Constraints and Recent Solutions of Optical Camera Communication for Practical Applications
Abstract
:1. Introduction
- Time Consuming in Region of Interest (RoI) Extraction;
- Vulnerable to Complex Image Background Interference;
- Non-uniform Grayscale Distribution;
- Low Signal-to-Noise Ratio (SNR).
2. Brief Overview of Led-Based OCC
2.1. OCC Standardization
2.2. OCC Principles
2.3. OCC Transceivers
2.3.1. OCC Transmitter
2.3.2. OCC Receiver
2.4. OCC Channel Transmission Types
3. Analysis of Key Factors Affecting OCC Performance
3.1. Time Consumption Involved in RoI Extraction
3.2. Complex Image Backgrounds Interference
3.2.1. LOS-OCC Scenarios
3.2.2. NLOS-OCC Scenarios
3.3. Non-Uniform Grayscale Distribution
3.4. Signal Demodulation and Decoding
4. Potential Applications
4.1. OCC-Based Intelligent Transportation Systems
4.2. OCC-Based Indoor Positioning Systems
4.3. OCC-Based Underwater Communication
4.4. OCC-Based IoT Connectivity
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RF | Radio Frequency |
OWC | Optical Wireless Communication |
IR | Infrared |
VL | Visible Light |
UV | Ultraviolet |
VLC | Visible Light Communication |
LiFi | Light Fidelity |
OCC | Optical Camera Communication |
FSO | Free Space Optical |
COTS | Commercial Off-The-Shelf |
LED | Light Emitting Diode |
LD | Laser Diodes |
PD | Photodiode |
LOS | Line-of-Sight |
FSK | Frequency Shift Keying |
UPSOOKM | Undersampling Phase Shift ON-OFF Keying Modulation |
UPAM | Undersampling Pulse Amplitude Modulation |
ASK | Amplitude Shift Keying |
MIMO | Multiple Input Multiple Output |
WDM | Wavelength Division Multiplexing |
RoI | Region of Interest |
SNR | Signal Noise Ratio |
LCD-OCC | Liquid Crystal Display based OCC |
LED-DCC | LED Display Camera Communication |
LED-OCC | LED based OCC |
DLL | Data Link Layer |
PYH | Physical Layer |
MAC | Medium Access Control |
OOK | On-Off Keying |
CSK | Color Shift Keying |
m-IM | Multilevel Intensity Modulation |
CCD | Charge Coupled Device |
CMOS | Complementary Metal Oxide Semiconductor |
NLOS | Non-Line-of-Sight |
CV | Computer Vision |
DL | Deep Learning |
ML | Machine Learning |
ER | Extinction Ratio |
CNN | Convolution Neural Network |
ISI | Inter-Symbol Interference |
IoT | Internet of Things |
ITSs | Intelligent Transportation Systems |
V2I | Vehicle-to-Infrastructure |
I2V | Infrastructure-to-Vehicle |
V2V | Vehicle-to-Vehicle |
V2LC | Vehicular VLC |
IPSs | Indoor Positioning Systems |
RFID | RF identification |
PDR | Pedestrian Dead Reckoning |
UWOC | Underwater Wireless Optical Communication |
UWOCC | Underwater Wireless Optical Camera Communication |
ISAC | Integrated Sensing and Communication |
D2D | Drone to Drone |
References
- Cisco. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Li, H.; Chen, X.; Gao, Z.; Cui, S.; Wang, Q. Advances and prospects in visible light communications. J. Semicond. 2016, 37, 011001. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Shan, Q.; Wei, C.; Jiang, Y.; Song, J.; Zou, Y.; Xu, L.; Fang, T.; Wang, T.; Dong, Y.; Liu, J.; et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci. Appl. 2020, 9, 163. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z. Some practical constraints and solutions for optical camera communication. Philos. Trans. R. Soc. A 2020, 378, 20190191. [Google Scholar] [CrossRef]
- Mohsan, S.A.H. Optical camera communications: Practical constraints, applications, potential challenges, and future directions. J. Opt. Technol. 2021, 88, 729–741. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Li, S.; Zhao, Y.; Du, J.; Zhu, L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 2021, 11, 645–680. [Google Scholar] [CrossRef]
- Huang, W.; Xu, Z. Characteristics and performance of image sensor communication. IEEE Photonics J. 2017, 9, 1–19. [Google Scholar] [CrossRef]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1244–1248. [Google Scholar]
- Lee, H.Y.; Lin, H.M.; Wei, Y.L.; Wu, H.I.; Tsai, H.M.; Lin, K.C.J. Rollinglight: Enabling line-of-sight light-to-camera communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 20–22 May 2015; pp. 167–180. [Google Scholar]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Zvanovec, S.; Feng, S.; Zhang, P. Undersampled-based modulation schemes for optical camera communications. IEEE Commun. Mag. 2018, 56, 204–212. [Google Scholar] [CrossRef]
- Luo, P.; Ghassemlooy, Z.; Le Minh, H.; Tang, X.; Tsai, H.M. Undersampled phase shift ON-OFF keying for camera communication. In Proceedings of the 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014; pp. 1–6. [Google Scholar]
- Luo, P.; Ghassemlooy, Z.; Le Minh, H.; Tsai, H.M.; Tang, X. Undersampled-PAM with subcarrier modulation for camera communications. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar]
- Yang, Y.; Luo, J.; Chen, C.; Chen, Z.; Zhong, W.D.; Chen, L. Pushing the data rate of practical VLC via combinatorial light emission. IEEE Trans. Mob. Comput. 2020, 20, 1979–1992. [Google Scholar] [CrossRef]
- Jiang, N.; Lin, B.; Lai, Q.; Huang, T.; Ghassemlooy, Z.; Younus, O.I.; Luo, J.; Xie, Y.; Dai, L.; Huang, Z. Non-line-of-sight WDM-MIMO optical camera communications with the DBPWR algorithm. Opt. Commun. 2022, 518, 128371. [Google Scholar] [CrossRef]
- Yang, Y.; Nie, J.; Luo, J. Reflexcode: Coding with superposed reflection light for led-camera communication. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, UT, USA, 16–20 October 2017; pp. 193–205. [Google Scholar]
- Wu, H.; Chen, Y.C.; Xue, G.; Jiang, Y.; Wang, M.; Qian, S.; Yu, J.; Chen, P.Y. OnionCode: Enabling Multi-priority Coding in LED-based Optical Camera Communications. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 260–269. [Google Scholar]
- Saha, N.; Ifthekhar, M.S.; Le, N.T.; Jang, Y.M. Survey on optical camera communications: Challenges and opportunities. IET Optoelectron. 2015, 9, 172–183. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.A.; Jang, Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017, 53, 95–109. [Google Scholar] [CrossRef]
- Saeed, N.; Guo, S.; Park, K.H.; Al-Naffouri, T.Y.; Alouini, M.S. Optical camera communications: Survey, use cases, challenges, and future trends. Phys. Commun. 2019, 37, 100900. [Google Scholar] [CrossRef]
- Liu, A.; Shi, W.; Ouyang, M.; Liu, W. Characterization of Optical Camera Communication Based on a Comprehensive System Model. J. Lightwave Technol. 2022, 40, 6087–6100. [Google Scholar] [CrossRef]
- Li, T.; An, C.; Xiao, X.; Campbell, A.T.; Zhou, X. Real-time screen-camera communication behind any scene. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 20–22 May 2015; pp. 197–211. [Google Scholar]
- Zhang, K.; Wu, C.; Yang, C.; Zhao, Y.; Huang, K.; Peng, C.; Liu, Y.; Yang, Z. Chromacode: A fully imperceptible screen-camera communication system. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 575–590. [Google Scholar]
- Bao, X.; Pan, J.; Cai, Z.; Li, J.; Huang, X.; Chen, R.; Fang, J. Real-time display camera communication system based on LED displays and smartphones. Opt. Express 2021, 29, 23558–23568. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, J. Composite amplitude-shift keying for effective LED-camera VLC. IEEE Trans. Mob. Comput. 2019, 19, 528–539. [Google Scholar] [CrossRef]
- Hu, P.; Pathak, P.H.; Feng, X.; Fu, H.; Mohapatra, P. Colorbars: Increasing data rate of led-to-camera communication using color shift keying. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, Heidelberg, Germany, 1–4 December 2015; pp. 1–13. [Google Scholar]
- Yang, Y.; Luo, J. Boosting the throughput of LED-camera VLC via composite light emission. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 15–19 April 2018; pp. 315–323. [Google Scholar]
- IEEE. IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Wireless Optical Communication Using Visible Light; IEEE: Piscataway, NZ, USA, 2011; pp. 1–309. [Google Scholar]
- Mariappan, V.; Cha, J. IEEE802. 15.7 m OWC PHY Specification Overview. IEEE COMSOC MMTC Commun. Front. 2018, 13, 25–28. [Google Scholar]
- Nguyen, T.; Islam, A.; Yamazato, T.; Jang, Y.M. Technical issues on IEEE 802.15. 7m image sensor communication standardization. IEEE Commun. Mag. 2018, 56, 213–218. [Google Scholar] [CrossRef]
- Chen, H.W.; Wen, S.S.; Wang, X.L.; Liang, M.Z.; Li, M.Y.; Li, Q.C.; Liu, Y. Color-shift keying for optical camera communication using a rolling shutter mode. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.Y. Multilevel intensity-modulation for rolling shutter-based optical camera communication. IEEE Photonics Technol. Lett. 2018, 30, 903–906. [Google Scholar] [CrossRef]
- Kuo, Y.S.; Pannuto, P.; Hsiao, K.J.; Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 447–458. [Google Scholar]
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Wu, R.; Guo, Y.; Liu, J.; Liu, P. Modeling and analysis of spatial inter-symbol interference for MIMO image sensors based visible light communication. In Proceedings of the 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITUK), Nanjing, China, 27–29 November 2017; pp. 1–7. [Google Scholar]
- Chen, Z.; Wang, X.; Pacheco, S.; Liang, R. Impact of CCD camera SNR on polarimetric accuracy. Appl. Opt. 2014, 53, 7649–7656. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, F. Push the limit of light-to-camera communication. IEEE Access 2020, 8, 55969–55979. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Sun, Y.; Deng, X.; Yang, Y.; Chen, L. High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division. Sensors 2022, 22, 8375. [Google Scholar] [CrossRef]
- Pham, T.L.; Nguyen, H.; Nguyen, H.; Bui, V.; Jang, Y.M. Object detection framework for high mobility vehicles tracking in night-time. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 133–135. [Google Scholar]
- Choi, D.N.; Jin, S.Y.; Lee, J.; Kim, B.W. Deep learning technique for improving data reception in optical camera communication-based v2i. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–2. [Google Scholar]
- Chow, C.W.; Liu, Y.; Yeh, C.H.; Chang, Y.H.; Lin, Y.S.; Hsu, K.L.; Liao, X.L.; Lin, K.H. Display light panel and rolling shutter image sensor based optical camera communication (OCC) using frame-averaging background removal and neural network. J. Lightwave Technol. 2021, 39, 4360–4366. [Google Scholar] [CrossRef]
- Chow, C.W.; Shiu, R.J.; Liu, Y.C.; Wang, W.C.; Liao, X.L.; Lin, K.H.; Wang, Y.C.; Chen, Y.Y. Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor. Opt. Express 2018, 26, 22342–22347. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Chow, C.W.; Liu, Y.; Yeh, C.H.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications. Opt. Express 2019, 27, 29924–29929. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.L.; Wu, Y.C.; Chuang, Y.C.; Chow, C.W.; Liu, Y.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm. Opt. Express 2020, 28, 2427–2432. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Chow, C.W.; Wei, L.Y.; Liu, Y.; Yeh, C.H. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera. Opt. Express 2017, 25, 10103–10108. [Google Scholar] [CrossRef]
- Yang, F.; Li, S.; Yang, Z.; Qian, C.; Gu, T. Spatial multiplexing for non-line-of-sight light-to-camera communications. IEEE Trans. Mob. Comput. 2018, 18, 2660–2671. [Google Scholar] [CrossRef]
- Lain, J.K.; Jhan, F.C.; Yang, Z.D. Non-line-of-sight optical camera communication in a heterogeneous reflective background. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Liu, L.; Chen, L.K. Li-poster: Real-time non-line-of-sight optical camera communication for hand-held smartphone applications. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–11 June 2021; pp. 1–3. [Google Scholar]
- Zhang, P.; Hu, C.; Sun, Y.; Yang, Y. Gsnake: A lightweight SNR optimization algorithm for practical optical camera communication. In Proceedings of the 2021 International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing, Online, 8–10 April 2021; Volume 12278, pp. 63–69. [Google Scholar]
- Liu, Z.; Yang, L.; Yang, Y.; Wu, R.; Zhang, L.; Chen, L.; Wu, D.; She, J. Improved optical camera communication systems using a freeform lens. Opt. Express 2021, 29, 34066–34076. [Google Scholar] [CrossRef]
- Chow, C.W.; Chen, C.Y.; Chen, S.H. Enhancement of signal performance in LED visible light communications using mobile phone camera. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Liang, K.; Chow, C.W.; Liu, Y.; Yeh, C.H. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms. Opt. Express 2016, 24, 25641–25646. [Google Scholar] [CrossRef]
- Liu, L.; Hong, Y.; Chen, L.K. A frame averaging based signal tracing (FAST) algorithm for optical camera communications. In Proceedings of the Asia Communications and Photonics Conference, Optica Publishing Group, Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Zhang, Z.; Zhang, T.; Zhou, J.; Lu, Y.; Qiao, Y. Thresholding scheme based on boundary pixels of stripes for visible light communication with mobile-phone camera. IEEE Access 2018, 6, 53053–53061. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, R.; Duan, H.; Chen, Y.; Yang, Y.; Wu, R.; Chen, L. Increasing the Data Rate for Reflected Optical Camera Communication Using Uniform LED Light. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 1274–1275. [Google Scholar]
- Chow, C.W.; Chen, C.Y.; Chen, S.H. Visible light communication using mobile-phone camera with data rate higher than frame rate. Opt. Express 2015, 23, 26080–26085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, T.; Zhou, J.; Qiao, Y.; Yang, A.; Lu, Y. Performance enhancement scheme for mobile-phone based VLC using moving exponent average algorithm. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Q.; Yang, Y.; Wang, Y.; Sun, Y.; Xu, W.; Luo, J.; Chen, L. Enhancing the performance of optical camera communication via accumulative sampling. Opt. Express 2021, 29, 19015–19023. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; He, J.; Jiang, Z.; Zhou, Y.; Xiao, Y. Enabling user mobility for optical camera communication using mobile phone. Opt. Express 2018, 26, 21762–21767. [Google Scholar] [CrossRef]
- He, J.; Jiang, Z.; Shi, J.; Zhou, Y. A novel column matrix selection scheme for VLC system with mobile phone camera. IEEE Photonics Technol. Lett. 2018, 31, 149–152. [Google Scholar] [CrossRef]
- Chow, C.W.; Li, Z.Q.; Chuang, Y.C.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Decoding CMOS rolling-shutter pattern in translational or rotational motions for VLC. IEEE Photonics J. 2019, 11, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Chow, C.W.; Liang, K.; Chen, H.Y.; Hsu, C.W.; Chen, C.Y.; Chen, S.H. Comparison of thresholding schemes for visible light communication using mobile-phone image sensor. Opt. Express 2016, 24, 1973–1978. [Google Scholar] [CrossRef]
- Chen, C.W.; Chow, C.W.; Liu, Y.; Yeh, C.H. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications. Opt. Express 2017, 25, 24362–24367. [Google Scholar] [CrossRef]
- Chow, C.W.; Liu, Y.C.; Shiu, R.J.; Yeh, C.H. Adaptive thresholding scheme for demodulation of rolling-shutter images obtained in CMOS image sensor based visible light communications. IEEE Photonics J. 2018, 10, 1–6. [Google Scholar] [CrossRef]
- Liu, L.; Deng, R.; Chen, L.K. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation. Opt. Express 2019, 27, 33840–33846. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, X.; Pan, T.; Shen, T.; Chen, H. HyperSight: A Precise Decoding Algorithm for VLC With Mobile-Phone Camera. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Yu, K.; He, J.; Huang, Z. Decoding scheme based on CNN for mobile optical camera communication. Appl. Opt. 2020, 59, 7109–7113. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; He, J.; Yan, X. Sub-column pixel neural network scheme for modulation format shifting based optical camera communications. Opt. Lett. 2023, 48, 85–88. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ali, M.O.; Rahman, M.H.; Chowdhury, M.Z.; Jang, Y.M. Optical camera communication in vehicular applications: A review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6260–6281. [Google Scholar] [CrossRef]
- Memedi, A.; Dressler, F. Vehicular visible light communications: A survey. IEEE Commun. Surv. Tutor. 2020, 23, 161–181. [Google Scholar] [CrossRef]
- Ji, P.; Tsai, H.M.; Wang, C.; Liu, F. Vehicular visible light communications with LED taillight and rolling shutter camera. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Republic of Korea, 18–21 May 2014; pp. 1–6. [Google Scholar]
- Cui, Z.; Wang, C.; Tsai, H.M. Characterizing channel fading in vehicular visible light communications with video data. In Proceedings of the 2014 IEEE Vehicular Networking Conference (VNC), Paderborn, Germany, 3–5 December 2014; pp. 226–229. [Google Scholar]
- Xu, K.; Zhou, K.; Zhu, C.; Zhang, S.; Shi, B.; Li, X.; Huang, T.; Xu, C. When Visible Light (Backscatter) Communication Meets Neuromorphic Cameras in V2X. In Proceedings of the 24th International Workshop on Mobile Computing Systems and Applications, Newport Beach, CA, USA, 22–23 February 2023; pp. 42–48. [Google Scholar]
- Yang, H.; Zhong, W.D.; Chen, C.; Alphones, A. Integration of visible light communication and positioning within 5G networks for internet of things. IEEE Netw. 2020, 34, 134–140. [Google Scholar] [CrossRef]
- Lin, P.; Hu, X.; Ruan, Y.; Li, H.; Fang, J.; Zhong, Y.; Zheng, H.; Fang, J.; Jiang, Z.L.; Chen, Z. Real-time visible light positioning supporting fast moving speed. Opt. Express 2020, 28, 14503–14510. [Google Scholar] [CrossRef]
- Li, Y.; Ghassemlooy, Z.; Tang, X.; Lin, B.; Zhang, Y. A VLC smartphone camera based indoor positioning system. IEEE Photonics Technol. Lett. 2018, 30, 1171–1174. [Google Scholar] [CrossRef]
- Xu, J.; Gong, C.; Xu, Z. Experimental indoor visible light positioning systems with centimeter accuracy based on a commercial smartphone camera. IEEE Photonics J. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Lin, B.; Ghassemlooy, Z.; Lin, C.; Tang, X.; Li, Y.; Zhang, S. An indoor visible light positioning system based on optical camera communications. IEEE Photonics Technol. Lett. 2017, 29, 579–582. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Guo, L. DIMLOC: Enabling high-precision visible light localization under dimmable LEDs in smart buildings. IEEE Internet Things J. 2019, 6, 3912–3924. [Google Scholar] [CrossRef]
- Song, H.; Wen, S.; Yang, C.; Yuan, D.; Guan, W. Universal and effective decoding scheme for visible light positioning based on optical camera communication. Electronics 2021, 10, 1925. [Google Scholar] [CrossRef]
- Hussain, B.; Wang, Y.; Chen, R.; Cheng, H.C.; Yue, C.P. Lidr: Visible-light-communication-assisted dead reckoning for accurate indoor localization. IEEE Internet Things J. 2022, 9, 15742–15755. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, M.; Ali, T.; Wang, J.; Sarwar, R.; Han, J.; Guo, C.; Sun, B.; Deng, N.; Xu, J. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Opt. Express 2017, 25, 14760–14765. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Y.; Zhang, X. Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 2013, 62, 226–234. [Google Scholar] [CrossRef]
- Akram, M.; Godaliyadda, R.; Ekanayake, P. Design and analysis of an optical camera communication system for underwater applications. IET Optoelectron. 2020, 14, 10–21. [Google Scholar] [CrossRef]
- Majlesein, B.; Rufo, J.; Moreno, D.; Guerra, V.; Rabadan, J. Underwater optical camera communications based on a multispectral camera and spectral variations of the LED emission. In Proceedings of the Workshop on Light Up the IoT, Online, 21–25 September 2020; pp. 30–35. [Google Scholar]
- Zhou, Z.; Wen, S.; Li, Y.; Xu, W.; Chen, Z.; Guan, W. Performance enhancement scheme for RSE-based underwater optical camera communication using de-bubble algorithm and binary fringe correction. Electronics 2021, 10, 950. [Google Scholar] [CrossRef]
- Shigenawa, A.; Onodera, Y.; Takeshita, E.; Hisano, D.; Maruta, K.; Nakayama, Y. Predictive Equalization for Underwater Optical Camera Communication. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar]
- Teli, S.R.; Zvanovec, S.; Ghassemlooy, Z. Optical internet of things within 5G: Applications and challenges. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 40–45. [Google Scholar]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Optical camera communication for smart cities. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Qingdao, China, 22–24 October 2017; pp. 1–4. [Google Scholar]
- Van Hoa, N.; Nguyen, H.; Nguyen, C.H.; Jang, Y.M. OCC Technology-based Developing IoT Network. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 670–673. [Google Scholar]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 2022, 25, 1–45. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Duan, H.; Huang, M.; Yang, Y.; Hao, J.; Chen, L. Ambient light based hand gesture recognition enabled by recurrent neural network. IEEE Access 2020, 8, 7303–7312. [Google Scholar] [CrossRef]
- Huang, M.; Duan, H.; Chen, Y.; Yang, Y.; Hao, J.; Chen, L. Demo Abstract: FingerLite: Finger Gesture Recognition Using Ambient Light. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 1268–1269. [Google Scholar]
- Liu, Z.; Zheng, T.; Hu, C.; Yang, Y.; Sun, Y.; Zhang, Y.; Chen, Z.; Chen, L.; Luo, J. CORE-lens: Simultaneous communication and object recognition with disentangled-GAN cameras. In Proceedings of the 28th Annual International Conference on Mobile Computing and Networking, Hangzhou, China, 16–19 September 2022; pp. 172–185. [Google Scholar]
- Guo, M.; Zhang, P.; Sun, Y.; Zhang, W.; Zhou, Y.; Yang, Y. Object recognition in optical camera communication enabled by image restoration. Opt. Express 2022, 30, 37026–37037. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, Z.; Hu, X.; Sun, Y.; Deng, X.; Zhu, B.; Yang, Y. Constraints and Recent Solutions of Optical Camera Communication for Practical Applications. Photonics 2023, 10, 608. https://doi.org/10.3390/photonics10060608
Zhang P, Liu Z, Hu X, Sun Y, Deng X, Zhu B, Yang Y. Constraints and Recent Solutions of Optical Camera Communication for Practical Applications. Photonics. 2023; 10(6):608. https://doi.org/10.3390/photonics10060608
Chicago/Turabian StyleZhang, Pinpin, Ziwei Liu, Xin Hu, Yimao Sun, Xiong Deng, Binbin Zhu, and Yanbing Yang. 2023. "Constraints and Recent Solutions of Optical Camera Communication for Practical Applications" Photonics 10, no. 6: 608. https://doi.org/10.3390/photonics10060608
APA StyleZhang, P., Liu, Z., Hu, X., Sun, Y., Deng, X., Zhu, B., & Yang, Y. (2023). Constraints and Recent Solutions of Optical Camera Communication for Practical Applications. Photonics, 10(6), 608. https://doi.org/10.3390/photonics10060608