2015, 12, 1164–1173. [Google Scholar] [CrossRef]
- Peng, P.; Chen, P.; Addy, M.; Cheng, Y.; Zhang, Y.; Anderson, E.; Zhou, N.; Schiappacasse, C.; Hatzenbeller, R.; Fan, L.; et al. In Situ Plasma-Assisted Atmospheric Nitrogen Fixation Using Water and Spray-Type Jet Plasma. Chem. Commun. 2018, 54, 2886–2889. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Yi, C.; Eom, S.; Park, S.; Kim, S.B.; Ryu, S.; Yoo, S.J. Effects of Gas Temperature in the Plasma Layer on RONS Generation in Array-Type Dielectric Barrier Discharge at Atmospheric Pressure. Phys. Plasmas 2017, 24, 123516. [Google Scholar] [CrossRef]
- Yu, B.; Blaesi, A.H.; Casey, N.; Raykhtsaum, G.; Zazzeron, L.; Jones, R.; Morrese, A.; Dobrynin, D.; Malhotra, R.; Bloch, D.B.; et al. Detection and Removal of Impurities in Nitric Oxide Generated from Air by Pulsed Electrical Discharge; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 60, ISBN 6176435757. [Google Scholar]
- Pipa, A.V.; Reuter, S.; Foest, R.; Weltmann, K.-D. Controlling the NO Production of an Atmospheric Pressure Plasma Jet. J. Phys. D Appl. Phys. 2012, 45, 085201. [Google Scholar] [CrossRef]
- Li, K.; Javed, H.; Zhang, G. Calculation of Ozone and NOx Production under AC Corona Discharge in Dry Air Used for Faults Diagnostic. In Proceedings of the 2015 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology; Atlantis Press: Paris, France, 2016; pp. 461–466. [Google Scholar]
- Na, Y.H.; Kumar, N.; Kang, M.-H.; Cho, G.S.; Choi, E.H.; Park, G.; Uhm, H.S. Production of Nitric Oxide Using a Microwave Plasma Torch and Its Application to Fungal Cell Differentiation. J. Phys. D Appl. Phys. 2015, 48, 195401. [Google Scholar] [CrossRef]
- Van Gaens, W.; Bruggeman, P.J.; Bogaerts, A. Numerical Analysis of the NO and O Generation Mechanism in a Needle-Type Plasma Jet. New J. Phys. 2014, 16. [Google Scholar] [CrossRef]
- Rapakoulias, D.; Cavadias, S.; Amouroux, J.; Rapakoulias, D.; Cavadias, S.; Processus, J.A.; Amouroux, S.C.J. Processus Catalytiques Dans Un Réacteur à Plasma Hors d ’ Équilibre II. Fixation de l’ Azote Dans Le Système N2-O2. Rev. Phys. Appl. 1980, 15, 1261–1265. [Google Scholar] [CrossRef]
- Cavadias, S.; Amouroux, J. Process and Installation for Heating a Fluidized Bed by Plasma Injection. U.S. Patent 4,469,509, 4 September 1984. [Google Scholar]
- Mutel, B.; Dessaux, O.; Goudmand, P. Energy Cost Improvement of The Nitrogen Oxides Synthesis in a Low Pressure Plasma. Rev. Phys. Appl. 1984, 19, 461–464. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, A.; Yang, X.; Niu, J.; Xu, Y. Formation of NOx from N2 and O2 in Catalyst-Pellet Filled Dielectric Barrier Discharges at Atmospheric Pressure. Chem. Commun. 2003, 5, 1418. [Google Scholar] [CrossRef]
- Appl, M. Ammonia, 2. Production Processes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2012; Volume 3, pp. 295–338. ISBN 9783527306732. [Google Scholar]
- Uyama, H.; Matsumoto, O. Synthesis of Ammonia in High-Frequency Discharges. Plasma Chem. Plasma Process. 1989, 9, 13–24. [Google Scholar] [CrossRef]
- Eremin, E.N.; Maltsev, A.N.; Syaduk, V.L. Catalytic Synthesis of Ammonia in a Barrier Discharge. Russ. J. Phys. Chem. USSR 1971, 45, 635–636. [Google Scholar]
- Sugiyama, K.; Akazawa, K.; Oshima, M.; Miura, H.; Matsuda, T.; Nomura, O. Ammonia Synthesis by Means of Plasma over MgO Catalyst. Plasma Chem. Plasma Process. 1986, 6, 179–193. [Google Scholar] [CrossRef]
- Yin, K.S.; Venugopalan, M. Plasma Chemical Synthesis. I. Effect of Electrode Material on the Synthesis of Ammonia. Chem. Plasma Process. Plasma 1983, 3, 343–350. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Nonequilibrium Volume Plasma Chemical Processing. IEEE Trans. Plasma Sci. 1991, 19, 1063–1077. [Google Scholar] [CrossRef]
- Peng, P.; Li, Y.; Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Atmospheric Pressure Ammonia Synthesis Using Non-Thermal Plasma Assisted Catalysis. Plasma Chem. Plasma Process. 2016, 36, 1201–1210. [Google Scholar] [CrossRef]
- Whitehead, J.C. The Chemistry of Cold Plasma. In Cold Plasma in Food and Agriculture: Fundamentals and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 53–81. ISBN 9780128013656. [Google Scholar]
- Akay, G.; Zhang, K. Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma. Ind. Eng. Chem. Res. 2017, 56, 457–468. [Google Scholar] [CrossRef]
- Gómez-Ramírez, A.; Montoro-Damas, A.M.; Cotrino, J.; Lambert, R.M.; González-Elipe, A.R. About the Enhancement of Chemical Yield during the Atmospheric Plasma Synthesis of Ammonia in a Ferroelectric Packed Bed Reactor. Plasma Process. Polym. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Suzuki, A.; Asahina, S. Stable Molecules in N2-H2 Plasmas Measured Using a Quartz Sensor. Jpn. J. Appl. Phys. 2013, 52, 2–7. [Google Scholar] [CrossRef]
- Gómez-Ramŕez, A.; Cotrino, J.; Lambert, R.M.; González-Elipe, A.R. Efficient Synthesis of Ammonia from N2 and H2 Alone in a Ferroelectric Packed-Bed DBD Reactor. Plasma Sources Sci. Technol. 2015, 24. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, Z.; Bai, X.; Bai, M.; Ning, W. Plasma Synthesis of Ammonia With a Microgap Dielectric Barrier Discharge at Ambient Pressure. IEEE Trans. Plasma Sci. 2003, 31, 1285–1291. [Google Scholar] [CrossRef]
- Mizushima, T.; Matsumoto, K.; Sugoh, J.I.; Ohkita, H.; Kakuta, N. Tubular Membrane-like Catalyst for Reactor with Dielectric-Barrier- Discharge Plasma and Its Performance in Ammonia Synthesis. Appl. Catal. A Gen. 2004, 265, 53–59. [Google Scholar] [CrossRef]
- Xie, D.; Sun, Y.; Zhu, T.; Fan, X.; Hong, X.; Yang, W. Ammonia Synthesis and By-Product Formation from H2O, H2 and N2 by Dielectric Barrier Discharge Combined with an Ru/Al2O3 Catalyst. RSC Adv. 2016, 6, 105338–105346. [Google Scholar] [CrossRef]
- Aihara, K.; Akiyama, M.; Deguchi, T.; Tanaka, M.; Hagiwara, R.; Iwamoto, M. Remarkable Catalysis of a Wool-like Copper Electrode for NH3 Synthesis from N2 and H2 in Non-Thermal Atmospheric Plasma. Chem. Commun. 2016, 52, 13560–13563. [Google Scholar] [CrossRef]
- Mingdong, B.; Xiyao, B.; Zhitao, Z. Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure. Plasma Chem. Plasma Process. 2000, 20, 511–520. [Google Scholar] [CrossRef]
- Hong, J.; Aramesh, M.; Shimoni, O.; Seo, D.H.; Yick, S.; Greig, A.; Charles, C.; Prawer, S.; Murphy, A.B. Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-Equilibrium Discharge. Plasma Chem. Plasma Process. 2016, 36, 917–940. [Google Scholar] [CrossRef]
- Nakajima, J.; Sekiguchi, H. Synthesis of Ammonia Using Microwave Discharge at Atmospheric Pressure. Thin Solid Films 2008, 516, 4446–4451. [Google Scholar] [CrossRef]
- Peng, P.; Chen, P.; Schiappacasse, C.; Zhou, N.; Anderson, E.; Chen, D.; Liu, J.; Cheng, Y.; Hatzenbeller, R.; Addy, M.; et al. A Review on the Non-Thermal Plasma-Assisted Ammonia Synthesis Technologies. J. Clean. Prod. 2018, 177, 597–609. [Google Scholar] [CrossRef]
- Peng, P.; Cheng, Y.; Hatzenbeller, R.; Addy, M.; Zhou, N.; Schiappacasse, C.; Chen, D.; Zhang, Y.; Anderson, E.; Liu, Y.; et al. Ru-Based Multifunctional Mesoporous Catalyst for Low-Pressure and Non-Thermal Plasma Synthesis of Ammonia. Int. J. Hydrogen Energy 2017, 42, 19056–19066. [Google Scholar] [CrossRef]
- Hong, J.; Prawer, S.; Murphy, A.B. Production of Ammonia by Heterogeneous Catalysis in a Packed-Bed Dielectric-Barrier Discharge: Influence of Argon Addition and Voltage. IEEE Trans. Plasma Sci. 2014, 42, 2338–2339. [Google Scholar] [CrossRef]
- Zijlmans, R.A.B.; Gabriel, O.; Welzel, S.; Hempel, F.; Röpcke, J.; Engeln, R.; Schram, D.C. Molecule Synthesis in an Ar-CH4-O2-N2 Microwave Plasma. Plasma Sources Sci. Technol. 2006, 15, 564–573. [Google Scholar] [CrossRef]
- de Castro, A.; Tabarés, F.L. Role of Nitrogen Inventory and Ion Enhanced N-H Recombination in the Ammonia Formation on Tungsten Walls. A DC Glow Discharge Study. Vacuum 2018, 151, 66–72. [Google Scholar] [CrossRef]
- de Castro, A.; Alegre, D.; Tabarés, F.L. Influence of Residence Time and Helium Addition in the Ammonia Formation on Tungsten Walls in N2–H2 glow Discharge Plasmas. Nucl. Mater. Energy 2017, 12, 399–404. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University: New York, NY, USA, 2008; ISBN 9780521847353. [Google Scholar]
- Kuo, I.-F.W.; Mundy, C.J. An Ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface. Science 2004, 303, 658–660. [Google Scholar] [CrossRef]
- Haruyama, T.; Namise, T.; Shimoshimizu, N.; Uemura, S.; Takatsuji, Y.; Hino, M.; Yamasaki, R.; Kamachi, T.; Kohno, M. Non-Catalyzed One-Step Synthesis of Ammonia from Atmospheric Air and Water. Green Chem. 2016, 18, 4536–4541. [Google Scholar] [CrossRef]
- Sakakura, T.; Uemura, S.; Hino, M.; Kiyomatsu, S.; Takatsuji, Y.; Yamasaki, R.; Morimoto, M.; Haruyama, T. Excitation of H2O at the Plasma/Water Interface by UV Irradiation for the Elevation of Ammonia Production. Green Chem. 2018, 20, 627–633. [Google Scholar] [CrossRef]
- Oumghar, A.; Legrand, J.C.; Diamy, A.M.; Turillon, N.; Ben-Aïm, R.I. A Kinetic Study of Methane Conversion by a Dinitrogen Microwave Plasma. Plasma Chem. Plasma Process. 1994, 14, 229–249. [Google Scholar] [CrossRef]
- Oumghar, A.; Legrand, J.C.; Diamy, A.M.; Turillon, N. Methane Conversion by an Air Microwave Plasma. Plasma Chem. Plasma Process. 1995, 15, 87–107. [Google Scholar] [CrossRef]
- Legrand, J.-C.; Diamy, A.-M.; Hrach, R.; Hrachová, V. Mechanisms of Methane Decomposition in Nitrogen Afterglow Plasma. Vacuum 1999, 52, 27–32. [Google Scholar] [CrossRef]
- Horvath, G.; Mason, N.J.; Polachova, L.; Zahoran, M.; Moravsky, L.; Matejcik, S. Packed Bed DBD Discharge Experiments in Admixtures of N2 and CH4. Plasma Chem. Plasma Process. 2010, 30, 565–577. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, Z.; Bai, M.; Bai, X.; Gao, H. Synthesis of Ammonia Using CH4/N2 plasmas Based on Micro-Gap Discharge under Environmentally Friendly Condition. Plasma Chem. Plasma Process. 2008, 28, 405–414. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Feng, P.; Gao, Q.X.; Lu, Y.N.; Liu, J.R.; Li, W.T. CH4 emissions and Reduction Potential in Wastewater Treatment in China. Adv. Clim. Chang. Res. 2015, 6, 216–224. [Google Scholar] [CrossRef]
- Zen, S.; Abe, T.; Teramoto, Y. Indirect Synthesis System for Ammonia from Nitrogen and Water Using Nonthermal Plasma Under Ambient Conditions. Plasma Chem. Plasma Process. 2018, 38, 347–354. [Google Scholar] [CrossRef]
- Hong, J.; Prawer, S.; Murphy, A.B. Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustain. Chem. Eng. 2018, 6, 15–31. [Google Scholar] [CrossRef]
- De Castro, A.; Alegre, D.; Tabarés, F.L. Ammonia Formation in N2/H2 Plasmas on ITER-Relevant Plasma Facing Materials: Surface Temperature and N2 Plasma Content Effects. J. Nucl. Mater. 2015, 463, 676–679. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. Plasma Sources Sci. Technol. 2017, 26, 53001. [Google Scholar] [CrossRef]
- Conrads, H.; Schmidt, M. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 2000, 9, 441–454. [Google Scholar] [CrossRef]
- Judée, F.; Merbahi, N.; Wattieaux, G.; Plewa, J.; Yousfi, M. Characterization of Double Dielectric Barrier Discharge and Microwave Plasma Jets in Argon at Atmospheric Pressure for Biomedical Applications. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 5–10 July 2015; Volume 43, pp. 2–5. [Google Scholar]
- Prieto, G.; Takashima, K.; Mizuno, A.; Prieto, O.; Gay, C.R. Dielectric Barrier Discharge for Ammonia Production. Plasma Chem. Plasma Process. 2013, 33, 337–353. [Google Scholar] [CrossRef]
- Kogelschatz, U. Dielectric Barrier Discharge: Their History, Discharge Physic, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Xu, X. Dielectric Barrier Discharge—Properties and Applications. Thin Solid Films 2001, 390, 237–242. [Google Scholar] [CrossRef]
- Kogelschatz, U. Atmospheric-Pressure Plasma Technology. Plasma Phys. Control. Fusion 2004, 46, 63–75. [Google Scholar] [CrossRef]
- Iwamoto, M.; Akiyama, M.; Aihara, K.; Deguchi, T. Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catal. 2017, 7, 6924–6929. [Google Scholar] [CrossRef]
- Thagard, S.M.; Mihalcioiu, A.; Takashima, K.; Mizuno, A. Analysis of the By-Products in the Ammonia Production from Urea by Dielectric Barrier Discharge. IEEE Trans. Plasma Sci. 2009, 37, 444–448. [Google Scholar] [CrossRef]
- Uyama, H.; Nakamura, T.; Tanaka, S.; Matsumoto, O. Catalytic Effect of Iron Wires on the Syntheses of Ammonia and Hydrazine in a Radio-Frequency Discharge. Plasma Chem. Plasma Process. 1993, 13, 117–131. [Google Scholar] [CrossRef]
- Tanaka, S.; Uyama, H.; Matsumoto, O. Synergistic Effects of Catalysts and Plasmas on the Synthesis of Ammonia and Hydrazine. Plasma Chem. Plasma Process. 1994, 14, 491–504. [Google Scholar] [CrossRef]
- Kim, H.H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Atmospheric-Pressure Nonthermal Plasma Synthesis of Ammonia over Ruthenium Catalysts. Plasma Process. Polym. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.W.; Hara, M.; Hosono, H. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store. Nat. Chem. 2012, 4, 934–940. [Google Scholar] [CrossRef]
- Iwamoto, J.; Itoh, M.; Kajita, Y.; Saito, M.; Machida, K.-i. Ammonia Synthesis on Magnesia Supported Ruthenium Catalysts with Mesoporous Structure. Catal. Commun. 2007, 8, 941–944. [Google Scholar] [CrossRef]
- Mazumder, M.K.; Sims, R.A.; Biris, A.S.; Srirama, P.K.; Saini, D.; Yurteri, C.U.; Trigwell, S.; De, S.; Sharma, R. Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine. Chem. Eng. Sci. 2006, 61, 2192–2211. [Google Scholar] [CrossRef]
- Parvulescu, V.I. Plasma Chemistry and Catalysis in Gases and Liquids. In Plasma Technology for Hyperfunctional Surfaces Low Temperature Plasmas Plasma Spray Coating; Parvulescu, V.I., Magureanu, M., Plasma, L.P., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2012; pp. 45–88. ISBN 9783527326549. [Google Scholar]
- Butterworth, T.; Elder, R.; Allen, R. Effects of Particle Size on CO2 reduction and Discharge Characteristics in a Packed Bed Plasma Reactor. Chem. Eng. J. 2016, 293, 55–67. [Google Scholar] [CrossRef]
- Michielsen, I.; Uytdenhouwen, Y.; Pype, J.; Michielsen, B.; Mertens, J.; Reniers, F.; Meynen, V.; Bogaerts, A. CO2 dissociation in a Packed Bed DBD Reactor: First Steps towards a Better Understanding of Plasma Catalysis. Chem. Eng. J. 2017, 326, 477–488. [Google Scholar] [CrossRef]
- Duan, X.; Hu, Z.; Li, Y.; Wangti, B. Effect of Dielectric Packing Materials on the Decomposition of Carbon Dioxide Using DBD Microplasma Reactor. AlChe 2015, 61, 903. [Google Scholar] [CrossRef]
- Chen, H.L.; Lee, H.M.; Chen, S.H.; Chang, M.B. Review of Packed-Bed Plasma Reactor for Ozone Generation and Air Pollution Control. Ind. Eng. Chem. Res. 2008, 47, 2122–2130. [Google Scholar] [CrossRef]
- Chen, M.; Mihalcioiu, A.; Takashima, K.; Mizuno, A. Catalyst Size Impact on Non-Thermal Plasma Catalyst Assisted DeNOx Reactors. Electrost. Precip. 2009, 1, 681–684. [Google Scholar] [CrossRef]
- Istadi, I.; Buchori, L.; Putri, B.B.T.; Hantara, H.I.A. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel Using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor. MATEC Web Conf. 2018, 156. [Google Scholar] [CrossRef]
- Chen, M.; Takashima, K.; Mizuno, A. Effect of Pellet-Diameter on Discharge Characteristics and Performance of a Packed Bed Reactor. Int. J. Plasma Environ. Sci. Technol. 2013, 7, 89–95. [Google Scholar]
- Tu, X.; Gallon, H.J.; Whitehead, J.C. Electrical and Spectroscopic Diagnostics of a Single-Stage Plasma-Catalysis System: Effect of Packing with TiO2. J. Phys. D Appl. Phys. 2011, 44. [Google Scholar] [CrossRef]
- Woo Seok, K.; Jin Myung, P.; Yongho, K.; Sang Hee, H. Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics. IEEE Trans. Plasma Sci. 2003, 31, 504–510. [Google Scholar] [CrossRef]
- Yu, Q.; Kong, M.; Liu, T.; Fei, J.; Zheng, X. Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor. Plasma Chem. Plasma Process. 2012, 32, 153–163. [Google Scholar] [CrossRef]
- Michielsen, I.; Van Laer, K.; Uytdenhouwen, Y.; Meynen, V.; Bogaerts, A. Packing Effect of SiO2, ZrO2 and Al2O3 Beads on CO2 Conversion in a Packed-Bed DBD Reactor. ISPC 2015, 22–24. [Google Scholar] [CrossRef]
- Van Laer, K.; Bogaerts, A. Improving the Conversion and Energy Efficiency of Carbon Dioxide Splitting in a Zirconia-Packed Dielectric Barrier Discharge Reactor. Energy Technol. 2015, 3, 1038–1044. [Google Scholar] [CrossRef]
- Van Laer, K.; Bogaerts, A. How Bead Size and Dielectric Constant Affect the Plasma Behaviour in a Packed Bed Plasma Reactor: A Modelling Study. Plasma Sources Sci. Technol. 2017, 26. [Google Scholar] [CrossRef]
- Carman, R.J.; Kane, D.M.; Ward, B.K. Enhanced Performance of an EUV Light Source (Λ = 84 Nm) Using Short-Pulse Excitation of a Windowless Dielectric Barrier Discharge in Neon. J. Phys. D Appl. Phys. 2010, 43. [Google Scholar] [CrossRef]
- Popov, N.A. Dissociation of Nitrogen in a Pulse-Periodic Dielectric Barrier Discharge at Atmospheric Pressure. Plasma Phys. Rep. 2013, 39, 420–424. [Google Scholar] [CrossRef]
- Prager, J.R.; Ziemba, T.M.; Miller, K.E.; Carscadden, J.G.; Slobodov, I. A High Voltage Nanosecond Pulser with Variable Pulse Width and Pulse Repetition Frequency Control for Nonequilibrium Plasma Applications. In Proceedings of the 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), Washington, DC, USA, 25–29 May 2014. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Wang, Q.; Hessel, V.; Lang, J. Energy Considerations for Plasma-Assisted N-Fixation Reactions. Processes 2014, 2, 694–710. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.L.; Zhou, J.C.; Su, J.; Guo, H.C.; Wang, X.S.; Gong, W.M. Scale-Up Synthesis of Hydrogen Peroxide from H2/O2 with Multiple Parallel DBD Tubes. Plasma Sci. Technol. 2009, 11, 181–186. [Google Scholar] [CrossRef]
- Yao, S.; Kim, Y. On the Scale-Up of Uneven DBD Reactor on Removal of Diesel Particulate Matter. Int. J. Chem. React. Eng. 2009, 7. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Butala, S.; Patil, B.; Suberu, J.; Fregene, M.; Lang, J.; Wang, Q.; Hessel, V. Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa. Processes 2016, 4, 54. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Butala, S.; Lang, J.; Hessel, V.; Wang, Q. Life Cycle Assessment of the Nitrogen Fixation Process Assisted by Plasma Technology and Incorporating Renewable Energy. Ind. Eng. Chem. Res. 2016, 55, 8141–8153. [Google Scholar] [CrossRef]
Plasma/Reactor | Reactants Tested | Main Product | Reference |
---|---|---|---|
Spark-like | air, water | NO, NO2, HNO3, N2O4 | [52] |
AC (alternating current) barrier corona with Magnetic field | air | NO, NO2, O3 | [78] |
Microwave plasma | N2, O2 | NO, NO2 | [79] |
Transient spark | air | NO, NO2 | [73] |
DBD (dielectric barrier discharge) | air | NO, NO2, O3 | [80] |
DBD | N2, O2, NO, H2O | NO, NO2, N2O, N2O5, HNO2, HNO3 | [81] |
DBD | N2, O2 | NO, NO2 | [82] |
Gliding arc | N2, O2 | NO, NO2 | [53] |
Gliding arc with flow system | water, air | NO2−, NO3−, OH | [72] |
Sliding discharge | air | NO, NO2, O3 | [83] |
Milliscale gliding arc | air, N2, O2 with Ar addition | NO, NO2 | [71] |
Milliscale gliding arc | N2, O2 | NO, NO2 | [70] |
Pulsed arc discharge | air, N2, O2 | NO, NO2, O3 | |
Spark discharge Gliding arc Transferred arc | air, water | NO, NO2− and NO3− | [84] |
Pulsed discharge DC (direct current) corona DBD off gas | N2, O2, Ar | H2O2, NO2−, NO3− | [85] |
DBD | N2, O2 | NO, N2O5 | [86] |
DBD | air | NO, NO2 | [87] |
DC plasma jet | air | NO, NO2, O3 | [88] |
Micro DBD Microwave plasma torch | air, Ar, N2 | NO | [89] |
Spray-type jet | N2, H2O | NO2−, NO3−, NH4− | [90] |
Array type DBD | air | N2O, O3, HNO3, and N2O5 | [91] |
Spark discharge | air | NO, NO2, O3 | [92] |
Plasma Jet | Ar, air | NO, NO2 | [93] |
AC corona | air | NO, NO2, O3 | [94] |
Microwave plasma torch | N2, O2 | NO | [95] |
Needle-type plasma jet | Ar + 2% air | NO | [96] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Medrano, J.A.; Hessel, V.; Gallucci, F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes 2018, 6, 248. https://doi.org/10.3390/pr6120248
Li S, Medrano JA, Hessel V, Gallucci F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes. 2018; 6(12):248. https://doi.org/10.3390/pr6120248
Chicago/Turabian StyleLi, Sirui, Jose A. Medrano, Volker Hessel, and Fausto Gallucci. 2018. "Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review" Processes 6, no. 12: 248. https://doi.org/10.3390/pr6120248
APA StyleLi, S., Medrano, J. A., Hessel, V., & Gallucci, F. (2018). Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes, 6(12), 248. https://doi.org/10.3390/pr6120248