Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends
Abstract
:1. Introduction
2. Fundamentals of SEDDS
2.1. Composition and Mechanism
2.1.1. Oils/Lipids
2.1.2. Surfactants
2.1.3. Co-Surfactants/Co-Solvents
2.1.4. Drugs
2.1.5. Mechanism of Drug Absorption and Bioavailability Enhancement by SEDDS
2.2. Classification of SEDDS
2.2.1. Conventional SEDDS, SMEDDS, and SNEDDS
2.2.2. Lipid Formulation Classification System (LFCS)
3. Formulation Strategies
3.1. Liquid SEDDS (L-SEDDS)
3.2. Solid SEDDS (S-SEDDS)
3.2.1. Solid Carriers
API | Solid Carrier | Method of Preparation | Reference |
---|---|---|---|
Dexibuprofen | Silicon Dioxide (Aerosil® 200) | Spray Drying | [70] |
Lysozyme | Magnesium Aluminometasilicate (Neusilin® UFL2) | Adsorption using Mortar-Pestle | [71] |
Flubiprofen | Silicon dioxide (Aerosil® 200); Magnesium stearate; Polyvinyl alcohol (PVA); Sodium carboxymethyl cellulose (Na-CMC); Hydroxypropyl-β-cyclodextrin (HP-β-CD) | Spray Drying | [72] |
Cannabidiol | PEO N80 (Polyethylene oxide), and Soluplus® (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer) | Hot-melt Extrusion | [73] |
Curcumin | Soluplus®; Magnesium Aluminometasilicate (Neusilin® UFL2) | Spray Drying | [74] |
Carbamazepine | Diatom silica | Adsorption using Mortar-Pestle | [75] |
Glimepiride | Silicon dioxide (Aerosil® 200) | Spray Drying | [76] |
Docetaxel | Lactose | Spray Drying | [77] |
Quetiapine Fumarate | Soluplus® and Hydroxypropyl Cellulose (Klucel™ EF) | Hot-melt Extrusion | [17] |
Chlorthalidone | Silicon dioxide (Aerosil® 200) | Spray Drying | [78] |
Quercetin | Silicon dioxide (Aerosil® 300) | Spray Drying | [79] |
Carvedilol | Silicon dioxide (Aerosil® 200); Hydroxypropyl Methylcellulose Acetate Succinate, HPMCAS (AquaSolve AS® LG); Hydroxypropyl Cellulose (Klucel™ EF); Microcrystalline cellulose pH 101; Talc | Hot-melt Extrusion | [80] |
Meloxicam | Mannitol; Fumed Silica | Lyophilisation | [81] |
Orlistat | Silicon dioxide (Aerosil® 200); Microcrystalline cellulose PH 102 (Avicel PH 102) | Lyophilisation | [82] |
Flubiprofen | Silicon dioxide (Aerosil® 200); Dextran | Spray Drying | [83] |
Indomethacin | Silicon dioxide (Syloid® XDP 3150); Magnesium Aluminometasilicate (Neusilin® UFL2); Synthetic Calcium Silicate (Florite® PS-200) | Hot-melt Extrusion | [84] |
Azithromycin | Lactose; Mannitol; Calcium Carbonate; Silicon dioxide (Aerosil® 200) | Adsorption using Mortar-Pestle | [62] |
Resveratrol | Silicon dioxide (Aerosil® 200) | Hot-melt Extrusion | [85] |
Paclitaxel | Silicon dioxide (Aerosil® 200); Dextran | Spray Drying | [86] |
Atorvastatin | Lactose (Lactochem® powder) | Spray Drying | [87] |
Furosemide | Microcrystalline Cellulose | Adsorption using Mortar-Pestle | [88] |
Clozapine | Silicon dioxide (Aerosil® 200); Microcrystalline Cellulose | Adsorption using Mortar-Pestle | [89] |
Ibuprofen | Magnesium Aluminometasilicate (Neusilin® US2); Starch 1500®; Microcrystalline Cellulose (Avicel PH® 102) | Hot-melt Extrusion | [43] |
Fenofibrate | Magnesium Aluminometasilicate (Neusilin® US2) | Hot-melt Extrusion | [15] |
Celecoxib | Calcium Silicate; Silicon dioxide (Aerosil® 200) | Spray drying; Fluid Bed Granulator | [90] |
3.2.2. Typical Formulation Methods of Solid SEDDS (S-SEDDS)
Hot-Melt Extrusion
Lyophilization
Spray Drying
Adsorption onto Solid Carriers
Three-Dimensional Printing
4. Characterization Methods for SEDDS
5. Applications of SEDDS
5.1. Enhanced Bioavailability in SEDDS
5.2. Controlled-Release Formulations in SEDDS
5.2.1. Osmotic SEDDS Systems
5.2.2. Floating and Gastroretentive SEDDS
5.2.3. Mucoadhesive and SEDDS Combinations
5.2.4. Ionic Drug–Polymer Binding in SEDDS
Osmotic-SEDDS | ||||
Drug | Challenge | Osmotic Excipients | Outcome | Ref. |
Nifedipine | Water insoluble and exhibit low bioavailability. | Mannitol and lactose | Improved solubility and cumulative release of about 84% in 12 h. Impact of orifice size, membrane composition and thickness on release profile was studied. | [131] |
Carvedilol | Poor bioavailability of 20% due to low water solubility and first pass metabolism. | Mannitol | Cumulative release of about 85% in 12 h. Stable plasma drug concentration in comparison to marketed tablet. Relative bioavailability of 156.78% in beagle dogs. | [132] |
Vinpocetine | Poor bioavailability of about 7% due to poor water solubility and first pass metabolism. Weak base with pH dependent solubility and short half-life. | Sodium chloride | Solubility was improved at higher pH values with extended drug release at a zero-order rate. Improved bioavailability in rabbits against marketed formulation. Impact of coating material, concentration of coating solution, and number of drills on drug release was studied. | [133] |
Nimodipine | Poor water solubility and first pass metabolism. | Sodium chloride | Osmotic pump capsules were developed with zero-order release. The drug release was optimized based on key factors such as the amount of plasticizer, coating mass, and orifice size | [134] |
Floating/Gastroretentive Drug delivery systems | ||||
Drug | Challenge | Floating/ Gastroretention excipients | Outcome | Ref. |
Fenofibrate | Low solubility especially in alkaline conditions | Bilayer tablet composed of drug layer and swelling layer of HPMC | 90% drug release attained in 12 h. Tablet swelled to a size that is bigger than the pylorus diameter | [135] |
Tetrahydrocurcumin | Low aqueous solubility and short retention at the site of action (upper gastrointestinal tract) | Sodium bicarbonate and tartaric acid | Short floating lag time and extended floating capacity. 72% drug release in 12 h in addition to three-to-five-fold enhanced permeability via Caco-2 cell monolayers | [66] |
Tetrahydrocurcumin | Low aqueous solubility and short retention at the site of action (upper gastrointestinal tract) | Different concentrations of glyceryl behenate to the floating pellets | 80% drug release within 8 h in contrast to the liquid SEDDS that released the same amount within 2 h | [136] |
5.3. Targeted Drug Delivery in SEDDS
5.4. Recent Modifications in SEDDS
5.4.1. SEDDS Combined with 3D Printing
5.4.2. Self-Double Emulsifying Drug Delivery Systems
6. Challenges and Limitations of SEDDS
7. Future Trends
7.1. Personalized Medicine
7.2. In Silico Formulation Development
7.3. Biologics and Peptide Delivery
7.4. Hybrid Drug Delivery Systems
7.5. Supersaturable SEDDS (Su-SEDDS)
7.6. Targeted and Responsive SEDDS
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SEDDS | Self-emulsifying drug delivery systems |
SMEDDS | Self-microemulsifying drug delivery systems |
SNEDDS | Self-nanoemulsifying drug delivery systems |
L-SEDDS | Liquid self-emulsifying drug delivery systems |
S-SEDDS | Solid self-emulsifying drug delivery systems |
Su-SEDDS | Supersaturable self-emulsifying drug delivery systems |
LFCS | Lipid Formulation Classification System |
W/O/W | water-in-oil-in-water |
PVA | PolyvinylAlcohol |
(HP-β CD) | Hydroxypropyl-β Cyclodextrin |
HPMCAS | Hydroxypropyl Methylcellulose Acetate Succinate |
MCC | MicrocrystallineCellulose |
DSC | Differential Scanning Calorimetry |
TEM | Transmission electron microscopy |
DLS | Dynamic Light Scattering |
DTX | Docetaxel |
BCS | Biopharmaceutics Classification System |
HLB | Hydrophilic–Lipophilic Balance |
PEG | Polyethylene Glycol |
GIT | Gastrointestinal tract |
UWL | Unstirred water layer |
LPs | Lipoproteins |
O/W | oil-in-water |
O/O/W | oil-in-oil-in-water |
Na-CMC | Sodium Carboxymethyl Cellulose |
PEO | Polyethylene Oxide |
HPC | Hydroxypropyl Cellulose |
PXRD | Powder X-ray diffraction |
SEM | Scanning electron microscopy |
IR | Infra-red |
FDDS | Floating drug delivery systems |
MD | Molecular dynamics |
References
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and In Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Park, J.-S. Recent Trends of Self-Emulsifying Drug Delivery System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. J. Pharm. Investig. 2021, 51, 439–463. [Google Scholar] [CrossRef]
- Nikolakakis, I.; Partheniadis, I. Self-Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release. Pharmaceutics 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Holm, R.; Kuentz, M.; Ilie-Spiridon, A.-R.; Griffin, B.T. Lipid Based Formulations as Supersaturating Oral Delivery Systems: From Current to Future Industrial Applications. Eur. J. Pharm. Sci. 2023, 189, 106556. [Google Scholar] [CrossRef]
- Porter, C.J.; Charman, W.N. Transport and Absorption of Drugs via the Lymphatic System. Adv. Drug Deliv. Rev. 2001, 50, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.D.; Ford, L.; Igonin, A.; Shan, Z.; Botti, P.; Morgen, M.M.; Hu, G.; Pouton, C.W.; Scammells, P.J.; Porter, C.J.H.; et al. Unlocking the Full Potential of Lipid-Based Formulations Using Lipophilic Salt/Ionic Liquid Forms. Adv. Drug Deliv. Rev. 2019, 142, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W. Formulation of Self-Emulsifying Drug Delivery Systems. Adv. Drug Deliv. Rev. 1997, 25, 47–58. [Google Scholar] [CrossRef]
- Pouton, C.W. Lipid Formulations for Oral Administration of Drugs: Non-Emulsifying, Self-Emulsifying and ‘Self-Microemulsifying’ Drug Delivery Systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Chapter 12—Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) and Self-Microemulsifying Drug Delivery Systems (SMEDDS) as Lipid Nanocarriers for Improving Dissolution Rate and Bioavailability of Poorly Soluble Drugs. In Lipid Nanocarriers for Drug Targeting; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 473–508. ISBN 978-0-12-813687-4. [Google Scholar]
- Bashir, M.A.; Khan, A.; Shah, S.I.; Ullah, M.; Khuda, F.; Abbas, M.; Goh, K.W.; Ming, L.C. Development and Evaluation of Self-Emulsifying Drug-Delivery System–Based Tablets for Simvastatin, a BCS Class II Drug. DDDT 2023, 17, 261–272. [Google Scholar] [CrossRef]
- Ghadi, R.; Dand, N. BCS Class IV Drugs: Highly Notorious Candidates for Formulation Development. J. Control. Release 2017, 248, 71–95. [Google Scholar] [CrossRef]
- Neslihan Gursoy, R.; Benita, S. Self-Emulsifying Drug Delivery Systems (SEDDS) for Improved Oral Delivery of Lipophilic Drugs. Biomed. Pharmacother. 2004, 58, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Betageri, G.V. Self-Emulsifying Drug Delivery Systems and Their Marketed Products: A Review. Asian J. Pharm. 2019, 13, 73–84. [Google Scholar] [CrossRef]
- Mandić, J.; Zvonar Pobirk, A.; Vrečer, F.; Gašperlin, M. Overview of Solidification Techniques for Self-Emulsifying Drug Delivery Systems from Industrial Perspective. Int. J. Pharm. 2017, 533, 335–345. [Google Scholar] [CrossRef]
- Raman Kallakunta, V.; Dudhipala, N.; Nyavanandi, D.; Sarabu, S.; Yadav Janga, K.; Ajjarapu, S.; Bandari, S.; Repka, M.A. Formulation and Processing of Solid Self-Emulsifying Drug Delivery Systems (HME S-SEDDS): A Single-Step Manufacturing Process via Hot-Melt Extrusion Technology through Response Surface Methodology. Int. J. Pharm. 2023, 641, 123055. [Google Scholar] [CrossRef]
- Kumar, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Spray Drying as an Effective Method in the Development of Solid Self-Emulsifying Drug Delivery Systems. Curr. Drug Deliv. 2023, 20, e160522204811. [Google Scholar] [CrossRef]
- Uttreja, P.; Youssef, A.A.A.; Karnik, I.; Sanil, K.; Narala, N.; Wang, H.; Elkanayati, R.M.; Vemula, S.K.; Repka, M.A. Formulation Development of Solid Self-Nanoemulsifying Drug Delivery Systems of Quetiapine Fumarate via Hot-Melt Extrusion Technology: Optimization Using Central Composite Design. Pharmaceutics 2024, 16, 324. [Google Scholar] [CrossRef]
- Friedl, J.D.; Jörgensen, A.M.; Le-Vinh, B.; Braun, D.E.; Tribus, M.; Bernkop-Schnürch, A. Solidification of Self-Emulsifying Drug Delivery Systems (SEDDS): Impact on Storage Stability of a Therapeutic Protein. J. Colloid. Interface Sci. 2021, 584, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-L. Lipid Excipients and Delivery Systems for Pharmaceutical Development: A Regulatory Perspective. Adv. Drug Deliv. Rev. 2008, 60, 768–777. [Google Scholar] [CrossRef]
- Gershanik, T.; Benita, S. Self-Dispersing Lipid Formulations for Improving Oral Absorption of Lipophilic Drugs. Eur. J. Pharm. Biopharm. 2000, 50, 179–188. [Google Scholar] [CrossRef]
- Nardin, I.; Köllner, S. Successful Development of Oral SEDDS: Screening of Excipients from the Industrial Point of View. Adv. Drug Deliv. Rev. 2019, 142, 128–140. [Google Scholar] [CrossRef]
- Hauss, D.J.; Fogal, S.E.; Ficorilli, J.V.; Price, C.A.; Roy, T.; Jayaraj, A.A.; Keirns, J.J. Lipid-Based Delivery Systems for Improving the Bioavailability and Lymphatic Transport of a Poorly Water-Soluble LTB4 Inhibitor. J. Pharm. Sci. 1998, 87, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Chauhan, H.; Atef, E. Studying the Effect of Lipid Chain Length on the Precipitation of a Poorly Water Soluble Drug from Self-Emulsifying Drug Delivery System on Dispersion into Aqueous Medium. J. Pharm. Pharmacol. 2013, 65, 1134–1144. [Google Scholar] [CrossRef]
- Sharma, N.; Madan, P.; Lin, S. Effect of Process and Formulation Variables on the Preparation of Parenteral Paclitaxel-Loaded Biodegradable Polymeric Nanoparticles: A Co-Surfactant Study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Zhang, R.X.; Dong, K.; Wang, Z.; Miao, R.; Lu, W.; Wu, X.Y. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism Towards Personalized Medicine. Pharmaceutics 2021, 13, 1261. [Google Scholar] [CrossRef]
- Non-Ionic Surfactants as a P-Glycoprotein(P-Gp) Efflux Inhibitor for Optimal Drug Delivery-A Concise Outlook—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35043278/ (accessed on 20 March 2023).
- Devani, M.; Ashford, M.; Craig, D.Q.M. The Emulsification and Solubilisation Properties of Polyglycolysed Oils in Self-Emulsifying Formulations. J. Pharm. Pharmacol. 2004, 56, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Ofokansi, K.C.; Chukwu, K.I.; Ugwuanyi, S.I. The Use of Liquid Self-Microemulsifying Drug Delivery Systems Based on Peanut Oil/Tween 80 in the Delivery of Griseofulvin. Drug Dev. Ind. Pharm. 2009, 35, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ghosh, A.; Wagner, R.F.; Krill, S.; Joshi, Y.M.; Serajuddin, A.T.M. Effect of Combined Use of Nonionic Surfactant on Formation of Oil-in-Water Microemulsions. Int. J. Pharm. 2005, 288, 27–34. [Google Scholar] [CrossRef]
- Cerpnjak, K.; Zvonar, A.; Gašperlin, M.; Vrečer, F. Lipid-Based Systems as a Promising Approach for Enhancing the Bioavailability of Poorly Water-Soluble Drugs. Acta Pharm. 2013, 63, 427–445. [Google Scholar] [CrossRef]
- Friberg, S.; Buraczewska, I.; Ravey, J.C. Solubilization by Nonionic Surfactants in the HLB-Temperature Range. In Micellization, Solubilization, and Microemulsions: Volume 2; Mittal, K.L., Ed.; Springer US: Boston, MA, USA, 1977; pp. 901–911. ISBN 978-1-4613-4157-4. [Google Scholar]
- Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of the Poorly Water-Soluble Grapefruit Flavonoid Naringenin: Design, Characterization, In Vitro and In Vivo Evaluation. Drug Deliv. 2015, 22, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.A.; Patravale, V.B. Design and Evaluation of Self-Emulsifying Drug Delivery Systems (SEDDS) of Nimodipine. AAPS PharmSciTech 2008, 9, 191–196. [Google Scholar] [CrossRef]
- Chambin, O.; Jannin, V. Interest of Multifunctional Lipid Excipients: Case of Gelucire 44/14. Drug Dev. Ind. Pharm. 2005, 31, 527–534. [Google Scholar] [CrossRef]
- Abubakr Soliman, K.; Kamal Ibrahim, H.; Mohamed Ghorab, M. Formulation of Risperidone as Self-Nanoemulsifying Drug Delivery System in Form of Effervescent Tablets. J. Dispers. Sci. Technol. 2012, 33, 1127–1133. [Google Scholar] [CrossRef]
- Grove, M.; Müllertz, A.; Nielsen, J.L.; Pedersen, G.P. Bioavailability of Seocalcitol: II: Development and Characterisation of Self-Microemulsifying Drug Delivery Systems (SMEDDS) for Oral Administration Containing Medium and Long Chain Triglycerides. Eur. J. Pharm. Sci. 2006, 28, 233–242. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, J.; Zhang, Q. Self-Emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-Chemical Characterization. Pharm. Nanotechnol. 2020, 8, 4. [Google Scholar] [CrossRef]
- Kohli, K.; Chopra, S.; Dhar, D.; Arora, S.; Khar, R.K. Self-Emulsifying Drug Delivery Systems: An Approach to Enhance Oral Bioavailability. Drug Discov. Today 2010, 15, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.U.; Farid, A.; Shah, S.U.; Dar, M.J.; Rehman, A.U.; Ahmed, N.; Rashid, S.A.; Shaukat, I.; Shah, M.; Albadrani, G.M.; et al. Self-Emulsifying Drug Delivery Systems (SEDDS): Measuring Energy Dynamics to Determine Thermodynamic and Kinetic Stability. Pharmaceuticals 2022, 15, 1064. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Jiang, Z.; Luo, Q.; Mu, C.; Cui, M.; Yang, X. Preparation and Evaluation of Self-Emulsifying Drug Delivery System (SEDDS) of Cepharanthine. AAPS PharmSciTech 2021, 22, 245. [Google Scholar] [CrossRef]
- Rezvanjou, S.N.; Niavand, M.R.; Heydari Shayesteh, O.; Yeganeh, E.M.; Ahmadi Moghadam, D.; Derakhshandeh, K.; Mahjub, R. Preparation and Characterisation of Self-Emulsifying Drug Delivery System (SEDDS) for Enhancing Oral Bioavailability of Metformin Hydrochloride Using Hydrophobic Ion Pairing Complexation. J. Microencapsul. 2023, 40, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Pan-On, S.; Pham, D.T.; Tiyaboonchai, W. Development of Curcumin-Loaded Solid SEDDS Using Solid Self-Emulsifying Drug Delivery Systems to Enhance Oral Delivery. J. Appl. Pharm. Sci. 2024, 14, 111–119. [Google Scholar] [CrossRef]
- Nyavanandi, D.; Mandati, P.; Narala, S.; Alzahrani, A.; Kolimi, P.; Vemula, S.K.; Repka, M.A. Twin Screw Melt Granulation: A Single Step Approach for Developing Self-Emulsifying Drug Delivery System for Lipophilic Drugs. Pharmaceutics 2023, 15, 2267. [Google Scholar] [CrossRef]
- Lee, H.I.; Woo, M.R.; Din, F.U.; Kim, J.S.; Cheon, S.; Park, S.; Woo, S.; Jin, S.G.; Choi, H.-G. Development of a Novel Apixaban-Loaded Solid Self-Emulsifying Drug Delivery System for Oral Administration: Physicochemical Characterization and Pharmacokinetics in Rats. J. Pharm. Investig. 2024. [Google Scholar] [CrossRef]
- Sandmeier, M.; Ricci, F.; To, D.; Lindner, S.; Stengel, D.; Schifferle, M.; Koz, S.; Bernkop-Schnürch, A. Design of Self-Emulsifying Oral Delivery Systems for Semaglutide: Reverse Micelles versus Hydrophobic Ion Pairs. Drug Deliv. Transl. Res. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, R.A.; Abdalla, A.N.; Abourehab, M.A.S.; Tulbah, A.S. Evaluation of the Effects of a Dasatinib-Containing, Self-Emulsifying, Drug Delivery System on HT29 and SW420 Human Colorectal Carcinoma Cells, and MCF7 Human Breast Adenocarcinoma Cells. J. Taibah Univ. Med. Sci. 2024, 19, 806–815. [Google Scholar] [CrossRef]
- Zupančič, O.; Matić, J.; Doğan, A.; Gaggero, A.; Khinast, J.; Paudel, A. Comparing Low-Dose Carvedilol Continuous Manufacturing by Solid and Liquid Feeding in Self-Emulsifying Delivery Systems via Hot Melt EXtrusion (SEDEX). Pharmaceuticals 2024, 17, 1290. [Google Scholar] [CrossRef]
- Chatterjee, B.; Hamed Almurisi, S.; Ahmed Mahdi Dukhan, A.; Mandal, U.K.; Sengupta, P. Controversies with Self-Emulsifying Drug Delivery System from Pharmacokinetic Point of View. Drug Deliv. 2016, 23, 3639–3652. [Google Scholar] [CrossRef]
- Kollipara, S.; Gandhi, R.K. Pharmacokinetic Aspects and in Vitro–In Vivo Correlation Potential for Lipid-Based Formulations. Acta Pharm. Sin. B 2014, 4, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Cherniakov, I.; Domb, A.J.; Hoffman, A. Self-Nano-Emulsifying Drug Delivery Systems: An Update of the Biopharmaceutical Aspects. Expert. Opin. Drug Deliv. 2015, 12, 1121–1133. [Google Scholar] [CrossRef]
- Porter, C.J.H.; Trevaskis, N.L.; Charman, W.N. Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nat. Rev. Drug Discov. 2007, 6, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.A.; Wang, S.W.J.; Knemeyer, I.W.; Wirth, M.A.; Alton, K.B. Intestinal Lymphatic Transport for Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 923–942. [Google Scholar] [CrossRef]
- Panigrahi, K.C.; Patra, C.N.; Rao, M.E.B.; Jena, G.K.; Sahoo, L. SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review. Pharm. Nanotechnol. 2022, 10, e170822207600. [Google Scholar] [CrossRef]
- Maji, I.; Mahajan, S.; Sriram, A.; Medtiya, P.; Vasave, R.; Khatri, D.K.; Kumar, R.; Singh, S.B.; Madan, J.; Singh, P.K. Solid Self Emulsifying Drug Delivery System: Superior Mode for Oral Delivery of Hydrophobic Cargos. J. Control. Release 2021, 337, 646–660. [Google Scholar] [CrossRef]
- Nanjwade, B.K.; Patel, D.J.; Udhani, R.A.; Manvi, F.V. Functions of Lipids for Enhancement of Oral Bioavailability of Poorly Water-Soluble Drugs. Sci. Pharm. 2011, 79, 705–728. [Google Scholar] [CrossRef] [PubMed]
- Erlanson-Albertsson, C. Pancreatic Colipase. Structural and Physiological Aspects. Biochim. Et. Biophys. Acta (BBA)—Lipids Lipid Metab. 1992, 1125, 1–7. [Google Scholar] [CrossRef]
- Vithani, K.; Jannin, V.; Pouton, C.W.; Boyd, B.J. Colloidal Aspects of Dispersion and Digestion of Self-Dispersing Lipid-Based Formulations for Poorly Water-Soluble Drugs. Adv. Drug Deliv. Rev. 2019, 142, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Bernkop-Schnürch, A. SEDDS: A Game Changing Approach for the Oral Administration of Hydrophilic Macromolecular Drugs. Adv. Drug Deliv. Rev. 2019, 142, 91–101. [Google Scholar] [CrossRef]
- Salawi, A. Self-Emulsifying Drug Delivery Systems: A Novel Approach to Deliver Drugs. Drug Deliv. 2022, 29, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bajpai, M.; Mishra, P. Self-Emulsifying Drug Delivery System (SEDDS): An Emerging Dosage Form to Improve the Bioavailability of Poorly Absorbed Drugs. Crit. Rev. Ther. Drug Carr. Syst. 2020, 37, 305–329. [Google Scholar] [CrossRef]
- Joyce, P.; Prestidge, C.A. Synergistic Effect of PLGA Nanoparticles and Submicron Triglyceride Droplets in Enhancing the Intestinal Solubilisation of a Lipophilic Weak Base. Eur. J. Pharm. Sci. 2018, 118, 40–48. [Google Scholar] [CrossRef]
- Abou Assi, R.M.; Abdulbaqi, I.; Seok Ming, T.; Siok Yee, C.A.; Wahab, H.; Asif, S.M.; Darwis, Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment. Pharmaceutics 2020, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhong, L.; Chen, W.; Song, Y.; Qian, Z.; Cao, X.; Huang, Q.; Zhang, B.; Chen, H.; Chen, W. Preparation and Characterization of Pectin/Chitosan Beads Containing Porous Starch Embedded with Doxorubicin Hydrochloride: A Novel and Simple Colon Targeted Drug Delivery System. Food Hydrocoll. 2019, 95, 562–570. [Google Scholar] [CrossRef]
- Weerapol, Y.; Limmatvapirat, S.; Nunthanid, J.; Sriamornsak, P. Self-Nanoemulsifying Drug Delivery System of Nifedipine: Impact of Hydrophilic–Lipophilic Balance and Molecular Structure of Mixed Surfactants. AAPS PharmSciTech 2014, 15, 456–464. [Google Scholar] [CrossRef]
- Penjuri, S.C.B.; Damineni, S.; Ravouru, N.; Poreddy, S.R. Self-Emulsifying Drug Delivery System (SEDDS) of Ibuprofen: Formulation, in Vitro and in Vivo Evaluation. Ceska Slov. Farm. 2017, 66, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Sermkaew, N.; Wiwattanawongsa, K.; Ketjinda, W.; Wiwattanapatapee, R. Development, Characterization and Permeability Assessment Based on Caco-2 Monolayers of Self-Microemulsifying Floating Tablets of Tetrahydrocurcumin. AAPS PharmSciTech 2013, 14, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Rush, B.D.; Pfund, W.P.; Huang, T.; Bauer, J.M.; Morozowich, W.; Kuo, M.; Hageman, M.J. Development of a Supersaturable SEDDS (S-SEDDS) Formulation of Paclitaxel with Improved Oral Bioavailability. J. Pharm. Sci. 2003, 92, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Marante, T.; Viegas, C.; Duarte, I.; Macedo, A.S.; Fonte, P. An Overview on Spray-Drying of Protein-Loaded Polymeric Nanoparticles for Dry Powder Inhalation. Pharmaceutics 2020, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Rao, S.; Prestidge, C.A. Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharm. Res. 2013, 30, 2993–3017. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P.; Lee, B.-J.; Oh, D.H.; Kim, J.O.; Hong, M.J.; Jee, J.-P.; Kim, J.A.; Yoo, B.K.; Woo, J.S.; Yong, C.S.; et al. Enhanced Oral Bioavailability of Dexibuprofen by a Novel Solid Self-Emulsifying Drug Delivery System (SEDDS). Eur. J. Pharm. Biopharm. 2009, 72, 539–545. [Google Scholar] [CrossRef]
- Šahinović, M.; Hassan, A.; Kristó, K.; Regdon, G.; Vranić, E.; Sovány, T. Quality by Design-Based Development of Solid Self-Emulsifying Drug Delivery System (SEDDS) as a Potential Carrier for Oral Delivery of Lysozyme. Pharmaceutics 2023, 15, 995. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Oh, D.H.; Oh, Y.-K.; Yong, C.S.; Choi, H.-G. Effects of Solid Carriers on the Crystalline Properties, Dissolution and Bioavailability of Flurbiprofen in Solid Self-Nanoemulsifying Drug Delivery System (Solid SNEDDS). Eur. J. Pharm. Biopharm. 2012, 80, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Sanil, K.; Almotairy, A.; Uttreja, P.; Ashour, E.A. Formulation Development and Evaluation of Cannabidiol Hot-Melt Extruded Solid Self-Emulsifying Drug Delivery System for Oral Applications. AAPS PharmSciTech 2024, 25, 136. [Google Scholar] [CrossRef]
- Kamal, M.M.; Salawi, A.; Lam, M.; Nokhodchi, A.; Abu-Fayyad, A.; El Sayed, K.A.; Nazzal, S. Development and Characterization of Curcumin-Loaded Solid Self-Emulsifying Drug Delivery System (SEDDS) by Spray Drying Using Soluplus® as Solid Carrier. Powder Technol. 2020, 369, 137–145. [Google Scholar] [CrossRef]
- Milović, M.; Simović, S.; Lošić, D.; Dashevskiy, A.; Ibrić, S. Solid Self-Emulsifying Phospholipid Suspension (SSEPS) with Diatom as a Drug Carrier. Eur. J. Pharm. Sci. 2014, 63, 226–232. [Google Scholar] [CrossRef]
- Rajesh, S.Y.; Singh, S.K.; Pandey, N.K.; Sharma, P.; Bawa, P.; Kumar, B.; Gulati, M.; Jain, S.K.; Gowthamarajan, K.; Singh, S. Impact of Various Solid Carriers and Spray Drying on Pre/Post Compression Properties of Solid SNEDDS Loaded with Glimepiride: In Vitro-Ex Vivo Evaluation and Cytotoxicity Assessment. Drug Dev. Ind. Pharm. 2018, 44, 1056–1069. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Zheng, J.; Chen, Z.; Shi, Q.; Liu, H. Development of a Solid Supersaturatable Self-Emulsifying Drug Delivery System of Docetaxel with Improved Dissolution and Bioavailability. Biol. Pharm. Bull. 2011, 34, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Madagul, J.K.; Parakh, D.R.; Kumar, R.S.; Abhang, R.R. Formulation and Evaluation of Solid Self-Microemulsifying Drug Delivery System of Chlorthalidone by Spray Drying Technology. Dry. Technol. 2017, 35, 1433–1449. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Q.; Sun, R.; Li, T.; Xia, N.; Xia, Q. A Novel Solid Self-Emulsifying Delivery System (SEDS) for the Encapsulation of Linseed Oil and Quercetin: Preparation and Evaluation. J. Food Eng. 2018, 226, 22–30. [Google Scholar] [CrossRef]
- Silva, L.A.D.; Almeida, S.L.; Alonso, E.C.P.; Rocha, P.B.R.; Martins, F.T.; Freitas, L.A.P.; Taveira, S.F.; Cunha-Filho, M.S.S.; Marreto, R.N. Preparation of a Solid Self-Microemulsifying Drug Delivery System by Hot-Melt Extrusion. Int. J. Pharm. 2018, 541, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kuncahyo, I.; Choiri, S.; Fudholi, A. Solidification of Meloxicam Self-Nano Emulsifying Drug Delivery System Formulation Incorporated into Soluble and Insoluble Carriers Using Freeze Drying Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 578, 012051. [Google Scholar] [CrossRef]
- Gade, M.M.; Hurkadale, P.J. Formulation and Evaluation of Self-Emulsifying Orlistat Tablet to Enhance Drug Release and in Vivo Performance: Factorial Design Approach. Drug Deliv. Transl. Res. 2016, 6, 276–288. [Google Scholar] [CrossRef]
- Oh, D.H.; Kang, J.H.; Kim, D.W.; Lee, B.-J.; Kim, J.O.; Yong, C.S.; Choi, H.-G. Comparison of Solid Self-Microemulsifying Drug Delivery System (Solid SMEDDS) Prepared with Hydrophilic and Hydrophobic Solid Carrier. Int. J. Pharm. 2011, 420, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, B.N.A. Development and Evaluation of Self-Nanoemulsifying Drug Delivery Systems for Oral Delivery of Indomethacin. Ph.D. Thesis, UCL (University College London), London, UK, 2018. [Google Scholar]
- Aloisio, C.; Bueno, M.S.; Ponte, M.P.; Paredes, A.; Palma, S.D.; Longhi, M. Development of Solid Self-Emulsifying Drug Delivery Systems (SEDDS) to Improve the Solubility of Resveratrol. Ther. Deliv. 2019, 10, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-Y.; Kang, J.-H.; Ngo, L.; Tran, P.; Lee, Y.-B. Preparation and Evaluation of Solid-Self-Emulsifying Drug Delivery System Containing Paclitaxel for Lymphatic Delivery. J. Nanomater. 2016, 2016, 3642418. [Google Scholar] [CrossRef]
- Czajkowska-Kośnik, A.; Szekalska, M.; Amelian, A.; Szymańska, E.; Winnicka, K. Development and Evaluation of Liquid and Solid Self-Emulsifying Drug Delivery Systems for Atorvastatin. Molecules 2015, 20, 21010–21022. [Google Scholar] [CrossRef]
- Gul, S.; Sridhar, S.B.; Jalil, A.; Akhlaq, M.; Arshad, M.S.; Sarwar, H.S.; Usman, F.; Shareef, J.; Thomas, S. Solid Self-Nanoemulsifying Drug Delivery Systems of Furosemide: In Vivo Proof of Concept for Enhanced Predictable Therapeutic Response. Pharmaceuticals 2024, 17, 500. [Google Scholar] [CrossRef]
- Pethani, R.; Dudhat, K.; Soniwala, M.M.; Shah, S.; Manek, R.; Dudhrejiya, A.; Pethani, T.; Gadoya, A.; Mori, D. Formulation and Statistical Optimization of Clozapine Solid Self Emulsification System for Improving the Dissolution Properties. J. Dispers. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Woo, M.R.; Woo, S.; Bak, Y.-W.; Cheon, S.; Kim, J.S.; Ji, S.H.; Park, S.; Kim, J.O.; Jin, S.G.; Choi, H.-G. Comparison of Two Self-Nanoemulsifying Drug Delivery Systems Using Different Solidification Techniques for Enhanced Solubility and Oral Bioavailability of Poorly Water-Soluble Celecoxib. Colloids Surf. B Biointerfaces 2024, 241, 114044. [Google Scholar] [CrossRef] [PubMed]
- Elkanayati, R.M.; Darwesh, A.Y.; Taha, I.; Wang, H.; Uttreja, P.; Vemula, S.K.; Chambliss, W.G.; Repka, M.A. Quality by Design Approach for Fabrication of Extended-Release Buccal Films for Xerostomia Employing Hot-Melt Extrusion Technology. Eur. J. Pharm. Biopharm. 2024, 200, 114335. [Google Scholar] [CrossRef]
- Vemula, S.K.; Narala, S.; Uttreja, P.; Narala, N.; Daravath, B.; Kalla, C.S.A.; Baisa, S.; Munnangi, S.R.; Chella, N.; Repka, M.A. Quality by Design (QbD) Approach to Develop Colon-Specific Ketoprofen Hot-Melt Extruded Pellets: Impact of Eudragit® S 100 Coating on the In Vitro Drug Release. Pharmaceutics 2024, 16, 1265. [Google Scholar] [CrossRef] [PubMed]
- Karnik, I.; Youssef, A.A.A.; Joshi, P.; Munnangi, S.R.; Narala, S.; Varner, C.; Vemula, S.K.; Majumdar, S.; Repka, M. Formulation Development and Characterization of Dual Drug Loaded Hot-Melt Extruded Inserts for Better Ocular Therapeutic Outcomes: Sulfacetamide/Prednisolone. J. Drug Deliv. Sci. Technol. 2023, 84, 104558. [Google Scholar] [CrossRef]
- Abdalla, A.; Mäder, K. Preparation and Characterization of a Self-Emulsifying Pellet Formulation. Eur. J. Pharm. Biopharm. 2007, 66, 220–226. [Google Scholar] [CrossRef]
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018, 10, 203. [Google Scholar] [CrossRef]
- Hamoudi, M.C.; Bourasset, F.; Domergue-Dupont, V.; Gueutin, C.; Nicolas, V.; Fattal, E.; Bochot, A. Formulations Based on Alpha Cyclodextrin and Soybean Oil: An Approach to Modulate the Oral Release of Lipophilic Drugs. J. Control. Release 2012, 161, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Bamba, J.; Cavé, G.; Bensouda, Y.; Tchoreloff, P.; Puisieux, F.; Couarraze, G. Cryoprotection of Emulsions in Freeze-Drying: Freezing Process Analysis. Drug Dev. Ind. Pharm. 1995, 21, 1749–1760. [Google Scholar] [CrossRef]
- Nireesha, G.; Divya, L.; Sowmya, C.; Venkateshan, N.; Babu, M.; Lavakumar, V. Lyophilization/Freeze Drying—An Review. Int. J. Nov. Trends. Pharm. Sci. 2013, 3, 87–98. [Google Scholar]
- Dobry, D.E.; Settell, D.M.; Baumann, J.M.; Ray, R.J.; Graham, L.J.; Beyerinck, R.A. A Model-Based Methodology for Spray-Drying Process Development. J. Pharm. Innov. 2009, 4, 133–142. [Google Scholar] [CrossRef]
- Almeida, S.R.D.; Tippavajhala, V.K. A Rundown Through Various Methods Used in the Formulation of Solid Self-Emulsifying Drug Delivery Systems (S-SEDDS). AAPS PharmSciTech 2019, 20, 323. [Google Scholar] [CrossRef]
- Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies | AAPS PharmSciTech. Available online: https://link.springer.com/article/10.1208/s12249-024-02965-w (accessed on 26 November 2024).
- Kulkarni, V.R.; Kazi, M.; Shahba, A.A.W.; Radhanpuri, A.; Maniruzzaman, M. Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs). Pharmaceutics 2022, 14, 1082. [Google Scholar] [CrossRef]
- Wang, H.; Karnik, I.; Uttreja, P.; Zhang, P.; Vemula, S.K.; Repka, M.A. Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release. Pharm. Res. 2024, 41, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Song, Y.; Fouladian, P.; Arafat, M.; Chung, R.; Kohlhagen, J.; Garg, S. Three-Dimensional Printing of Curcumin-Loaded Biodegradable and Flexible Scaffold for Intracranial Therapy of Glioblastoma Multiforme. Pharmaceutics 2021, 13, 471. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Mohammed, A.A.; Ahmad, J.; Abdullah, M.M.; Saleh, E. 3d Printing of Dapagliflozin Containing Self-Nanoemulsifying Tablets: Formulation Design and in Vitro Characterization. Pharmaceutics 2021, 13, 993. [Google Scholar] [CrossRef] [PubMed]
- Bhatkande, A.; Narala, S.; Wang, H.; Narala, N.; Karnik, I.; Vemula, S.K.; Repka, M.A. Extrusion-Based Three-Dimensional Printing of Metronidazole Immediate Release Tablets: Impact of Processing Parameters and in Vitro Evaluation. J. Pharm. Innov. 2024, 19, 72. [Google Scholar] [CrossRef]
- Kallakunta, V.R.; Bandari, S.; Jukanti, R.; Veerareddy, P.R. Oral Self Emulsifying Powder of Lercanidipine Hydrochloride: Formulation and Evaluation. Powder Technol. 2012, 221, 375–382. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Terban, M.W.; Thakral, N.K.; Suryanarayanan, R. Recent Advances in the Characterization of Amorphous Pharmaceuticals by X-Ray Diffractometry. Adv. Drug Deliv. Rev. 2016, 100, 183–193. [Google Scholar] [CrossRef]
- Cheng, G.; Hu, R.; Ye, L.; Wang, B.; Gui, Y.; Gao, S.; Li, X.; Tang, J. Preparation and In Vitro/In Vivo Evaluation of Puerarin Solid Self-Microemulsifying Drug Delivery System by Spherical Crystallization Technique. AAPS PharmSciTech 2016, 17, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Nokhodchi, A.; Maghsoodi, M. Preparation of Spherical Crystal Agglomerates of Naproxen Containing Disintegrant for Direct Tablet Making by Spherical Crystallization Technique. AAPS PharmSciTech 2008, 9, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Gabbott, P. Principles and Applications of Thermal Analysis; Blackwell Pub: Oxford, UK, 2008; ISBN 978-1-4051-3171-1. [Google Scholar]
- Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials | ACS Nano. Available online: https://pubs.acs.org/doi/10.1021/acsnano.9b05157 (accessed on 26 November 2024).
- Storey, R.A.; Ymén, I. (Eds.) Solid State Characterization of Pharmaceuticals; Wiley-Blackwell: Hoboken, NJ, USA, March 2011; ISBN 978-0-470-65679-2. [Google Scholar]
- Qiu, S.; Wang, K.; Li, M. In Vitro Dissolution Studies of Immediate-Release and Extended-Release Formulations Using Flow-Through Cell Apparatus 4. Dissolution Technol. 2014, 21, 1–15. [Google Scholar] [CrossRef]
- Fatouros, D.G.; Mullertz, A. In Vitro Lipid Digestion Models in Design of Drug Delivery Systems for Enhancing Oral Bioavailability. Expert. Opin. Drug Metab. Toxicol. 2008, 4, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Feeney, O.M.; Crum, M.F.; McEvoy, C.L.; Trevaskis, N.L.; Williams, H.D.; Pouton, C.W.; Charman, W.N.; Bergström, C.A.S.; Porter, C.J.H. 50 Years of Oral Lipid-Based Formulations: Provenance, Progress and Future Perspectives. Adv. Drug Deliv. Rev. 2016, 101, 167–194. [Google Scholar] [CrossRef]
- Govindan, I.; Rama, A.; Kailas, A.A.; Hebbar, S.; Naha, A. Transformative Solidification Techniques for Self-Emulsifying Drug Delivery and Its Foresight in Modern-Day Drug Delivery. J. Appl. Pharm. Sci. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Park, H.; Ha, E.S.; Kim, M.S. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020, 12, 365. [Google Scholar] [CrossRef] [PubMed]
- Bahloul, B.; Chaabani, R.; Zahra, Y.; Kalboussi, N.; Kraiem, J.; Sfar, S.; Mignet, N.; Abdennebi, H. Thymoquinone-Loaded Self-Nano-Emulsifying Drug Delivery System against Ischemia/Reperfusion Injury. Drug Deliv. Transl. Res. 2024, 14, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Sirvi, A.; Kuche, K.; Chaudhari, D.; Ghadi, R.; Date, T.; Katiyar, S.S.; Jain, S. Supersaturable Self-Emulsifying Drug Delivery System: A Strategy for Improving the Loading and Oral Bioavailability of Quercetin. J. Drug Deliv. Sci. Technol. 2022, 71, 103289. [Google Scholar] [CrossRef]
- Sharma, T.; Jain, A.; Kaur, R.; Saini, S.; Katare, O.P.; Singh, B. Supersaturated LFCS Type III Self-Emulsifying Delivery Systems of Sorafenib Tosylate with Improved Biopharmaceutical Performance: QbD-Enabled Development and Evaluation. Drug Deliv. Transl. Res. 2020, 10, 839–861. [Google Scholar] [CrossRef]
- Wannas, A.N.; Maraie, N.K. Characterization and Optimization of Oral Solid Supersaturable Self-Emulsifying Drug Delivery System of Cilostazol. Res. J. Pharm. Technol. 2021, 14, 3371–3376. [Google Scholar] [CrossRef]
- Türkyilmaz, G.Y.; Diril, M.; Gülmezoǧlu, E.; Karasulu, H.Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (Sedds) Containing Valsartan: Stability Assessment and Permeability Studies. Ank. Univ. Eczaci. Fak. Derg. 2024, 48, 525–534. [Google Scholar] [CrossRef]
- Kadian, R.; Nanda, A. A Comprehensive Insight on Recent Advancements in Self-Emulsifying Drug Delivery Systems. Curr. Drug Deliv. 2022, 20, 1095–1114. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhao, J.; Wang, Q.; Zhao, Y.; Yang, H.; Yang, X.; He, L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-Nanoemulsifying. AAPS PharmSciTech 2024, 25, 7. [Google Scholar] [CrossRef] [PubMed]
- Racaniello, G.F.; Knoll, P.; Jörgensen, A.M.; Arduino, I.; Laquintana, V.; Lopedota, A.A.; Bernkop-Schnürch, A.; Denora, N. Thiolation of Non-Ionic Surfactants for the Development of Lipid-Based Mucoadhesive Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2022, 179, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, S.; Kanwal, T.; Ullah, S.; Kawish, M.; Habib, S.M.; Ali, I.; Munir, A.; Imran, M.; Shah, M.R. Design and Development of Lipid Modified Chitosan Containing Muco-Adhesive Self-Emulsifying Drug Delivery Systems for Cefixime Oral Delivery. Chem. Phys. Lipids 2021, 235, 105052. [Google Scholar] [CrossRef] [PubMed]
- Friedl, J.D.; Walther, M.; Vestweber, P.K.; Wächter, J.; Knoll, P.; Jörgensen, A.M.; Bernkop-Schnürch, A.; Windbergs, M. SEDDS-Loaded Mucoadhesive Fiber Patches for Advanced Oromucosal Delivery of Poorly Soluble Drugs. J. Control. Release 2022, 348, 692–705. [Google Scholar] [CrossRef]
- Bernkop-Schnurch, A.; Malkawi, A.; Jalil, A.; Nazir, I.; Matuszczak, B.; Kennedy, R. Self-Emulsifying Drug Delivery Systems: Hydrophobic Drug Polymer Complexes Provide a Sustained Release In Vitro. Mol. Pharm. 2020, 17, 3709–3719. [Google Scholar] [CrossRef]
- Misra, M.; Bagul, N.; Patel, V.; Shahiwala, A. Design and Development of Solid Self Emulsifying Osmotic Delivery System of Nifedipine. Arch. Pharm. Pract. 2012, 3, 128. [Google Scholar] [CrossRef]
- Wei, L.; Li, J.; Guo, L.; Nie, S.; Pan, W.; Sun, P.; Liu, H. Investigations of a Novel Self-Emulsifying Osmotic Pump Tablet Containing Carvedilol. Drug Dev. Ind. Pharm. 2007, 33, 990–998. [Google Scholar] [CrossRef]
- El-Zahaby, S.A.; AbouGhaly, M.H.H.; Abdelbary, G.A.; El-Gazayerly, O.N. Zero-Order Release and Bioavailability Enhancement of Poorly Water Soluble Vinpocetine from Self-Nanoemulsifying Osmotic Pump Tablet. Pharm. Dev. Technol. 2018, 23, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, S.; Shen, H.; Li, J.; Gao, C. Controlled Release of the Nimodipine-Loaded Self-Microemulsion Osmotic Pump Capsules: Development and Characterization. AAPS PharmSciTech 2018, 19, 1308–1319. [Google Scholar] [CrossRef]
- Omachi, Y. Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®. Aaps Pharmscitech 2022, 23, 157. [Google Scholar] [CrossRef]
- Setthacheewakul, S.; Kedjinda, W.; Maneenuan, D.; Wiwattanapatapee, R. Controlled Release of Oral Tetrahydrocurcumin from a Novel Self-Emulsifying Floating Drug Delivery System (SEFDDS). AAPS PharmSciTech 2011, 12, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Gunjal, P.; Vishwas, S.; Kumar, R.; Bashir, B.; Kumar, B.; Khurana, N.; Gulati, M.; Gupta, G.; Prasher, P.; Kumbhar, P.; et al. Enhancing the Oral Bioavailability of Fisetin: Polysaccharide-Based Self Nano-Emulsifying Spheroids for Colon-Targeted Delivery. Drug Deliv. Transl. Res. 2024, 14, 2695–2711. [Google Scholar] [CrossRef] [PubMed]
- Campani, V.; Salaroglio, I.C.; Nele, V.; Kopecka, J.; Bernkop-Schnürch, A.; Riganti, C.; De Rosa, G. Targeted Self-Emulsifying Drug Delivery Systems to Restore Docetaxel Sensitivity in Resistant Tumors. Pharmaceutics 2022, 14, 292. [Google Scholar] [CrossRef]
- Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (Snedds) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials 2021, 11, 1086. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Mohammed, A.A.; Ahmad, J.; Ali, R.; Saleh, E. 3D Printed Capsule Shells for Personalized Dosing of Cyclosporine-Loaded SNEDDS. Int. J. Pharm. 2024, 650, 123707. [Google Scholar] [CrossRef]
- Chatzitaki, A.T.; Tsongas, K.; Tzimtzimis, E.K.; Tzetzis, D.; Bouropoulos, N.; Barmpalexis, P.; Eleftheriadis, G.K.; Fatouros, D.G. 3D Printing of Patient-Tailored SNEDDS-Based Suppositories of Lidocaine. J. Drug Deliv. Sci. Technol. 2021, 61, 102292. [Google Scholar] [CrossRef]
- Ifrah, S.; Dahan, A.; Debotton, N. Towards Effective Antiviral Oral Therapy: Development of a Novel Self-Double Emulsifying Drug Delivery System for Improved Zanamivir Intestinal Permeability. Pharmaceutics 2023, 15, 2518. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S. Double w/o/w Self-Nano Emulsifying Drug Delivery System of Imatinib Mesylate for Colon Cancer Treatment. J. Mol. Liq. 2021, 341, 117368. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, S.J.; Li, Y.; Decker, E.A.; McClements, D.J. Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. J. Agric. Food Chem. 2010, 59, 415–427. Available online: https://pubs.acs.org/doi/10.1021/jf103511v (accessed on 26 November 2024). [CrossRef] [PubMed]
- Sirvi, A.; Jadhav, K.; Sangamwar, A.T. Enabling Superior Drug Loading in Lipid-Based Formulations with Lipophilic Salts for a Brick Dust Molecule: Exploration of Lipophilic Counterions and In Vitro-In Vivo Evaluation. Int. J. Pharm. 2024, 656, 124108. [Google Scholar] [CrossRef] [PubMed]
- Llaver, M.; Mafra, G.; Merib, J.; Lucena, R.; Wuilloud, R.G.; Carasek, E. 16—Ionic Liquids. In Analytical Sample Preparation with Nano- and Other High-Performance Materials; Lucena, R., Cárdenas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 427–451. ISBN 978-0-12-822139-6. [Google Scholar]
- Self-Emulsifying Drug Delivery Systems (SEDDS) Containing Reverse Micelles: Advanced Oral Formulations for Therapeutic Peptides—Jörgensen—2023—Advanced Healthcare Materials—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/adhm.202302034 (accessed on 26 November 2024).
- Zizzari, A.T.; Pliatsika, D.; Gall, F.M.; Fischer, T.; Riedl, R. New Perspectives in Oral Peptide Delivery. Drug Discov. Today 2021, 26, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. J. Pharmacol. Exp. Ther. Available online: https://jpet.aspetjournals.org/content/370/3/742 (accessed on 26 November 2024).
- Meher, J.G.; Dixit, S.; Singh, Y.; Pawar, V.K.; Konwar, R.; Saklani, R.; Chourasia, M.K. Paclitaxel-Loaded Colloidal Silica and TPGS-Based Solid Self-Emulsifying System Interferes Akt/mTOR Pathway in MDA-MB-231 and Demonstrates Anti-Tumor Effect in Syngeneic Mammary Tumors. Aaps Pharmscitech 2020, 21, 313. [Google Scholar] [CrossRef]
Product Name | Drug | Therapeutic Use | BCS Class | Marketed Dosage Form | Company |
---|---|---|---|---|---|
Gengraf® | Cyclosporine A/III | Immunosuppressant | IV | Hard gelatin capsule | AbbVie Inc. |
Sandimmune® | Cyclosporine A/I | Prophylaxis against organ rejection in kidney, liver, and heart transplants | IV | Soft gelatin capsule | Novartis pharmaceuticals corporation |
Neoral® | Cyclosporine | Immunosuppressant | IV | Soft gelatin capsule | Novartis Pharmaceuticals Corporation |
Norvir® | Ritonavir | Adjunctive therapy with other antiretroviral agents during HIV-1 infection | II | Soft gelatin capsule | AbbVie Inc. |
Fortovase® | Saquinavir | HIV infection | IV | Soft gelatin capsule | Roche Laboratories Inc. |
Agenerase® | Amprenavir | HIV infection | II | Soft gelatin capsule | GlaxoSmithKline |
Aptivus® | Tipranavir | HIV infection | II | Soft gelatin capsule | Boehringer Ingelheim Pharmaceuticals, Inc. |
Depakene® | Valproic acid | Monotherapy and adjuvant therapy in during treatment of patients with complex partial seizures | II | Soft gelatin capsule | AbbVie Inc. |
Rocaltrol® | Calcitriol | Secondary hyperparathyroidism and hypocalcemia | II | Soft gelatin capsule | Roche Products Limited |
Targretin® | Bexarotene | Treatment of cutaneous manifestations of cutaneous T-cell lymphoma | II | Soft gelatin capsule | Ligand Pharmaceuticals/Eisai Ltd. |
Vesanoid® | Tretinoin | Induction of maturation of acute promyelocytic leukemia (APL) | II | Soft gelatin capsule | Roche Laboratories Inc. |
Accutane® | Isotretinoin | Severe recalcitrant nodular acne | II | Soft gelatin capsule | Roche Laboratories Inc. |
Oils | Surfactants | Co-Surfactants | Drugs | References |
---|---|---|---|---|
Capryol® 90 (Propylene glycol monocaprylate) | Cremophor® RH 40 | PEG 400 | Finasteride | [39] |
Isopropyl palmitate (IPP) (Isopropyl ester of myristic acid) | Cremophor® RH 40 | PEG 200 | Cepharanthine | [40] |
Liquid paraffin | Tween 80 | Propylene glycol | Metformin | [41] |
Castor oil | Labrasol® | Transcutol® (diethylene glycol monoethyl Ether) | Curcumin | [42] |
Gelucire ® 44/14 | Gelucire ® 48/16 | Transcutol® | Ibuprofen | [43] |
Capmul ® MCM (Glyceryl monocaprylate) | Gelucire ® 48/16 | Propylene glycol | Quetiapine fumarate | [17] |
Peceol® (Glyceryl monooleate) | Labrasol® | Cremophor® EL | Apixaban | [44] |
Castor Oil, Labrafac® (Medium-chain triglycerides) | Docusate sodium | Propylene glycol | Semaglutide | [45] |
Isopropyl myristate | Labrafil® (Polyoxyglycerides of linoleic acid./oleic acid) | PEG 400 | Dasatinib | [46] |
Labrafac® lipophile | Kolliphor® RH 40 | Transcutol® | Carvedilol | [47] |
Characteristics | SEDDS | SMEDDS | SNEDDS |
---|---|---|---|
Mean droplet size | 250 nm–5 µm | 100–250 nm | <100 nm |
Appearance | Turbid/Cloudy | Clear to translucent | Optically clear |
Solubilizing capacity | High | High | High |
Stability | Thermodynamically unstable | Thermodynamically stable | Kinetically stable |
Bioavailability | Moderate | Enhanced | Superior |
Oil Types | Long-chai–n triglycerides (e.g., soybean oil, olive oil) | Medium-chain triglycerides (e.g., Labrafac®, Captex® 355) (MC triglycerides) | Medium- and short-chain triglycerides (e.g., Capmul®, Miglyol®) (caprylic and capric triglycerides) |
HLB of surfactants | <10 | 10–12 | >12 |
Co-surfactants | Not essential | Short-chain alcohols (e.g., propylene glycol) | Polyethylene glycol (PEG), Transcutol® |
Type | Composition | Behavior in Aqueous Media | Characteristics | Applications | SEDDS Type |
---|---|---|---|---|---|
Type I | Pure oils (long- or medium-chain triglycerides) | Requires bile salts for emulsification | Simple, digestion-dependent | Nutraceuticals, lipid-soluble vitamins | Not applicable |
Type II | Oils + lipophilic surfactants | Spontaneously emulsifies in GI fluids | Self-emulsifying, digestion-independent | SEDDS for poorly soluble lipophilic drugs | Conventional SEDDS |
Type IIIa | Oils + high-HLB surfactants (<50% surfactant) | Forms microemulsions with bile salts | Improved bioavailability, partially digestion-dependent | SMEDDS for intermediate solubility drugs | SMEDDS |
Type IIIb | Oils + high-HLB surfactants (>50% surfactant) | Forms nanoemulsions with bile salts | Higher surfactant content, enhanced emulsification | SNEDDS for poorly soluble and permeable drugs | SNEDDS |
Type IV | High-HLB surfactants and co-surfactants (no oil) | Forms colloidal micelles | Lipid-free, relies on surfactant solubilization | Hydrophilic drug delivery | Not applicable |
Aspect | Liquid SEDDS | Solid SEDDS |
---|---|---|
Advantages/Disadvantages | ||
Stability | Moderate; prone to stability issues like phase separation over time, affecting product quality and dosing accuracy [62]. | More stable; solid state can improve storage stability and enhance dosing consistency [18]. |
Manufacturing Complexity | The scalability is challenging in L-SEDDs due to precision required in liquid encapsulation and potential drug precipitation issues, especially at lower temperatures [14]. | More complex; may require additional solidification steps (e.g., spray drying, freeze drying) [14]. |
Patient Compliance | Easier to swallow (liquid or soft gel forms); more acceptable for pediatric/geriatric patients. | Bitter taste is a common challenge with many APIs, necessitating the use of excipients in SEDDS that provide a pleasant sensory experience to enhance patient compliance, while natural oils such as olive and corn oil are favorable for their taste, semi-synthetic, and synthetic excipients may contribute to bitterness [21]. |
Bioavailability Enhancement | Enhances bioavailability significantly by eliminating the dissolution step and promoting rapid drug absorption due to faster dispersion [39]. | There is no significant difference between L-SNEDDS and S-SNEDDS in terms of bioavailability; however, S-SNEDDS exhibits slightly slower dispersion compared to L-SNEDDS due to additional steps such as disintegration and desorption [39]. |
Performance in Drug Delivery | ||
Release Profiles | Rapid release; beneficial for drugs needing quick onset of action [39]. | Controlled release: suitable for sustained release applications but may require additional excipients to enhance emulsification [39]. |
Absorption | High initial absorption; effective for lipophilic drugs with low solubility [63]. | May show delayed but prolonged absorption due to controlled release characteristics [63]. |
Case Studies | Often used in formulations where fast drug action is required, such as NSAIDs (e.g., ibuprofen) and cardiovascular drugs (e.g., nifedipine), to maximize their quick onset of action [64,65] | Utilized for drugs needing sustained or controlled release, like certain hormones (e.g., estradiol), anti-inflammatory drugs, and medications with a narrow therapeutic window, ensuring steady therapeutic levels [65]. |
Tests | Techniques | Significance | Description | References |
---|---|---|---|---|
Self-emulsification test | Visually | When in contact with water while being moderately stirred, an ideal SEDDS formulation has the capacity to spontaneously form an emulsion. The presence of a clear, isotropic, transparent solution denotes the development of a microemulsion, whereas an opaque, milky white presence denotes the formation of a macroemulsion. The formulation is thought to be stable if there is no precipitation and/or no phase separation. | Self-emulsification assessment is aided by visual observation to evaluate the emulsification behavior of SEDDS. | [17,107] |
Mean droplet size assessment, Zeta Potential | DLS (Dynamic light scattering) | The size of the droplet is influenced by the type and concentration of the surfactant. The microemulsion formed when SEDDS is dissolved in water has a very narrow droplet size distribution, which is vital for efficient drug release, in vivo absorption, and stability. The zeta potential represents the stability of the emulsion after dilution. The formulation remains stable if the zeta potential is greater. Particles with a zwitterion charge have superior biocompatibility and a longer blood residence duration than particles with any surface charge. | DLS methods are used to analyze droplet size and zeta potential. | [70] |
Solid state characterization | DSC (Differential Scanning Calorimetry), PXRD(Powder X-Ray Diffraction) | DSC is a thermal analysis technique in which SEDDS formulations are put through linear heating and cooling cycles in order to learn about their melting, glass transition, decomposition and recrystallization. The diffraction pattern of crystalline material is measured by powder X-ray diffraction (PXRD). Phase identification, sample purity, crystallite size, and, in some situations, morphology is just a few of the crucial details that powder XRD analysis of a sample can provide in addition to numerous microscopic and spectroscopic techniques. | DSC investigations characterize the physical state of S-SEDDS. Using DSC, quantitative behavior of thermotropic phase transitions can be determined. Melting peaks can be observed in the thermograms after analysis. Crystallinity and amorphous content of SDEDS can be determined using powder X-ray diffraction (PXRD). | [112,113] |
Morphological characterization | Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) | SEM, or scanning electron microscopy, is an imaging method commonly employed to determine the shape, composition, and size of solid samples. An electron beam is focused on the surface of the sample to create an image of its structure. TEM is also a widely used technique determine the size, shape and surface topography of samples. | The surface characteristics of active pharmaceutical ingredients and excipients utilized in various SEDDS formulations are investigated using this technique. | [114] |
In vitro release studies | Dissolution apparatus | In pharmaceutical drug development, the in vitro dissolution test is commonly used to ascertain batch production uniformity by gathering data on drug release for quality control. Also, this test can be used to foretell how the drug formulation would behave in vivo, and later to determine the in vivo–in vitro relationship between drug absorption and its release from the formulations. | Dissolution testing is useful for selecting the best formulation among all those prepared using different excipients, with the goal of selecting the optimal formulation that displays the most desirable and reproducible dissolution profile. | [115] |
In vitro lipolysis | pH-stat lipolysis model | The SEDDS contain lipidic components that are susceptible to GIT digestion, which may have a positive or negative on the solubilization of drugs. Gastric lipase- and intestine-based enzymes break down lipids in the stomach, producing amphiphilic digestion products that self-assemble to form liquid crystalline formations at droplet interfaces. As these structures are dispersed, various phases are produced, and these phases have various drug-solubilizing capacities. This test is used to examine drug solubilizing capacity and potential interactions with biliary components. | A temperature-controlled reaction vessel with digesting medium is used to simulate intestinal and gastric environment. | [116,117] |
Drug | Lipid/ Surfactant/ Co-surfactant | Solid/ Precipitation InhibitoR | Particle Size of SEDDS | Outcome | Ref. |
---|---|---|---|---|---|
Thymoquinone | Olive oil, Tween 80, Span 85 (Sorbitan trioleate) and PEG 300 | N/A | 158 nm | Enhanced absorption and bioavailability. Reduced oxidative stress and improved cell survival in rats from ischemia/reperfusion (I/R) injury | [120] |
Quetiapine fumarate | Capmul MCM (MC mono-, di-, and triglycerides, MC mixed glycerides), Gelucire 48/16, and propylene glycol | Klucel EF | 92 nm | Extended-release profile for 24 h and stable formulation for 3 months under accelerated conditions | [17] |
Quercetine | Capmul MCM EP, Tween 20 and ethanol | HPMC E5 | 127–270 nm | 1.25fold higher drug content in aqueous environment, 2.2fold, and 2fold increase in Cmax and AUC in comparison to SEDDS without precipitation inhibitor | [121] |
Sorafenib | Peceol, Labrasol and Transcutol HP | HPMC and PVP | 334–430 nm | Improvement in dissolution rate, cel uptake, and pharmacokinetic parameters. | [122] |
Cilostazol | Oleic acid, tween 80, propylene glycol, Transcutol | Avicel 200, Aerosil 101 | 154–425 nm | High dissolution profile under sink and non-sink condition in comparison to marketed formulation | [123] |
Valsartan | Capryol90 (Propylene glycol monocaprylate-type II), Transcutol HP, and Tween 20 | Avicel pH 101 | 67.5 and 177 nm | Enhanced permeability for liquid and solid SEDDS against commercial product | [124] |
Curcumin | Castor oil, Lexol, Labrasol, Cremophor RH 40 and Transcutol | Neusilin UFL2 | About 100, and 150 nm | Enhanced dissolution profile, permeation and cellular uptake | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uttreja, P.; Karnik, I.; Adel Ali Youssef, A.; Narala, N.; Elkanayati, R.M.; Baisa, S.; Alshammari, N.D.; Banda, S.; Vemula, S.K.; Repka, M.A. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics 2025, 17, 63. https://doi.org/10.3390/pharmaceutics17010063
Uttreja P, Karnik I, Adel Ali Youssef A, Narala N, Elkanayati RM, Baisa S, Alshammari ND, Banda S, Vemula SK, Repka MA. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics. 2025; 17(1):63. https://doi.org/10.3390/pharmaceutics17010063
Chicago/Turabian StyleUttreja, Prateek, Indrajeet Karnik, Ahmed Adel Ali Youssef, Nagarjuna Narala, Rasha M. Elkanayati, Srikanth Baisa, Nouf D. Alshammari, Srikanth Banda, Sateesh Kumar Vemula, and Michael A. Repka. 2025. "Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends" Pharmaceutics 17, no. 1: 63. https://doi.org/10.3390/pharmaceutics17010063
APA StyleUttreja, P., Karnik, I., Adel Ali Youssef, A., Narala, N., Elkanayati, R. M., Baisa, S., Alshammari, N. D., Banda, S., Vemula, S. K., & Repka, M. A. (2025). Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics, 17(1), 63. https://doi.org/10.3390/pharmaceutics17010063