Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region
Abstract
:1. Introduction
2. Results
2.1. Height-Diameter Models
2.2. Crown Radius—Height Models
2.3. Above-Ground Biomass (AGB)
2.4. Relationships of Selected Site Characteristics to Biomass of Tree Species
3. Discussion
4. Materials and Methods
4.1. Empirical Data
4.2. Soil Sampling and Analyses
4.3. Statistical Analyses
4.4. Non-Linear Height-Diameter Models and Crown Radius-Height Models of Trees
4.5. Quantifying the Above-Ground Biomass (AGB)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
References
- Frelich, L.E. Boreal and Taiga Biome. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 103–115. ISBN 978-0-12-816097-8. [Google Scholar]
- Flade, L.; Hopkinson, C.; Chasmer, L. Allometric Equations for Shrub and Short-Stature Tree Aboveground Biomass within Boreal Ecosystems of Northwestern Canada. Forests 2020, 11, 1207. [Google Scholar] [CrossRef]
- Kajimoto, T.; Matsuura, Y.; Osawa, A.; Abaimov, A.P.; Zyryanova, O.A.; Isaev, A.P.; Yefremov, D.P.; Mori, S.; Koike, T. Size–Mass Allometry and Biomass Allocation of Two Larch Species Growing on the Continuous Permafrost Region in Siberia. For. Ecol. Manag. 2006, 222, 314–325. [Google Scholar] [CrossRef]
- Liu, M.; Liu, G.; Gong, L.; Wang, D.; Sun, J. Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir, China. PLoS ONE 2014, 9, e102344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Dou, Y.; An, S. Environmental Driving Factors Affecting Plant Biomass in Natural Grassland in the Loess Plateau, China. Ecol. Indic. 2017, 82, 250–259. [Google Scholar] [CrossRef]
- Dong, L.-H.; Zhang, L.; Li, F. Additive Biomass Equations Based on Different Dendrometric Variables for Two Dominant Species (Larix Gmelini Rupr. and Betula Platyphylla Suk.) in Natural Forests in the Eastern Daxing’an Mountains, Northeast China. Forests 2018, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; Andersen, H.-E.; Morton, D.C.; Cook, B.D. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion. Forests 2018, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal Forest Health and Global Change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef]
- Botkin, D.B.; Simpson, L.G. Biomass of the North American Boreal Forest: A Step toward Accurate Global Measures. Biogeochemistry 1990, 9, 161–174. [Google Scholar]
- Neigh, C.S.; Nelson, R.F.; Ranson, K.J.; Margolis, H.; Montesano, P.M.; Sun, G.; Kharuk, V.; Naesset, E.; Wulder, M.A.; Anderson, H. LiDAR-Based Biomass Estimates, Boreal Forest Biome, Eurasia, 2005–2006; ORNL DAAC: Oak Ridge, TN, USA, 2015. [CrossRef]
- Huang, S.; Price, D.; Titus, J.S. Development of Ecoregion-Based Height–Diameter Models for White Spruce in Boreal Forests. For. Ecol. Manag. 2000, 129, 125–141. [Google Scholar] [CrossRef]
- Sharma, M. Comparing Height-Diameter Relationships of Boreal Tree Species Grown in Plantations and Natural Stands. For. Sci. 2016, 62, 70–77. [Google Scholar] [CrossRef]
- Stout, B.B.; Shumway, D.L. Site Quality Estimation Using Height and Diameter. For. Sci. 1982, 28, 639–645. [Google Scholar] [CrossRef]
- Vanclay, J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Wallingford, UK, 1994; ISBN 978-0-85198-913-6. [Google Scholar]
- Wykoff, W.; Crookston, N.; Stage, A. User’s Guide to the Stand Prognosis Model; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogde, UT, USA, 1982; p. 112.
- Dai, Z.-D.; Jiang, L.-C. Ecoregion Based Height-Diameter Models for Larix Gmelinii Rupr. in Daxingan Mountains. Bull. Bot. Res. 2015, 35, 583. [Google Scholar] [CrossRef]
- Enzinga, G.Y.; Jiang, L.-C. Evaluation of Region and Subregion-Based Heightdiameter Models for Dahurian Larch (Larix Gmelinii) in Daxing’an Mountains in China. Appl. Ecol. Env. Res. 2019, 17, 13567. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ostwald, M. Methods for Estimating Above-Ground Biomass. In Carbon Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2008; pp. 113–147. ISBN 978-1-4020-6547-7. [Google Scholar]
- Wilkes, P.; Disney, M.; Vicari, M.B.; Calders, K.; Burt, A. Estimating Urban above Ground Biomass with Multi-Scale LiDAR. Carbon Balance Manag. 2018, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Forrester, D.I.; Tachauer, I.H.H.; Annighoefer, P.; Barbeito, I.; Pretzsch, H.; Ruiz-Peinado, R.; Stark, H.; Vacchiano, G.; Zlatanov, T.; Chakraborty, T.; et al. Generalized Biomass and Leaf Area Allometric Equations for European Tree Species Incorporating Stand Structure, Tree Age and Climate. For. Ecol. Manag. 2017, 396, 160–175. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Dong, L.; Zhang, L.; Li, F. A Compatible System of Biomass Equations for Three Conifer Species in Northeast, China. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Wang, C. Biomass Allometric Equations for 10 Co-Occurring Tree Species in Chinese Temperate Forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Wang, X.; Bi, H.; Ximenes, F.; Ramos, J.; Li, Y. Product and Residue Biomass Equations for Individual Trees in Rotation Age Pinus Radiata Stands under Three Thinning Regimes in New South Wales, Australia. Forests 2017, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Xu, M.-S.; Zhao, Y.-T.; Zhang, Q.-Q.; Zhou, L.-L.; Yang, X.-D.; Yan, E.-R. Allometric Biomass Equations for Shrub and Small Tree Species in Subtropical China. Silva Fenn. 2015, 49, 1275. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. For. Sci. 1989, 35, 881–902. [Google Scholar] [CrossRef]
- Berner, L.T.; Alexander, H.D.; Loranty, M.M.; Ganzlin, P.; Mack, M.C.; Davydov, S.P.; Goetz, S.J. Biomass Allometry for Alder, Dwarf Birch, and Willow in Boreal Forest and Tundra Ecosystems of Far Northeastern Siberia and North-Central Alaska. For. Ecol. Manag. 2015, 337, 110–118. [Google Scholar] [CrossRef]
- He, A.; McDermid, G.J.; Rahman, M.M.; Strack, M.; Saraswati, S.; Xu, B. Developing Allometric Equations for Estimating Shrub Biomass in a Boreal Fen. Forests 2018, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Surový, P.; Merganičová, K. Woody and Foliage Biomass, Foliage Traits and Growth Efficiency in Young Trees of Four Broadleaved Tree Species in a Temperate Forest. Plants 2021, 10, 2155. [Google Scholar] [CrossRef] [PubMed]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Surový, P.; Merganičová, K. Biomass Allocation into Woody Parts and Foliage in Young Common Aspen (Populus tremula L.)—Trees and a Stand-Level Study in the Western Carpathians. Forests 2020, 11, 464. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.B.; Brand, G.J. Allometric Biomass Equations for 98 Species of Herbs, Shrubs, and Small Trees; Research Note NC-299; U.S. Deptartment of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA,, 1983; p. 299. [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S. Aboveground Biomass Estimation of Small Diameter Woody Species of Tropical Dry Forest. New For. 2013, 44, 509–519. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Huff, S.; Ritchie, M.; Temesgen, H. Allometric Equations for Estimating Aboveground Biomass for Common Shrubs in Northeastern California. For. Ecol. Manag. 2017, 398, 48–63. [Google Scholar] [CrossRef]
- Pajtík, J.; Konôpka, B.; Šebeň, V. Mathematical Biomass Models for Young Individuals of Forest Tree Species in the Region of the Western Carpathians; National Forest Centre, Forest Research Institut: Zvolen, Slovakia, 2018; ISBN 978-80-8093-241-1.
- Liu, Z.; Chen, R.; Song, Y.; Han, C.; Yang, Y. Estimation of Aboveground Biomass for Alpine Shrubs in the Upper Reaches of the Heihe River Basin, Northwestern China. Environ. Earth Sci. 2015, 73, 5513–5521. [Google Scholar] [CrossRef]
- Huang, C.; Feng, C.; Ma, Y.; Liu, H.; Wang, Z.; Yang, S.; Wang, W.; Fu, S.; Chen, H.Y.H. Allometric Models for Aboveground Biomass of Six Common Subtropical Shrubs and Small Trees. Res. Sq. 2021, 1–14. [Google Scholar] [CrossRef]
- Usoltsev, A.V.; Chasovskikh, V.P.; Noritsina, Y.V.; Noritsin, D.V. Allometric Models of Tree Biomass for Airborne Laser Scanning and Ground Inventory of Carbon Pool in the Forests of Eurasia: Comparative Analysis. Sib. J. For. Sci. 2016, 68–76. [Google Scholar]
- Grigoriev, A.A.; Дэви, Н.М.; Кукарских, В.В.; Вьюхин, С.О.; Галимова, А.А.; Моисеев, П.А.; Φомин, В.В. Структура и динамика древостоев верxней грaницы леса в западной части плато Путорана (Structure and dynamics of the stands of the upper forest boundary in the western part of the Putorana plateau). Экoлoгия 2019, 4, 243–254. [Google Scholar] [CrossRef]
- Im, S.T.; Charuk, V.I. КЛИМАТИЧЕСКИ ИНДУЦИРОВАННЫЕ ИЗМЕНЕНИЯ В ЭКОТОНЕ АЛЬПИЙСКОЙ ЛЕСОТУНДРЫ ПЛАТО ПУТОРАНА (Use of Space-Based Earth Information Climate-Induced Changes in the Ecotone of the Alpine Forest Tundra Putorana Plateau). Исследование Земли Космоса 2013, 5, 32–44. [Google Scholar]
- Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A. 20th Century Tree-Line Advance and Vegetation Changes along an Altitudinal Transect in the Putorana Mountains, Northern Siberia. Boreas 2012, 41, 56–67. [Google Scholar] [CrossRef]
- Farjon, A. A Handbook of the World’s Conifers (2 Vols.); Brill: Leiden, The Netherlands, 2010; Volume 1, ISBN 90-04-17718-3. [Google Scholar]
- Usoltsev, A.V.; Kolchin, K.V.; Azarenok, V.A. On Possibilities for Application of Generic and Regional Allometric Models When Estimating Spruce Tree Biomass. Agrar. Bull. Ural. 2017, 160, 33–37. [Google Scholar]
- Usoltsev, A.V.; Gavrilin, D.S.; Malenko, A.A.; Semyshev, M.M. Tree Biomass of Larix Sibirica and Larix Gmelinii: Comparative Analysis. Bull. Altai State Agric. Univ. 2013, 12, 57–61. [Google Scholar]
- Hair, J.F., Jr.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 3rd ed.; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear Statistical Models with Student CD; McGraw-Hill Education: New York, NY, USA, 2004; ISBN 978-0-07-310874-2. [Google Scholar]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Curtis, R.O. Height-Diameter and Height-Diameter-Age Equations For Second-Growth Douglas-Fir. For. Sci. 1967, 13, 365–375. [Google Scholar] [CrossRef]
- Prodan, M. Forest Biometrics; Pergamon Press: New York, NY, USA, 1968. [Google Scholar]
- Lockhart, B.R.; Weih, R.C.; Smith, K.M. Crown Radius and Diameter at Breast Height Relationships for Six Bottomland Hardwood Species. J. Ark. Acad. Sci. 2005, 59, 110–115. [Google Scholar]
- Gill, S.; Biging, G.; Murphy, E. Modeling Conifer Tree Crown Radius and Estimating Canopy Cover. For. Ecol. Manag. 2000, 126, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown Size and Growing Space Requirement of Common Tree Species in Urban Centres, Parks, and Forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring Individual Tree Crown Diameter with Lidar and Assessing Its Influence on Estimating Forest Volume and Biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Goodman, R.C.; Phillips, O.L.; Baker, T.R. The Importance of Crown Dimensions to Improve Tropical Tree Biomass Estimates. Ecol. Appl. 2014, 24, 680–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A.; Hall, F.G. Estimating Aboveground Forest Biomass from Canopy Reflectance Model Inversion in Mountainous Terrain. Remote Sens. Environ. 2010, 114, 1325–1337. [Google Scholar] [CrossRef]
- Altanzagas, B.; Luo, Y.; Altansukh, B.; Dorjsuren, C.; Fang, J.; Hu, H. Allometric Equations for Estimating the Above-Ground Biomass of Five Forest Tree Species in Khangai, Mongolia. Forests 2019, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Turner, J.; Lambert, M.J. Additive Biomass Equations for Native Eucalypt Forest Trees of Temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. Developing Additive Systems of Biomass Equations for Nine Hardwood Species in Northeast China. Trees 2015, 29, 1149–1163. [Google Scholar] [CrossRef]
- Li, H.; Zhao, P. Improving the Accuracy of Tree-Level Aboveground Biomass Equations with Height Classification at a Large Regional Scale. For. Ecol. Manag. 2013, 289, 153–163. [Google Scholar] [CrossRef]
- Matveev, S.; Gupalov, D. Silvicultural and Dendroclimatic Analysis of Plantations Gmelin Larch Western Part of the Putoran Plateau. For. Eng. J. 2015, 5, 54–65. [Google Scholar] [CrossRef]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Du, Q.; Xu, J.; Wang, J.; Zhang, F.; Ji, B. Correlation between Forest Carbon Distribution and Terrain Elements of Altitude and Slope. J. Zhejiang A&F Univ. 2013, 30, 330. [Google Scholar]
- Fan, Y.; Zhou, G.; Shi, Y.; Du, H.; Zhou, Y.; Xu, X. Effects of terrain on stand structure and vegetation carbon storage of Phyllostachys edulis forest. Sci. Silvae Sin. 2013, 49, 177–182. [Google Scholar]
- Shen, A.; Wu, C.; Jiang, B.; Deng, J.; Yuan, W.; Wang, K.; He, S.; Zhu, E.; Lin, Y.; Wu, C. Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions. Forests 2018, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, L. Levels of the Upper Forest Boundary in Northern Asia. Vegetatio 1993, 109, 175–186. [Google Scholar] [CrossRef]
- Zan, B.; Yu, Y.; Dong, L.; Li, J.; Zhao, G.; Zhang, T. Numerical Study of the Impact of Complex Terrain and Soil Moisture on Convective Initiation. Atmosphere 2020, 11, 871. [Google Scholar] [CrossRef]
- Abaimov, A.P.; Zyryanova, O.A.; Mikhaylova, I.A.; Moroz, S.N.; Shitova, S.A. Multipurpose Mapping of the Forests of the Central Putorana Upland, East Siberia. Mapp. Sci. Remote Sens. 1995, 32, 274–283. [Google Scholar] [CrossRef]
- Epron, D.; Laclau, J.-P.; Almeida, J.C.R.; Goncalves, J.L.M.; Ponton, S.; Sette, C.R.; Delgado-Rojas, J.S.; Bouillet, J.-P.; Nouvellon, Y. Do Changes in Carbon Allocation Account for the Growth Response to Potassium and Sodium Applications in Tropical Eucalyptus Plantations? Tree Physiol. 2011, 32, 667–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripler, C.E.; Kaushal, S.S.; Likens, G.E.; Todd Walter, M. Patterns in Potassium Dynamics in Forest Ecosystems. Ecol. Lett. 2006, 9, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils; Wiley: New York, NY, USA, 2019; ISBN 978-1-119-45565-3. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier Science: San Diego, CA, USA, 1995; ISBN 978-0-08-057187-4. [Google Scholar]
- Pokrovsky, O.S.; Viers, J.; Dupré, B.; Chabaux, F.; Gaillardet, J.; Audry, S.; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; et al. Biogeochemistry of Carbon, Major and Trace Elements in Watersheds of Northern Eurasia Drained to the Arctic Ocean: The Change of Fluxes, Sources and Mechanisms under the Climate Warming Prospective. Comptes Rendus Geosci. 2012, 344, 663–677. [Google Scholar] [CrossRef]
- Vitousek, P. Nutrient Cycling and Limitation; Molina, M.J., Morel, F.M.M., Morgan, J.J., Tilman, D., Eds.; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Moore, T.R. Winter-Time Litter Decomposition in a Subarctic Woodland. Arct. Alp. Res. 1983, 15, 413–418. [Google Scholar] [CrossRef]
- Bock, M.D.; Van Rees, K.C. Forest Harvesting Impacts on Soil Properties and Vegetation Communities in the Northwest Territories. Can. J. For. Res. 2002, 32, 713–724. [Google Scholar] [CrossRef]
- Sheng, W.; Yu, G.; Fang, H.; Liu, Y.; Wang, Q.; Chen, Z.; Zhang, L. Regional Patterns of 15N Natural Abundance in Forest Ecosystems along a Large Transect in Eastern China. Sci. Rep. 2015, 4, 4249. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, F.; Kusaka, S.; Wardle, D.A.; Nilsson, M.-C. Changes in Stable Nitrogen and Carbon Isotope Ratios of Plants and Soil across a Boreal Forest Fire Chronosequence. Plant Soil 2013, 367, 111–119. [Google Scholar] [CrossRef]
- Handley, L.; Austin, A.; Robinson, D.; Scrimgeour, C.; Raven, J.; Heaton, T.; Schmidt, S.; Stewart, G. The 15N Natural Abundance (D15N) of Ecosystem Samples Reflects Measures of Water Availability. Aust. J. Plant Physiol. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Kidd, P.S.; Proctor, J. Effects of Aluminium on the Growth and Mineral Composition of Betula Pendula Roth. J. Exp. Bot. 2000, 51, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Lee, S.-H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.-W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, K.; Xu, X.; Song, T.; Xu, Y.; Zeng, F. Biogeographical Patterns of Biomass Allocation in Leaves, Stems and Roots in China’s Forests. Sci. Rep. 2015, 5, 15997. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.T. Organic Matter of Forest Soils. In Forest Soils: Properties and Management; Osman, K.T., Ed.; Springer International Publishing: Cham, Switzerland, 2013; pp. 63–76. ISBN 978-3-319-02541-4. [Google Scholar]
- Kozlowski, T.T. Soil Moisture and Absorption of Water by Tree Roots. J. Arboric. 1987, 13, 39–46. [Google Scholar]
- Stall, C.; Fuller, R.; Mihuc, T.; Jones, J.; Woodcock, T. Nitrogen Cycling and Dynamics in Upland Managed and Preserved Watersheds of the Adirondack Mountains, New York. Sci. Discipulorum 2008, 3, 1–10. [Google Scholar]
- Yamakura, T.; Sahunalu, P. Soil Carbon/Nitrogen Ratio as a Site Quality Index for Some South-East Asian Forests. J. Trop. Ecol. 1990, 6, 371–377. [Google Scholar] [CrossRef]
- Hellal, F.A.; Amer, A.K.; Zaghloul, A.M. Effect of Applied Iron on Iron Desorption in Soil and Uptake by Wheat Plants. J. Appl. Biol. Sci. 2008, 2, 79–86. [Google Scholar]
- Krivolutskaya, N.A.; Kedrovskaya, T.B. Structure and Composition of the Nadayansky Lava Flow: An Example of the Homogeneity of Lava Flows of the Siberian Trap Province. Geochem. Int. 2020, 58, 363–376. [Google Scholar] [CrossRef]
- Shahgedanova, M. The Physical Geography of Northern Eurasia; Oxford Regional Environments; Oxford University Press: Oxford, UK, 2003; ISBN 978-0-19-823384-8. [Google Scholar]
- Butorin, A.A.; Maksakovskiy, N.V.; Trofimova, E.V. Landforms as a Pivotal Component of the World Natural Heritage Sites: Case Studies in Russia. Int. J. Conserv. Sci. 2021, 12, 205–216. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Blume, H.P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten Für Ökologen, Land- Und Forstwirte, Geo- Und Umweltwissenschaftler; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-8274-2733-5. [Google Scholar]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing Soil Organic Matter into Particulate and Mineral-Associated Forms to Address Global Change in the 21st Century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Extractable Al, Fe, Mn, and Si. In Soil Sampling and Methods of Analysis; Carter, M.R.; Gregorich, E.G. (Eds.) CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-12622-2. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley: New York, NY, USA, 2006; ISBN 978-3-527-60644-3. [Google Scholar]
- Mikutta, R.; Kleber, M.; Torn, M.S.; Jahn, R. Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Kaufhold, S.; Ufer, K.; Kaufhold, A.; Stucki, J.W.; Anastácio, A.S.; Jahn, R.; Dohrmann, R. Quantification of Allophane from Ecuador. Clays Clay Miner. 2010, 58, 707–716. [Google Scholar] [CrossRef]
- Fitzpatrick, R.W.; Schwertmann, U. Al-Substituted Goethite—An Indicator of Pedogenic and Other Weathering Environments in South Africa. Geoderma 1982, 27, 335–347. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hofmann, M.; Gatu, C.; Kontoghiorghes, E.J.; Colubi, A.; Zeileis, A. LmSubsets: Exact Variable-Subset Selection in Linear Regression. J. Stat. Softw. 2020, 93, 1–21. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Šmelko, Š. Dendrometria; Vydavateľstvo TU Zvolen: Zvolen, Slovakia, 2007. [Google Scholar]
- Levakovic, A. Analytical Form of Growth Laws. Glas. Za Sumske Pokuse 1935, 4, 189–282. [Google Scholar]
- Loetsch, F.; Zohrer, F.; Haller, K.E. Forest Inventory; BLV Verlagsgesellschaft: Munchen, Germany, 1973; ISBN 3405111269. [Google Scholar]
- Michailoff, I. Zahlenmäßiges Verfahren Für Die Ausführung Der Bestandeshöhenkurven. Cbl. Thar. Forstl. Jahrb. 1943, 6, 273–279. [Google Scholar]
- Näslund, M. Functions and Tables for Computing the Cubic Volume of Standing Trees. Pine, Spruce and Birch in Southern Sweden and in the Whole of Sweden. Rep. For. Res. Inst. Swed. 1947, 36, 68. [Google Scholar]
- Ratkowsky, D.A.; Giles, D.E.A. Handbook of Nonlinear Regression Models; Statistics Series; M. Dekker: New York, NY, USA, 1990; ISBN 978-0-8247-8189-7. [Google Scholar]
- Zeide, B. Accuracy of Equations Describing Diameter Growth. Can. J. For. Res. 1989, 19, 1283–1286. [Google Scholar] [CrossRef]
- West, P.W. Tree and Forest Measurement, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14707-9. [Google Scholar]
- Van Laar, A.; Akça, A. Forest Mensuration, 2nd ed.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5990-2. [Google Scholar]
- Merganičová, K.; Merganič, J. Coarse Woody Debris Carbon Stocks in Natural Spruce Forests of Babia Hora. J. For. Sci. 2010, 56, 397–405. [Google Scholar] [CrossRef] [Green Version]
Model | PAR | COEF | SE | t Value | p Value | R2 | Tree Species | Location | Level | Number | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | a | 0.690 | 0.164 | 4.2 | 0.00 | ** | 0.97 | Alnus fruticosa Rupr. | Keta | L | 15 |
b | 0.205 | 0.033 | 6.2 | 0.00 | *** | ||||||
2 | a | 1.198 | 0.164 | 7.3 | 0.00 | *** | 0.97 | Alnus fruticosa Rupr. | Keta | U | 15 |
b | 0.077 | 0.032 | 2.4 | 0.03 | * | ||||||
3 | a | 1.116 | 0.176 | 6.3 | 0.00 | *** | 0.97 | Alnus fruticosa Rupr. | Keta | M | 12 |
b | 0.091 | 0.032 | 2.8 | 0.02 | * | ||||||
4 | a | 1.558 | 0.309 | 5.1 | 0.00 | *** | 0.88 | Alnus fruticosa Rupr. | Lama | L | 30 |
b | 0.130 | 0.036 | 3.6 | 0.00 | ** | ||||||
5 | a | 0.918 | 0.315 | 2.9 | 0.01 | * | 0.93 | Alnus fruticosa Rupr. | Lama | U | 15 |
b | 0.320 | 0.074 | 4.3 | 0.00 | ** | ||||||
6 | a | 1.215 | 0.310 | 3.9 | 0.00 | ** | 0.93 | Alnus fruticosa Rupr. | Lama | M | 21 |
b | 0.174 | 0.046 | 3.8 | 0.00 | ** | ||||||
7 | a | 1.163 | 0.193 | 6.0 | 0.00 | *** | 0.88 | Betula tortuosa Ledeb. | Keta | U | 24 |
b | 0.041 | 0.015 | 2.8 | 0.01 | * | ||||||
8 | a | 1.003 | 0.134 | 7.5 | 0.00 | *** | 0.88 | Betula tortuosa Ledeb. | Keta | M | 27 |
b | 0.040 | 0.012 | 3.5 | 0.00 | ** | ||||||
9 | a | 1.274 | 0.170 | 7.5 | 0.00 | *** | 0.91 | Betula tortuosa Ledeb. | Lama | U | 30 |
b | −0.008 | 0.014 | −0.6 | 0.57 | |||||||
10 | a | 1.607 | 0.164 | 9.8 | 0.00 | *** | 0.95 | Betula tortuosa Ledeb. | Lama | M | 24 |
b | 0.016 | 0.008 | 1.9 | 0.07 | . | ||||||
11 | a | 1.453 | 0.270 | 5.4 | 0.00 | *** | 0.97 | Larix gmelinii (Rupr.) | Keta | L | 18 |
b | 0.018 | 0.007 | 2.4 | 0.03 | * | ||||||
12 | a | 0.841 | 0.111 | 7.6 | 0.00 | *** | 0.96 | Larix gmelinii (Rupr.) | Keta | U | 24 |
b | 0.038 | 0.004 | 8.7 | 0.00 | *** | ||||||
13 | a | 0.951 | 0.138 | 6.9 | 0.00 | *** | 0.96 | Larix gmelinii (Rupr.) | Keta | M | 21 |
b | 0.041 | 0.006 | 6.3 | 0.00 | *** | ||||||
14 | a | 0.832 | 0.127 | 6.6 | 0.00 | *** | 0.92 | Larix gmelinii (Rupr.) | Lama | L | 18 |
b | 0.021 | 0.004 | 4.9 | 0.00 | *** | ||||||
15 | a | 0.851 | 0.093 | 9.2 | 0.00 | *** | 0.97 | Larix gmelinii (Rupr.) | Lama | U | 24 |
b | 0.057 | 0.004 | 14.0 | 0.00 | *** | ||||||
16 | a | 0.937 | 0.130 | 7.2 | 0.00 | *** | 0.94 | Larix gmelinii (Rupr.) | Lama | M | 27 |
b | 0.023 | 0.005 | 4.9 | 0.00 | *** | ||||||
17 | a | 1.421 | 0.107 | 13.3 | 0.00 | *** | 0.99 | Picea obovata Ledeb. | Keta | L | 27 |
b | 0.014 | 0.003 | 4.8 | 0.00 | *** | ||||||
18 | a | 1.280 | 0.103 | 12.5 | 0.00 | *** | 0.97 | Picea obovata Ledeb. | Keta | U | 30 |
b | 0.024 | 0.004 | 5.6 | 0.00 | *** | ||||||
19 | a | 1.303 | 0.168 | 7.8 | 0.00 | *** | 0.95 | Picea obovata Ledeb. | Keta | M | 24 |
b | 0.020 | 0.006 | 3.1 | 0.01 | ** | ||||||
20 | a | 1.238 | 0.230 | 5.4 | 0.00 | *** | 0.92 | Picea obovata Ledeb. | Lama | L | 24 |
b | 0.011 | 0.008 | 1.4 | 0.19 | |||||||
21 | a | 1.508 | 0.227 | 6.6 | 0.00 | *** | 0.90 | Picea obovata Ledeb. | Lama | U | 21 |
b | 0.028 | 0.010 | 2.9 | 0.01 | * | ||||||
22 | a | 1.329 | 0.196 | 6.8 | 0.00 | *** | 0.90 | Picea obovata Ledeb. | Lama | M | 30 |
b | 0.017 | 0.009 | 1.9 | 0.06 | . | ||||||
23 | a | 0.973 | 0.082 | 11.9 | 0.00 | *** | 1.00 | Salix jenisseensis (F. Schmidt) Flod. | Keta | L | 6 |
b | 0.057 | 0.008 | 7.2 | 0.00 | ** | ||||||
24 | a | 2.124 | 0.453 | 4.7 | 0.00 | *** | 0.92 | Salix jenisseensis (F. Schmidt) Flod. | Keta | U | 15 |
b | −0.034 | 0.077 | −0.4 | 0.67 | |||||||
25 | a | 2.645 | 0.894 | 3.0 | 0.02 | * | 0.92 | Salix jenisseensis (F. Schmidt) Flod. | Keta | M | 9 |
b | −0.372 | 0.382 | −1.0 | 0.36 | |||||||
26 | a | 0.237 | 0.643 | 0.4 | 0.73 | 0.63 | Salix jenisseensis (F. Schmidt) Flod. | Lama | U | 6 | |
b | 0.563 | 0.185 | 3.0 | 0.04 | * | ||||||
27 | a | −0.255 | 0.300 | −0.9 | 0.44 | 0.14 | Salix jenisseensis (F. Schmidt) Flod. | Lama | M | 6 | |
b | 0.338 | 0.054 | 6.2 | 0.00 | ** | ||||||
28 | a | 1.340 | 0.429 | 3.1 | 0.01 | ** | 0.90 | Sorbus sibirica Hedl. | Keta | L | 18 |
b | 0.088 | 0.058 | 1.5 | 0.15 | |||||||
29 | a | 0.964 | 0.334 | 2.9 | 0.05 | * | 0.97 | Sorbus sibirica Hedl. | Lama | L | 6 |
b | 0.165 | 0.093 | 1.8 | 0.15 | |||||||
General models | |||||||||||
1 | a | 1.063 | 0.117 | 9.1 | 0.00 | *** | 0.92 | Alnus fruticosa Rupr. | All | All | 108 |
b | 0.184 | 0.017 | 10.8 | 0.00 | *** | ||||||
2 | a | 1.075 | 0.083 | 12.9 | 0.00 | *** | 0.87 | Betula tortuosa Ledeb. | 111 | ||
b | 0.034 | 0.006 | 5.6 | 0.00 | *** | ||||||
3 | a | 0.994 | 0.090 | 11.1 | 0.00 | *** | 0.88 | Larix gmelinii (Rupr.) | 132 | ||
b | 0.028 | 0.003 | 9.0 | 0.00 | *** | ||||||
4 | a | 1.391 | 0.078 | 17.9 | 0.00 | *** | 0.93 | Picea obovata Ledeb. | 156 | ||
b | 0.015 | 0.003 | 5.5 | 0.00 | *** | ||||||
5 | a | 1.879 | 0.205 | 9.2 | 0.00 | *** | 0.89 | Salix jenisseensis (F. Schmidt) Flod. | 42 | ||
b | −0.007 | 0.021 | −0.3 | 0.75 | |||||||
6 | a | 1.372 | 0.247 | 5.6 | 0.00 | *** | 0.92 | Sorbus sibirica Hedl. | 27 | ||
b | 0.083 | 0.035 | 2.4 | 0.03 | * |
Model | PAR | COEF | SE | t Value | p Value | R2 | Tree Species | Location | Level | Number | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | a | 1.651 | 0.100 | 15.8 | 0.00 | *** | 0.95 | Alnus fruticosa Rupr. | Keta | L | 15 |
b | 0.815 | 0.130 | 6.3 | 0.00 | *** | ||||||
2 | a | 1.627 | 0.130 | 12.6 | 0.00 | *** | 0.96 | Alnus fruticosa Rupr. | Keta | U | 15 |
b | 1.229 | 0.170 | 7.1 | 0.00 | *** | ||||||
3 | a | 1.167 | 0.100 | 11.1 | 0.00 | *** | 0.97 | Alnus fruticosa Rupr. | Keta | M | 12 |
b | 1.086 | 0.150 | 7.2 | 0.00 | *** | ||||||
4 | a | 0.010 | 0.160 | 0.1 | 0.95 | 0.94 | Alnus fruticosa Rupr. | Lama | L | 20 | |
b | 4.036 | 0.640 | 6.3 | 0.00 | *** | ||||||
5 | a | 1.338 | 0.230 | 5.8 | 0.00 | *** | 0.86 | Alnus fruticosa Rupr. | Lama | U | 14 |
b | 1.389 | 0.340 | 4.1 | 0.00 | ** | ||||||
6 | a | 0.171 | 0.210 | 0.8 | 0.44 | 0.88 | Alnus fruticosa Rupr. | Lama | M | 15 | |
b | 3.368 | 0.690 | 4.9 | 0.00 | *** | ||||||
7 | a | 0.225 | 0.150 | 1.5 | 0.16 | 0.88 | Betula tortuosa Ledeb. | Keta | U | 15 | |
b | 4.419 | 1.060 | 4.2 | 0.00 | ** | ||||||
8 | a | 0.244 | 0.130 | 1.9 | 0.08 | . | 0.84 | Betula tortuosa Ledeb. | Keta | M | 17 |
b | 3.749 | 0.920 | 4.1 | 0.00 | ** | ||||||
9 | a | 0.378 | 0.050 | 7.8 | 0.00 | *** | 0.95 | Betula tortuosa Ledeb. | Lama | U | 21 |
b | 2.468 | 0.330 | 7.6 | 0.00 | *** | ||||||
10 | a | 0.335 | 0.050 | 6.6 | 0.00 | *** | 0.96 | Betula tortuosa Ledeb. | Lama | M | 15 |
b | 2.793 | 0.340 | 8.1 | 0.00 | *** | ||||||
11 | a | 0.281 | 0.020 | 14.1 | 0.00 | *** | 0.99 | Larix gmelinii (Rupr.) | Keta | L | 16 |
b | 2.255 | 0.290 | 7.7 | 0.00 | *** | ||||||
12 | a | 0.177 | 0.060 | 2.9 | 0.01 | * | 0.97 | Larix gmelinii (Rupr.) | Keta | U | 15 |
b | 3.521 | 0.810 | 4.4 | 0.00 | ** | ||||||
13 | a | 0.282 | 0.060 | 4.8 | 0.00 | *** | 0.96 | Larix gmelinii (Rupr.) | Keta | M | 15 |
b | 2.525 | 0.610 | 4.2 | 0.00 | ** | ||||||
14 | a | 0.329 | 0.050 | 6.5 | 0.00 | ** | 0.66 | Larix gmelinii (Rupr.) | Lama | L | 6 |
b | 1.701 | 0.800 | 2.1 | 0.10 | |||||||
15 | a | 0.180 | 0.030 | 6.4 | 0.00 | *** | 0.99 | Larix gmelinii (Rupr.) | Lama | U | 13 |
b | 2.657 | 0.280 | 9.4 | 0.00 | *** | ||||||
16 | a | 0.166 | 0.030 | 5.2 | 0.00 | *** | 0.97 | Larix gmelinii (Rupr.) | Lama | M | 13 |
b | 3.368 | 0.490 | 6.9 | 0.00 | *** | ||||||
17 | a | 0.494 | 0.030 | 19.0 | 0.00 | *** | 0.98 | Picea obovata Ledeb. | Keta | L | 19 |
b | 2.562 | 0.260 | 10.0 | 0.00 | *** | ||||||
18 | a | 0.512 | 0.060 | 8.5 | 0.00 | *** | 0.93 | Picea obovata Ledeb. | Keta | U | 20 |
b | 2.782 | 0.500 | 5.6 | 0.00 | *** | ||||||
19 | a | 0.627 | 0.040 | 17.3 | 0.00 | *** | 0.97 | Picea obovata Ledeb. | Keta | M | 18 |
b | 2.353 | 0.260 | 9.1 | 0.00 | *** | ||||||
20 | a | 0.428 | 0.020 | 25.5 | 0.00 | *** | 0.99 | Picea obovata Ledeb. | Lama | L | 15 |
b | 2.597 | 0.200 | 12.9 | 0.00 | *** | ||||||
21 | a | 0.351 | 0.070 | 4.9 | 0.00 | ** | 0.93 | Picea obovata Ledeb. | Lama | U | 11 |
b | 3.317 | 0.600 | 5.6 | 0.00 | *** | ||||||
22 | a | 0.324 | 0.040 | 8.0 | 0.00 | *** | 0.97 | Picea obovata Ledeb. | Lama | M | 16 |
b | 3.312 | 0.350 | 9.5 | 0.00 | *** | ||||||
23 | a | 0.441 | 0.190 | 2.4 | 0.14 | 0.97 | Salix jenisseensis (F. Schmidt) Flod. | Keta | L | 4 | |
b | 3.389 | 1.040 | 3.3 | 0.08 | . | ||||||
24 | a | 1.312 | 0.170 | 7.6 | 0.00 | *** | 0.91 | Salix jenisseensis (F. Schmidt) Flod. | Keta | U | 10 |
b | 1.359 | 0.280 | 4.8 | 0.00 | ** | ||||||
25 | a | 1.444 | 0.440 | 3.3 | 0.08 | . | 0.58 | Salix jenisseensis (F. Schmidt) Flod. | Keta | M | 4 |
b | 0.997 | 0.680 | 1.5 | 0.28 | |||||||
26 | a | 0.707 | 0.140 | 5.2 | 0.12 | 0.99 | Salix jenisseensis (F. Schmidt) Flod. | Lama | M | 3 | |
b | 3.052 | 0.530 | 5.8 | 0.11 | |||||||
27 | a | 0.182 | 0.340 | 0.5 | 0.61 | 0.68 | Sorbus sibirica Hedl. | Keta | L | 9 | |
b | 3.888 | 1.400 | 2.8 | 0.03 | * | ||||||
28 | a | 0.826 | 0.140 | 6.0 | 0.01 | ** | 0.97 | Sorbus sibirica Hedl. | Lama | L | 5 |
b | 1.925 | 0.290 | 6.7 | 0.01 | ** | ||||||
29 | a | 0.993 | 0.150 | 6.5 | 0.02 | * | 0.99 | Sorbus sibirica Hedl. | Lama | M | 4 |
b | 1.296 | 0.210 | 6.1 | 0.03 | * | ||||||
General models | |||||||||||
1 | a | 0.370 | 0.077 | 4.8 | 0.00 | *** | 0.86 | Alnus fruticosa Rupr. | All | All | 91 |
b | 2.855 | 0.221 | 12.9 | 0.00 | *** | ||||||
2 | a | 0.317 | 0.041 | 7.7 | 0.00 | *** | 0.9 | Betula tortuosa Ledeb. | 71 | ||
b | 3.174 | 0.292 | 10.9 | 0.00 | *** | ||||||
3 | a | 0.249 | 0.016 | 15.8 | 0.00 | *** | 0.96 | Larix gmelinii (Rupr.) | 78 | ||
b | 2.547 | 0.208 | 12.2 | 0.00 | *** | ||||||
4 | a | 0.460 | 0.018 | 24.9 | 0.00 | *** | 0.95 | Picea obovata Ledeb. | 99 | ||
b | 2.778 | 0.170 | 16.3 | 0.00 | *** | ||||||
5 | a | 0.743 | 0.109 | 6.8 | 0.00 | *** | 0.85 | Salix jenisseensis (F. Schmidt) Flod. | 23 | ||
b | 2.431 | 0.308 | 7.9 | 0.00 | *** | ||||||
6 | a | 0.601 | 0.159 | 3.8 | 0.00 | *** | 0.79 | Sorbus sibirica Hedl. | 20 | ||
b | 2.298 | 0.471 | 4.9 | 0.00 | *** |
PC | Variable | Estimate | SE | t Value | p Value | VIF | FModel | Fdf1 | Fdf2 | Fp | R2adj | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (Intercept) | −333.02 | 37.28 | −8.93 | 7.9 × 10−8 | *** | 21.76 | 12 | 17 | 7.7 × 10−8 | 0.90 | |
2 | FRFS | 215.47 | 19.99 | 10.78 | 5.1 × 10−9 | *** | 4.53 | |||||
3 | FRUS | −135.54 | 14.73 | −9.20 | 5.2 × 10−8 | *** | 2.64 | |||||
4 | Elevation (m a.s.l.) | 0.75 | 0.08 | 8.94 | 7.7 × 10−8 | *** | 4.45 | |||||
5 | C:N[H2] | 19.04 | 2.17 | 8.77 | 1.0 × 10−7 | *** | 2.77 | |||||
6 | MR`-^` | 47.86 | 6.05 | 7.91 | 4.3 × 10−7 | *** | 1.44 | |||||
7 | C:N[H3] | −14.91 | 2.28 | −6.55 | 4.9 × 10−6 | *** | 2.67 | |||||
8 | HW[H1] (%) | 12.99 | 2.20 | 5.91 | 1.7 × 10−5 | *** | 1.76 | |||||
9 | d15N[H3] (‰) | 40.26 | 7.69 | 5.23 | 6.8 × 10−5 | *** | 5.91 | |||||
10 | d15N[H2] (‰) | −37.72 | 7.72 | −4.89 | 1.4 × 10−4 | *** | 6.36 | |||||
11 | SD (°) | 0.84 | 0.25 | 3.36 | 3.7 × 10−3 | ** | 1.99 | |||||
12 | SA[H1] (%) | −0.81 | 0.24 | −3.36 | 3.7 × 10−3 | ** | 1.53 | |||||
13 | C[H2] (%) | −4.09 | 1.66 | −2.47 | 2.5 × 10−2 | * | 2.00 |
PC | Variable | Estimate | SE | t Value | p Value | pSig | VIF | FModel | Fdf1 | Fdf2 | Fp | R2adj |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (Intercept) | −58,314.23 | 21,520.15 | −2.71 | 0.02 | * | 5.22 | 4 | 10 | 0.02 | 0.55 | |
2 | C:N[H2] | 26.83 | 8.70 | 3.08 | 0.01 | * | 2.46 | |||||
3 | WGS_N (°) | 844.68 | 312.71 | 2.70 | 0.02 | * | 1.08 | |||||
4 | CL[H2] (%) | 6.37 | 2.59 | 2.46 | 0.03 | * | 1.06 | |||||
5 | C:N[H3] | −11.57 | 5.25 | −2.21 | 0.05 | . | 2.52 |
PC | Variable | Estimate | SE | t Value | p Value | pSig | VIF | FModel | Fdf1 | Fdf2 | Fp | R2adj |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (Intercept) | 849,370.09 | 330,960.03 | 2.57 | 0.03 | * | 14.04 | 6 | 8 | 0.03 | 0.85 | |
2 | d15N[H1] (‰) | −21.43 | 6.04 | −3.54 | 0.01 | ** | 3.17 | |||||
3 | d15N[H3] (‰) | 30.29 | 9.38 | 3.23 | 0.01 | * | 3.91 | |||||
4 | K[H1] (mg/kg) | 0.79 | 0.30 | 2.59 | 0.03 | * | 1.72 | |||||
5 | WGS_N (°) | −12,224.91 | 4763.32 | −2.57 | 0.03 | * | 3.26 | |||||
6 | OH (cm) | −6.72 | 3.01 | −2.23 | 0.06 | . | 2.29 | |||||
7 | SA[H1] (%) | 1.01 | 0.50 | 2.00 | 0.08 | . | 1.41 |
Location | Number of Plots | Min-Max WGS_N (°) | Min–Max WGS_E (°) | Min-Max Elevation above Sea Level (m a.s.l.) | Min-Max Slope (°) | 1 Min-Max Aspect (°) | 2 Min–Max Cover (%) | 3 MAT (°C) | 4 MAP (mm) | Geol. Substrate | Soil |
---|---|---|---|---|---|---|---|---|---|---|---|
Keta | 15 | 68.75–68.76 | 91.49–91.55 | 102–351 | 2–24 | 170–350 | 11–70 | –10.1 | 456.7 | Basalt | Eutric Cambisol |
Lama | 15 | 69.48–69.49 | 91.42–91.45 | 111–441 | 6–61 | 70–150 | 15–80 | –9.4 | 435.3 | Basalt | Eutric Cambisol |
Location | Tree Species | Min–Max Cover (%) | Max DBH (cm) | Max Height (m) | Min–Max Number of Trees per ha (pcs/ha) | Min–Max Basal Area (m2/ha) | Min–Max AGB (t/ha) |
---|---|---|---|---|---|---|---|
Keta | Alnus fruticosa Rupr. | 3–101 | 7 | 5 | 580–21800 | 0–3.27 | 0.06–3.5 |
Keta | Larix gmelinii (Rupr.) | 0.5–51.2 | 46 | 22 | 220–660 | 0–18.62 | 0–85.73 |
Keta | Picea obovata Ledeb. | 1.2–27.5 | 44 | 23 | 240–1880 | 0.08–16.38 | 0.14–68.31 |
Keta | Salix jenisseensis (F. Schmidt) Flod. | 0–35.5 | 14 | 8.8 | 0–3900 | 0–3.74 | 0–6.08 |
Keta | Betula tortuosa Ledeb. | 0–37 | 24 | 12.4 | 0–4460 | 0–4.07 | 0–10.27 |
Keta | Sorbus sibirica Hedl. | 0–14 | 10 | 5.5 | 0–2540 | 0–0.76 | 0–0.77 |
Lama | Alnus fruticosa Rupr. | 3.2–72.8 | 13 | 6 | 100–15,100 | 0.09–5.34 | 0.22–7.28 |
Lama | Larix gmelinii (Rupr.) | 3.9–63.6 | 43 | 26 | 20–540 | 0.63–21.28 | 1.91–98.06 |
Lama | Picea obovata Ledeb. | 0.3–23.1 | 40 | 24 | 20–1220 | 0.04–11.79 | 0.04–49.45 |
Lama | Salix jenisseensis (F. Schmidt) Flod. | 0–3.4 | 8 | 5 | 0–220 | 0–0.54 | 0–0.52 |
Lama | Betula tortuosa Ledeb. | 0–88.3 | 30 | 14 | 0–5460 | 0–7.31 | 0–15.63 |
Lama | Sorbus sibirica Hedl. | 0–1.5 | 4 | 3.5 | 0–240 | 0–0.04 | 0–0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merganič, J.; Pichler, V.; Gömöryová, E.; Fleischer, P.; Homolák, M.; Merganičová, K. Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region. Plants 2021, 10, 2722. https://doi.org/10.3390/plants10122722
Merganič J, Pichler V, Gömöryová E, Fleischer P, Homolák M, Merganičová K. Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region. Plants. 2021; 10(12):2722. https://doi.org/10.3390/plants10122722
Chicago/Turabian StyleMerganič, Ján, Viliam Pichler, Erika Gömöryová, Peter Fleischer, Marián Homolák, and Katarína Merganičová. 2021. "Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region" Plants 10, no. 12: 2722. https://doi.org/10.3390/plants10122722
APA StyleMerganič, J., Pichler, V., Gömöryová, E., Fleischer, P., Homolák, M., & Merganičová, K. (2021). Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region. Plants, 10(12), 2722. https://doi.org/10.3390/plants10122722