Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle (SiO2-g-PSSNa)
2.3. Preparation of CWS Using SiO2-g-PSSNa as a Dispersant
2.4. Measurements
2.4.1. Morphological Characterization of SiO2-g-PSSNa
2.4.2. Fourier Transform Infrared Spectrometry (FTIR)
2.4.3. X-Ray Photoelectron Spectroscopy (XPS)
2.4.4. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.4.5. Thermogravimetric Analysis (TGA)
2.4.6. Energy Dispersive Spectrometer (EDS)
2.4.7. Evaluation of the Apparent Viscosity and Rheological Behavior of CWSs
2.4.8. The Static Stability of CWSs
2.4.9. Measurements of the Contact Angles
2.4.10. Measurements of the Zeta Potential on the Coal Particle Surface
2.4.11. Characterization of Low-Field NMR
3. Results and Discussion
3.1. Synthesis and Characterization of SiO2-g-PSSNa
3.2. The Thermal Decomposition Behavior of SiO2-g-PSSNa
3.3. Influence of the Dosage of SiO2-g-PSSNa on the Apparent Viscosity of CWSs
3.4. Rheological Behavior of CWS Prepared Using SiO2-g-PSSNa as the Dispersant
3.5. The Stability of CWSs
3.6. Dispersion Mechanism of SiO2-g-PSSNa
3.6.1. Contact Angle and EDS Mapping Between SiO2-g-PSSNa Dispersion and Coal Surface
3.6.2. Zeta Potential of Adsorbed Coal Particles
3.6.3. Water States in CWS Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, K.H.; Deng, J.J.; Qu, G.F.; Wei, K.L.; Liang, Y.Q. Synergistic assisted hydrogen production of tailings slurry and coal slurry: Process and mechanism investigation. J. Clean. Prod. 2023, 422, 138582. [Google Scholar] [CrossRef]
- Ma, C.D.; Zhang, W.Q.; Li, Z.S.; Wang, J.X.; Wang, Q.B.; Li, L.; You, X.F. Preparation of coal-water slurry using high-concentration inorganic saline wastewater containing microplastics-A slurry performance and particle interaction analysis. Fuel 2024, 375, 132660. [Google Scholar] [CrossRef]
- Du, L.; Zhang, G.H.; Hu, S.N.; Luo, J.; Zhang, W.B.; Zhang, C.; Li, J.G.; Zhu, J.F. Upgrade of low rank coal by using emulsified asphalt and its application for preparation of coal water slurry with high concentration. J. Dispers. Sci. Technol. 2023, 44, 901–910. [Google Scholar] [CrossRef]
- He, Q.H.; Xu, R.F.; Wang, X.; Feng, Y.H.; Zhai, J.J.; Dai, D.Q.; Wu, S.S.; Shen, J.; Hu, B.X. Effects of particle filling and gradation on the properties of coal-water slurries blended with semicoke. Powder Technol. 2023, 16, 118229. [Google Scholar] [CrossRef]
- Jiang, X.F.; Chen, S.X.; Cui, L.F.; Xu, E.L.; Chen, H.J.; Meng, X.L.; Wu, G.G. Eco-friendly utilization of microplastics for preparing coal water slurry: Rheological behavior and dispersion mechanism. J. Clean. Prod. 2022, 330, 129881. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, S.; Mohapatra, S.K.; Prasad, S.B.; Singh, J. Slurryability and flowability of coal water slurry: Effect of particle size distribution. J. Clean. Prod. 2021, 323, 129183. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Kuznetsov, G.V.; Strizhak, P.A.; Syrodoy, S.V. Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals. Energy 2018, 150, 262–275. [Google Scholar] [CrossRef]
- Du, L.; Zhang, G.H.; Yang, D.D.; Luo, J.; Liu, Y.W.; Zhang, W.B.; Zhang, C.; Li, J.G.; Zhu, J.F. Synthesis of a novel amphoteric copolymer and its application as a dispersant for coal water slurry preparation. R. Soc. Open Sci. 2021, 8, 201480. [Google Scholar] [CrossRef]
- Zhai, J.J.; Xu, R.F.; He, Q.H.; Pan, S.L.; Wang, X.; Zhang, R.; Feng, Y.H.; Hu, B.X. Degradation and filling modification of plastic waste for improvement of the slurryability of coal-plastic-water slurry. Fuel 2023, 344, 28137. [Google Scholar] [CrossRef]
- Chu, R.Z.; Li, Y.L.; Meng, X.L.; Fan, L.L.; Wu, G.G.; Li, X.; Jiang, X.F.; Yu, S.; Hu, Y.F. Research on the slurrying performance of coal and alkali-modified sludge. Fuel 2021, 294, 120548. [Google Scholar] [CrossRef]
- Ren, Y.G.; Lv, Z.Q.; Xu, Z.Q.; Wang, Q.; Wang, Z. Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model. Energy 2023, 281, 128143. [Google Scholar] [CrossRef]
- Gu, S.Q.; Xu, Z.Q.; Yang, L.; Wang, Y.J.; Ren, Y.G.; Dai, Y.X.; Tu, Y.Y. Mechanistic insight into the adsorption and interaction of lignite, organic ingredients, and dispersant in coal wastewater slurry. J. Environ. Chem. Eng. 2023, 11, 110814. [Google Scholar] [CrossRef]
- Xu, R.F.; Feng, Y.H.; He, Q.H.; Yan, W.X.; Yuan, M.; Hu, B.X. Review and Perspectives of Anionic Dispersants for Coal–Water Slurry. Energy Fuels 2023, 37, 4816–4834. [Google Scholar] [CrossRef]
- Zhang, K.; Hou, Y.; Ye, Z.; Wang, T.; Zhang, X.; Wang, C. Interactions of coal pitch with amphoteric polycarboxylate dispersant in coal pitch-water slurry: Experiments and simulations. Fuel 2022, 318, 123608. [Google Scholar] [CrossRef]
- Hu, S.X.; Li, J.G.; Liu, K.; Chen, Y.M. Comparative study on distribution characteristics of anionic dispersants in coal water slurry. Colloids Surf. Physicochem. Eng. Asp. 2022, 648, 129176. [Google Scholar] [CrossRef]
- Meng, X.L.; Zhang, T.H.; Wu, G.G.; Chu, R.Z.; Fan, L.L.; Jiang, X.F.; Li, Y.S.; Zhang, W.J.; Wan, Y.Z.; Li, W.S.; et al. Investigation on the interaction between the lipophilic structure of anionic dispersants and Shenhua non-caking coal in coal water slurry. Colloids Surf. Physicochem. Eng. Asp. 2022, 643, 128812. [Google Scholar] [CrossRef]
- Qulatein, H.A.; Gao, W.J.; Fatehi, P. Carboxyalkylated Lignin as a Sustainable Dispersant for Coal Water Slurry. Polymers 2024, 16, 2586. [Google Scholar] [CrossRef]
- Konduri, M.K.R.; Fatehi, P. Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry. Fuel Process. Technol. 2018, 176, 267–275. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.Y.; Wang, Y.X.; Wu, J.N.; Meng, G.H.; Liu, Z.Y.; Zhang, J.S.; Hu, B.X.; He, Q.H.; Guo, X.H. Novel Dispersant with a Three-Dimensional Reticulated Structure for a Coal-Water Slurry. Energy Fuels 2018, 32, 8310–8317. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.H.; Jin, L.E.; Cao, Q.; Li, P. Synthesis and evaluation of a novel dispersant with jellyfish-like 3D structure for preparing coal-water slurry. Fuel 2017, 200, 458–466. [Google Scholar] [CrossRef]
- Ding, C.L.; Zhu, X.; Ma, X.; Yang, H.S. Synthesis and Performance of a Novel Cotton Linter Based Cellulose Derivatives Dispersant for Coal-Water Slurries. Polymers 2022, 14, 1103. [Google Scholar] [CrossRef]
- Das, D.; Mohapatra, R.K.; Belbsir, H.; Routray, A.; Parhi, P.K.; El-Hami, K. Combined effect of natural dispersant and a stabilizer in formulation of high concentration coal water slurry: Experimental and rheological modeling. J. Mol. Liq. 2020, 320, 114441. [Google Scholar] [CrossRef]
- Zhang, K.; Tian, Y.; Zhang, R.H.; Shi, G.X.; Zhou, B.; Zhang, G.H.; Niu, Y.H.; Tian, Z.H.; Gong, J. Interactions of amphiphilic humic acid-based polymers with coal and effect on preparation of coal-water slurry. Powder Technol. 2020, 376, 652–660. [Google Scholar] [CrossRef]
- Zhang, W.B.; Luo, J.; Huang, Y.; Zhang, C.; Du, L.; Guo, J.; Wu, J.; Zhang, X.; Zhu, J.F.; Zhang, G.H. Synthesis of a novel dispersant with topological structure by using humic acid as raw material and its application in coal water slurry preparation. Fuel 2020, 262, 116576. [Google Scholar] [CrossRef]
- Lv, D.M.; Yan, H.; Wu, H.J.; Zheng, Z.Q.; Zhang, X.J.; Li, J.; Gong, S.W. Effect of modification by Gemini cationic surfactant on the properties of slurries prepared with petroleum coke: Experiments and molecular dynamics simulation. Fuel 2022, 317, 123541. [Google Scholar] [CrossRef]
- Shuai, W.L.; Wang, S.W.; Sun, T.T.; Yin, H.F.; Zu, Y.; Yao, G.; Li, Z.H.; Qi, Z.K.; Zhong, M. Improving the steric hindrance effect of linear sulfonated acetone-formaldehyde dispersant and its performance in coal-water slurry. RSC Adv. 2022, 12, 35508–35516. [Google Scholar] [CrossRef]
- Jiang, B.Z.; Li, J.X.; Chen, D.; Wang, L.; Yang, W.T. Synthesis and performance of sulfonated poly (styrene-alt-maleic anhydride) for coal-water slurry: The effect of structure on slurryability and stability. Colloids Surf. Physicochem. Eng. Asp. 2024, 685, 133154. [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhu, N.; Li, Y.B.; Zhu, J.F.; Jia, Y.R.; Ge, L. Influence of side-chain structure of polycarboxylate dispersant on the performance of coal water slurry. Fuel Process. Technol. 2017, 161, 1–7. [Google Scholar] [CrossRef]
- Zhu, J.F.; Li, J.L.; Yang, J.; Meng, R.Z.; Zhang, G.H.; Ji, H.D. Molecular-level explanation of interactions of random and block polycarboxylic acid dispersants with bituminous coal in coal-water slurry through experiments and simulations. J. Mol. Liq. 2024, 400, 124568. [Google Scholar] [CrossRef]
- Zhu, J.F.; Li, J.L.; Liu, R.Q.; Wang, J.Q.; Tang, Y.W.; Zhang, W.B.; Zhang, G.H. Synthesis and evaluation of a multi-block polycarboxylic acid for improving low-rank coal to make the slurry. Colloids Surf. Physicochem. Eng. Asp. 2022, 646, 128966. [Google Scholar] [CrossRef]
- Zhang, W.B.; Zhang, K.M.; Wang, Y.; Du, L.; Liu, R.J.; Zhu, J.F.; Zhang, C.; Zhang, G.H. Exploring the impact of poly(sodium styrene sulfonate) dispersants’architecture on their performance in coal water slurry preparation. J. Mol. Liq. 2024, 414, 126140. [Google Scholar] [CrossRef]
- Yao, D.S.; Zhao, H.; Chen, Z.K.; Liu, H.F. Preparation of high concentration coal water slurry with good fluidity based on only modified fine particles under bimodal distribution using the second fluid and the second particle. Fuel 2022, 317, 123461. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Pop-Georgievski, O.; Stetsyshyn, Y.; Budkowski, A.; Raczkowska, J.; Hruby, M.; Lobaz, V. Protein corona of SiO2 nanoparticles with grafted thermoresponsive copolymers: Calorimetric insights on factors affecting entropy vs. enthalpy-driven associations. Appl. Surf. Sci. 2022, 601, 154201. [Google Scholar] [CrossRef]
- GB/T 31391-2015; Element Analysis of Coal. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2015.
- GB/T 212-2008; Industrial Analysis Method of Coal. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- Wang, R.K.; Liu, J.Z.; Yu, Y.J.; Hu, Y.X.; Zhou, J.H.; Cen, K.F. The Slurrying Properties of Coal Water Slurries Containing Raw Sewage Sludge. Energy Fuels 2011, 25, 747–752. [Google Scholar] [CrossRef]
- Hong, N.L.; Zhang, S.W.; Yi, C.H.; Qiu, X.Q. Effect of Polycarboxylic Acid Used as High-Performance Dispersant on Low-Rank Coal-Water Slurry. J. Dispers. Sci. Technol. 2016, 37, 415–422. [Google Scholar] [CrossRef]
- Boylu, F.; Ateşok, G.; Dinçer, H. The effect of carboxymethyl cellulose (CMC) on the stability of coal-water slurries. Fuel 2005, 84, 315–319. [Google Scholar] [CrossRef]
- Ren, Y.G.; Zheng, J.X.; Xu, Z.Q.; Zhang, Y.X.; Zheng, J.P. Application of Turbiscan LAB to study the influence of lignite on the static stability of PCLWS. Fuel 2018, 214, 446–456. [Google Scholar] [CrossRef]
- Yang, J.C.; Jablonsky, M.J.; Mays, J.W. NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 2002, 43, 5125–5132. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Bethani, A.; Bokias, G.; Kallitsis, J.K. Poly(sodium styrene sulfonate)-b-poly(methyl methacrylate) diblock copolymers through direct atom transfer radical polymerization: Influence of hydrophilic-hydrophobic balance on self-organization in aqueous solution. Eur. Polym. J. 2011, 47, 752–761. [Google Scholar] [CrossRef]
- Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface modification of silica nanoparticles with hydrophilic polymers. J. Ind. Eng. Chem. 2010, 16, 517–522. [Google Scholar] [CrossRef]
- Balding, P.; Borrelli, R.; Volkovinsky, R.; Russo, P.S. Physical properties of sodium poly (styrene sulfonate): Comparison to incompletely sulfonated polystyrene. Macromolecules 2022, 55, 1747–1762. [Google Scholar] [CrossRef]
- Huang, J.; Xu, J.; Wang, D.; Li, L.; Guo, X.H. Effects of Amphiphilic Copolymer Dispersants on Rheology and Stability of Coal Water Slurry. Ind. Eng. Chem. Res. 2013, 52, 8427–8435. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhao, H.; Dai, Z.H.; Li, W.F.; Liu, H.F. Influence of alkaline additive on viscosity of coal water slurry. Fuel 2019, 235, 639–646. [Google Scholar] [CrossRef]
- Zhang, W.B.; Wang, Y.M.; Wang, S.W.; Guo, Z.H.; Zhang, C.; Zhu, X.Z.; Zhang, G.H. Hyperbranched ionic surfactants with polyether skeleton: Synthesis, properties and used as stabilizer for emulsion polymerization. J. Mol. Liq. 2022, 355, 118937. [Google Scholar] [CrossRef]
- Hu, S.X.; Jiang, F.H.; Zhao, B.L.; Chen, Y.M.; Wu, C.N.; Li, J.G.; Liu, K. The Enhancement on Rheology, Flowability, and Stability of Coal Water Slurry Prepared by Multipeak Gradation Technology. Energy Fuels 2021, 35, 2006–2015. [Google Scholar] [CrossRef]
- Li, Q.; Liao, C.L.; Hou, J.; Wang, W.J.; Zhang, J.S. Model to predict packing efficiency in coal water slurry: Part2 prediction and application. Fuel 2022, 318, 123270. [Google Scholar] [CrossRef]
- Li, Q.; Liao, C.L.; Hou, J.; Wang, W.J.; Zhang, J.S. Model to predict packing efficiency in coal water slurry: Part1 construction and verification. Fuel 2022, 318, 123345. [Google Scholar] [CrossRef]
- Xu, R.; Hu, B.; He, Q.; Cai, J.; Pan, Y.; Shen, J. Effect of compound inorganic nano-stabilizer on the stability of high concentration coal water mixtures. Fuel 2006, 85, 2524–2529. [Google Scholar] [CrossRef]
- Hu, S.X.; Liu, L.M.; Yang, X.; Li, J.G.; Zhou, B.N.; Wu, C.N.; Weng, L.; Liu, K. Influence of different dispersants on rheological behaviors of coal water slurry prepared from a low quality coal. RSC Adv. 2019, 56, 32911–32921. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.M.; Bai, Z.Q.; Yuchi, W.; Bai, J.; Kong, L.X.; Guo, Z.X.; Li, X.; Xu, J.L.; Li, W. Properties of direct coal liquefaction residue water slurry: Effect of treatment by low temperature pyrolysis. Fuel 2016, 179, 135–140. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.B.; Liu, L.J.; Tan, H.Z.; Rahman, Z.U. Characterizing moisture occurrence state in coal gasification fine slag filter cake using low field nuclear magnetic resonance technology. Energy Sources Part A 2023, 45, 8004–8014. [Google Scholar] [CrossRef]
Testing Technology | Samples | C (%) | O (%) | Si (%) | N (%) | Br (%) | Na (%) | S (%) |
---|---|---|---|---|---|---|---|---|
XPS | SiO2-NH2 | 33.61 | 47.62 | 18.53 | 0.24 | - | - | - |
SiO2-Br | 46.64 | 39.55 | 13.29 | 0.36 | 0.16 | - | - | |
SiO2-g-PSSNa | 65.35 | 24.00 | 1.31 | 0.29 | 0.09 | 4.52 | 4.44 | |
SEM-EDS | SiO2-NH2 | 30.89 | 8.57 | 58.20 | 2.34 | - | - | - |
SiO2-Br | 26.33 | 16.63 | 53.94 | 2.60 | 0.50 | - | - | |
SiO2-g-PSSNa | 44.09 | 16.74 | 32.19 | 1.94 | 0.12 | 2.66 | 2.26 |
Samples | SiO2-NH2 | SiO2-g-PSSNa |
---|---|---|
Zeta potential (mV) | 2.12 ± 0.9 | −23.53 ± 1.69 |
Dispersants | Content of Bound Water (%) | Content of Free Water (%) |
---|---|---|
LS | 29.78 | 70.22 |
SiO2-g-PSSNa | 24.77 | 75.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Liu, R.; Zhang, W.; Zhang, K.; Zhu, J.; Zhang, C. Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry. Polymers 2025, 17, 21. https://doi.org/10.3390/polym17010021
Zhang G, Liu R, Zhang W, Zhang K, Zhu J, Zhang C. Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry. Polymers. 2025; 17(1):21. https://doi.org/10.3390/polym17010021
Chicago/Turabian StyleZhang, Guanghua, Ruijun Liu, Wanbin Zhang, Kangmin Zhang, Junfeng Zhu, and Ce Zhang. 2025. "Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry" Polymers 17, no. 1: 21. https://doi.org/10.3390/polym17010021
APA StyleZhang, G., Liu, R., Zhang, W., Zhang, K., Zhu, J., & Zhang, C. (2025). Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry. Polymers, 17(1), 21. https://doi.org/10.3390/polym17010021