Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vincent, P.; Song, D.-S.; Kwon, H.B.; Kim, D.-K.; Jung, J.-H.; Kwon, J.-H.; Choe, E.; Kim, Y.-R.; Kim, H.; Bae, J.-H. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell. Appl. Surf. Sci. 2018, 432, 262–265. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189. [Google Scholar] [CrossRef] [PubMed]
- Seol, M.-L.; Woo, J.-H.; Jeon, S.B.; Kim, D.; Park, S.J.; Hur, J.; Choi, Y.-K. Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 2015, 14, 201–208. [Google Scholar] [CrossRef]
- Seol, M.-L.; Han, J.-W.; Moon, D.-I.; Yoon, K.J.; Hwang, C.S.; Meyyappan, M. All-printed triboelectric nanogenerator. Nano Energy 2018, 44, 82–88. [Google Scholar] [CrossRef]
- Mallineni, S.S.K.; Dong, Y.; Behlow, H.; Rao, A.M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2017, 8, 1702736. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Z.L.; Yang, Y. Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 2016, 10, 9044–9052. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Gupta, M.K.; Lee, K.Y.; Sohn, A.; Kim, T.Y.; Shin, K.-S.; Kim, D.; Kim, S.K.; Lee, K.H.; Shin, H.-J.; et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918–3925. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I. Effect of fabric structure on the mechanical properties of woven fabrics. Adv. Res. Text. Eng. 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Dhoot, N.S.; Patil, L.G.; Katkar, P.M. Effect of fabric weaves on compressional behaviour of woven fabric. Indian J. Fibre Text. 2014, 39, 79–82. [Google Scholar]
- Yousaf, Z.; Potluri, P.; Withers, P.J. Influence of tow architecture on compaction and nesting in textile preforms. Appl. Compos. Mater. 2017, 24, 337–350. [Google Scholar] [CrossRef]
- Kwak, S.S.; Kim, H.; Seung, W.; Kim, J.; Hinchet, R.; Kim, S.-W. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 2017, 11, 10733–10741. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.S.; Yoon, H.-J.; Kim, S.-W. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 2019, 29, 1804533. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S. Characterization of carbon nanofber (CNF)/polymer composite coated on cotton fabrics prepared with various circuit patterns. Fash. Text. 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Sabuncu, M.; Özdemir, H. Recognition of weave patterns of striped fabrics using optical coherence tomography. Fibres Text. East. Eur. 2018, 26, 98–103. [Google Scholar] [CrossRef]
- Grishanov, S. Cellulosic fibres. In Handbook of Textile and Industrial Dyeing; Clark, M., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 49–51. [Google Scholar]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Sung, W.-Y.; Kim, W.-J.; Ok, J.-G.; Kim, Y.-H. Fabrication of field emitters with carbon nanotubes using triboelectricity. Jpn. J. Appl. Phys. 2008, 47, 2339–2341. [Google Scholar] [CrossRef]
- Kafle, K.; Greeson, K.; Lee, C.; Kim, S.H. Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text. Res. J. 2014, 84, 1692–1699. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Liu, Y.; Zhu, G.; Lin, Z.-H.; Pan, C.; Jing, Q.; Wang, Z.L. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013, 13, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Kwon, J.-H.; Lim, K.; Biswas, S.; Tibaldi, A.; Lee, S.; Oh, H.J.; Kim, J.-H.; Ko, J.; Lee, D.-W.; et al. Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics. Polymers 2019, 11, 1443. https://doi.org/10.3390/polym11091443
Jeong J, Kwon J-H, Lim K, Biswas S, Tibaldi A, Lee S, Oh HJ, Kim J-H, Ko J, Lee D-W, et al. Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics. Polymers. 2019; 11(9):1443. https://doi.org/10.3390/polym11091443
Chicago/Turabian StyleJeong, Jaebum, Jin-Hyuk Kwon, Kyungmin Lim, Swarup Biswas, Alexandra Tibaldi, Suwoong Lee, Hyun Ju Oh, Jong-Hyoung Kim, Jaehoon Ko, Dong-Wook Lee, and et al. 2019. "Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics" Polymers 11, no. 9: 1443. https://doi.org/10.3390/polym11091443
APA StyleJeong, J., Kwon, J.-H., Lim, K., Biswas, S., Tibaldi, A., Lee, S., Oh, H. J., Kim, J.-H., Ko, J., Lee, D.-W., Cho, H., Lang, P., Jang, J., Lee, S., Bae, J.-H., & Kim, H. (2019). Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics. Polymers, 11(9), 1443. https://doi.org/10.3390/polym11091443