Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Approval
2.3. Dietary and Lifestyle Behaviours
2.4. Adiposity and Metabolic Assessment
2.5. Confounding Variables
2.6. Statistical Analysis
- (1)
- related to adiposity: overweight (reference (ref.): normal weight), central obesity (ref.: without), general obesity (ref.: without), excessive visceral fat tissue ≥ median of fat tissue volume (ref.: < Me), and increased skeletal muscle mass ≥ median of body mass percentage (ref.: < Me), and
- (2)
- related to metabolic abnormalities: elevated FBG (ref.: not elevated), elevated TG (ref.: not elevated), elevated TC (ref.: not elevated), elevated SBP or DBP (ref.: both not elevated), at least two metabolic abnormalities (ref.: no metabolic abnormalities).
3. Results
3.1. Sample Characteristics
3.2. Dietary-Lifestyle Patterns
3.3. Associations between DLPs and Adiposity and Metabolic Outcomes
4. Discussion
4.1. Strengths and Limitations
4.2. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Olson, J.S.; Hummer, R.A.; Harris, K.M. Gender and Health Behavior Clustering among U.S. Young Adults. Biodemogr. Soc. Biol. 2017, 63, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.M.; Mollborn, S.; Hummer, R.A. Health lifestyles across the transition to adulthood: Implications for health. Soc. Sci. Med. 2017, 193, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Nutrition Evidence Library. A Series of Systematic Reviews on the Relationship between Dietary Patterns and Health Outcomes; U.S. Department of Agriculture, Center for Nutrition Policy and Promotion: Alexandria, VA, USA, 2014.
- European Commission. The State of Men’s Health in Europe: Extended Report, Luxembourg, European Commission. 2011. Available online: http://ec.europa.eu/health/population_groups/docs/men_health_extended_en.pdf (accessed on 5 March 2020).
- World Health Organization (WHO). Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. 2013. Available online: http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf (accessed on 5 March 2020).
- White, A.; McKee, M.; de Sousa, B.; de Visser, R.; Hogston, R.; Madsen, S.A.; Makara, P.; Richardson, N.; Zatoński, W.; Raine, G. An examination of the association between premature mortality and life expectancy among men in Europe. Eur. J. Public Health 2014, 24, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chella Krishnan, K.; Mehrabian, M.; Lusis, A.J. Sex differences in metabolism and cardiometabolic disorders. Curr. Opin. Lipidol. 2018, 29, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Bingham, C.M.L.; Jallinoja, P.; Lahti-Koski, M.; Absetz, P.; Paturi, M.; Pihlajamäki, H.; Sahi, T.; Uutela, A. Quality of diet and food choices of Finnish young men: A sociodemographic and health behaviour approach. Public Health Nutr. 2010, 13, 980–986. [Google Scholar] [CrossRef] [Green Version]
- El Ansari, W.; Stock, C.; Mikolajczyk, R.T. Relationships between food consumption and living arrangements among university students in four European countries—A cross-sectional study. Nutr. J. 2012, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Zadarko-Domaradzka, M.; Barabasz, Z.; Sobolewski, M.; Nizioł-Babiarz, E.; Penar-Zadarko, B.; Szybisty, A.; Zadarko, E. Alcohol Consumption and Risky Drinking Patterns among College Students from Selected Countries of the Carpathian Euroregion. BioMed Res. Int. 2018, 2018, 6084541. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Poland: Country Drug Report. 2019. Available online: http://www.emcdda.europa.eu/countries/drug-reports/2019/poland/drug-use_en (accessed on 15 November 2019).
- Díaz-Gutiérrez, J.; Ruiz-Canela, M.; Gea, A.; Fernández-Montero, A.; Martínez-González, M.Á. Association between a Healthy Lifestyle Score and the Risk of Cardiovascular Disease in the SUN Cohort. Rev. Esp. Cardiol. (Engl. Ed.) 2018, 71, 1001–1009. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Noble, N.; Paul, C.; Turon, H.; Oldmeadow, C. Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity (‘SNAP’) health risk factors. Prev. Med. 2015, 81, 16–41. [Google Scholar] [CrossRef]
- Northstone, K.; Emmett, P. Dietary patterns of men in ALSPAC: Associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women’s dietary patterns. Eur. J. Clin. Nutr. 2010, 64, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, G.W.; Schembre, S.M.; White, A.A.; Hoerr, S.L.; Lohse, B.; Shoff, S.; Horacek, T.; Riebe, D.; Patterson, J.; Phillips, B.W.; et al. Identifying clusters of college students at elevated health risk based on eating and exercise behaviors and psychosocial determinants of body weight. J. Am. Diet Assoc. 2011, 111, 394–400. [Google Scholar] [CrossRef]
- Laska, M.N.; Pasch, K.E.; Lust, K.; Story, M.; Ehlinger, E. Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prev. Sci. 2009, 10, 687376–687386. [Google Scholar] [CrossRef] [Green Version]
- Levinson, D.J. A conception of adult development. Am. Psychol. 1986, 41, 3–13. [Google Scholar] [CrossRef]
- Gawecki, J. (Ed.) Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing Nutritional Data; Committee of Human Nutrition Science, Polish Academy of Sciences: Olsztyn, Poland, 2018. [Google Scholar]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISAK. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001; Available online: http://www.ceap.br/material/MAT17032011184632.pdf (accessed on 17 July 2018).
- Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Technol. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- World Health Organization (WHO). Waist Circumference and Waist-Hip Ratio; Report of WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Dympna, G.; Heymsfield, S.B.; Heo, M.; Jebb, S.; Murgatroyd, P.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). Hypertension in Adults: Diagnosis and managment.Clinical guideline NG136. Available online: https://www.nice.org.uk/guidance/ng136 (accessed on 14 September 2019).
- Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications: London, UK, 2009. [Google Scholar]
- Czekajło, A.; Różańska, D.; Zatońska, K.; Szuba, A.; Regulska-Ilow, B. Association between dietary patterns and metabolic syndrome in the selected population of Polish adults—Results of the PURE Poland Study. Eur. J. Public Health 2019, 29, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osadnik, T.; Pawlas, N.; Lonnie, M.; Osadnik, K.; Lejawa, M.; Wądołowska, L.; Bujak, K.; Fronczek, M.; Reguła, R.; Gawlita, M.; et al. Family History of Premature Coronary Artery Disease (P-CAD)-A Non-Modifiable Risk Factor? Dietary Patterns of Young Healthy Offspring of P-CAD Patients: A Case-Control Study (MAGNETIC Project). Nutrients 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Spiegelman, D.; Willett, W.C. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clin. Nutr. 2000, 72, 912–921. [Google Scholar] [CrossRef]
- Rodríguez-Monforte, M.; Flores-Mateo, G.; Sánchez, E. Dietary patterns and CVD: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2015, 114, 1341–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavari, A.; Javadi, M.; Mirmiran, P.; Bahadoran, Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J. Sports Med. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used But Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.L.; Frost, G.; Taylor-Robinson, S.D.; Bell, J.D. Excess body fat in obese and normal-weight subjects. Nutr. Res. Rev. 2012, 25, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.L. Interaction behavior and person perception: An integrative approach. Small Group Res. 1994, 25, 172–188. [Google Scholar] [CrossRef]
- Hatcher, L. A Step-By-Step Approach to Using the SAS® System for Factor Analysis and Structural Equation Modeling; SAS Institutte, Inc.: Cary, NC, USA, 1994. [Google Scholar]
- Food and Agriculture Organization (FAO). Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings. Rome, Italy. 2018. Available online: http://www.fao.org/3/i9940en/I9940EN (accessed on 17 July 2019).
- Wadolowska, L. Walidacja kwestionariusza częstotliwości spożycia żywności–FFQ. Ocena powtarzalności [Validation of food frequency questionnaire–FFQ. Reproducibility assessment]. Bromat. Chem. Toksykol. 2005, 38, 27–33. [Google Scholar]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilization of food-frequency-questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Gibney, M.J.; Margetts, B.M.; Kearney, J.M.; Arab, L. Public Health Nutrition; Blackwell Science: Oxford, UK, 2013. [Google Scholar]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Thompson, F.; Subar, A. Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease, 2nd ed.; Coulston, A.M., Boushey, C.J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 3–39. [Google Scholar]
- Deshmukh-Taskar, P.R.; O’Neil, C.E.; Nicklas, T.A.; Yang, S.-J.; Liu, Y.; Gustat, J.; Berenson, G.S. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: The Bogalusa Heart Study. Public Health Nutr. 2009, 12, 2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, G.; Floca, E.; Kudor-Szabadi, L.; Sur, M.L.; Sur, D.; Samasca, G. The relevance of inflammatory markers in metabolic syndrome. Maedica (Buchar.) 2014, 9, 15–18. [Google Scholar] [PubMed]
- Barabási, A.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 2020, 1, 33–37. [Google Scholar] [CrossRef] [Green Version]
Variables | Percentage of the Sample (%) Age Groups [Years] | p-Value | ||
---|---|---|---|---|
Total | 19–30 Years | 31–40 Years | ||
Number of subjects | 358 | 176 | 182 | |
Sociodemographic variables | ||||
Place of residence | **** | |||
Village | 20.4 | 26.1 | 14.8 | |
Town (<100,000) | 15.9 | 23.3 | 8.8 | |
Big city | 63.7 | 50.6 | 76.4 | |
Education | **** | |||
Secondary or lower | 41.9 | 58.0 | 26.4 | |
Higher | 58.1 | 42.0 | 73.6 | |
Financial situation 1 | ns | |||
Modest | 27.1 | 26.2 | 28.0 | |
Comfortably | 64.2 | 61.9 | 66.5 | |
Wealthy | 8.7 | 11.9 | 5.5 | |
Lifestyles behaviours | ||||
Number of meals per day | ns | |||
1–2 | 4.4 | 3.9 | 3.8 | |
3 | 28.5 | 29.5 | 29.7 | |
4 | 42.2 | 39.2 | 39.0 | |
5 or more | 24.9 | 27.4 | 27.5 | |
Physical activity at work or at school 2 | ns | |||
Low | 50.0 | 47.7 | 52.2 | |
Moderate | 31.8 | 33.0 | 30.8 | |
High | 18.2 | 19.3 | 17.0 | |
Recreational physical activity 3 | ** | |||
Low | 15.4 | 13.1 | 17.6 | |
Moderate | 43.8 | 36.9 | 50.5 | |
High | 40.8 | 50.0 | 31.9 | |
Current smoking | 15.9 | 18.2 | 13.7 | ns |
Smoking in the past | 38.5 | 35.2 | 41.8 | ns |
Screen time (hours/day) 4 | **** | |||
<2 | 10.9 | 8.0 | 13.7 | |
2 to <4 | 20.7 | 26.7 | 14.8 | |
4 to <6 | 24.0 | 30.7 | 17.6 | |
6 to <8 | 15.9 | 16.5 | 15.4 | |
8 to <10 | 17.6 | 10.8 | 24.2 | |
≥10 | 10.9 | 7.4 | 14.3 |
Foods 1 | Frequency Consumption (% of the Sample) | |||||
---|---|---|---|---|---|---|
Never | 1–3 Times a Month | Once a Week | Few Times a Week | Once a Day | Few Times a Day | |
Butter | 12.3 | 10.1 | 6.1 | 18.7 | 29.9 | 22.9 |
Refined bread | 4.5 | 14.2 | 14.5 | 25.4 | 22.6 | 18.7 |
Vegetables | 0.8 | 2.2 | 7.5 | 34.9 | 35.8 | 18.7 |
Milk | 7.3 | 10.6 | 12.0 | 28.5 | 25.1 | 16.5 |
Fruit | 0.0 | 3.9 | 12.6 | 33.2 | 35.2 | 15.1 |
Processed meats | 3.1 | 3.1 | 12.0 | 41.3 | 29.6 | 10.9 |
Wholemeal bread | 5.3 | 16.8 | 17.3 | 32.1 | 18.7 | 9.8 |
Refined groats | 2.0 | 13.4 | 27.4 | 40.5 | 11.2 | 5.6 |
Sweets | 2.5 | 12.8 | 24.9 | 32.4 | 22.9 | 4.5 |
Eggs | 1.7 | 8.9 | 24.0 | 45.3 | 15.4 | 4.7 |
Fermented milk beverages | 6.7 | 21.5 | 17.9 | 32.1 | 17.6 | 4.2 |
Sweetened drinks | 12.6 | 38.3 | 20.1 | 17.3 | 7.8 | 3.9 |
White meats | 1.4 | 4.5 | 13.7 | 62.8 | 14.0 | 3.6 |
Cheese | 3.4 | 9.5 | 19.8 | 47.8 | 16.8 | 2.8 |
Cottage cheese | 7.8 | 20.7 | 27.7 | 33.5 | 7.5 | 2.8 |
Fried foods | 1.4 | 7.5 | 19.3 | 52.8 | 16.8 | 2.2 |
Wholemeal groats | 7.0 | 32.7 | 21.5 | 27.1 | 9.8 | 2.0 |
Red meats | 3.1 | 22.1 | 23.5 | 41.3 | 8.9 | 1.1 |
Energy drinks | 50.8 | 34.1 | 6.7 | 7.3 | 0.6 | 0.6 |
Fish | 3.4 | 37.2 | 41.3 | 15.9 | 1.7 | 0.6 |
Alcohol | 5.3 | 35.8 | 37.7 | 19.3 | 1.7 | 0.3 |
Fast foods | 9.5 | 64.2 | 18.7 | 7.0 | 0.3 | 0.3 |
Lard | 62.0 | 26.3 | 6.7 | 4.5 | 0.3 | 0.3 |
Legumes | 10.3 | 56.1 | 23.2 | 8.4 | 1.7 | 0.3 |
Tinned meats | 41.3 | 45.8 | 9,5 | 2.2 | 1.1 | 0.0 |
Variables | Total | Age Groups | p-Value | |
---|---|---|---|---|
19–30 Years | 31–40 Years | |||
Number of subjects | 358 | 176 | 182 | |
Age (years): mean (SD) | 30.1 (5.9) | 24.8 (3.2) | 35.2 (2.5) | **** |
Adiposity outcomes: mean (SD) | ||||
BMI (kg/m2) | 26.0 (3.7) | 25.3 (3.8) | 26.6 (3.4) | *** |
WC (cm) | 89.9 (10.4) | 87.4 (10.4) | 92.4 (9.9) | **** |
WHtR (-) | 0.50 (0.06) | 0.48 (0.06) | 0.51 (0.06) | **** |
Body fat (%) | 22.2 (6.8) | 20.5 (7.1) | 23.9 (6.1) | **** |
Visceral fat tissue (l) | 1.96 (2.21) | 1.60 (1.88) | 2.30 (2.44) | ** |
Skeletal muscle mass (%) | 36.8 (4.0) | 37.8 (4.2) | 35.9 (3.5) | **** |
Adiposity outcomes: percentage of the sample (%) | ||||
Overweight (BMI = 25-29.9 kg/m2) | 45.5 | 37.5 | 53.3 | ** |
Central obesity (WHtR ≥ 0.5) | 40.5 | 26.1 | 54.4 | **** |
General obesity (Body fat ≥ 25%) | 32.4 | 23.3 | 41.2 | **** |
Excess of visceral fat tissue (≥ Me, i.e., 1.565 l) | 50.6 | 36.4 | 64.3 | **** |
Increased skeletal muscle mass (≥ Me, i.e., 37%) | 50.0 | 61.9 | 38.5 | **** |
Metabolic outcomes: mean (SD) | ||||
FBG (mg/dL) | 85.0 (13.4) | 84.1 (12.6) | 85.9 (14.1) | ns |
TG (mg/dL) | 143.1 (99.3) | 126.7 (77.7) | 159.0 (114.5) | ** |
TC (mg/dL) | 185.6 (40.2) | 175.2 (40.4) | 195.7 (37.5) | **** |
SBP (mmHg) | 126.1 (12.0) | 125.1 (11.9) | 127.1 (12.1) | ns |
DBP (mmHg) | 77.4 (9.5) | 74.1 (9.0) | 80.6 (8.9) | **** |
Metabolic outcomes: percentage of the sample (%) | ||||
Elevated FBG (≥ 100 mg/dL) | 10.6 | 8.5 | 12.6 | ns |
Elevated TG (≥ 150 mg/dL) | 29.6 | 24.4 | 34.6 | ns |
Elevated TC (≥ 200 mg/dL) | 34.1 | 23.3 | 44.5 | *** |
Elevated SBP (≥ 130 mmHg) or DBP (≥ 85 mmHg) | 39.9 | 35.2 | 44.5 | |
No metabolic abnormalities | 27.9 | 37.5 | 18.7 | *** |
1 metabolic abnormality | 41.3 | 42.0 | 40.7 | ns |
2 metabolic abnormalities | 20.7 | 12.5 | 28.6 | **** |
3 metabolic abnormalities | 8.7 | 7.4 | 9.9 | ns |
All metabolic abnormalities | 1.4 | 0.6 | 2.2 | ns |
Components 1 of DLPs | Higher Adherence to the DLPs | Significance of the Relation between the DLPs | |||
---|---|---|---|---|---|
Protein Food, Fried-Food and Recreational Physical Activity (A) | Sandwiches and Convenient Diet (B) | Fast Foods and Stimulants (C) | Healthy Diet, Active, Past Smokers (D) | ||
Number of the subjects | 121 | 121 | 121 | 121 | |
Frequency consumption of: | |||||
White meats—at least once a day | 45 | 11 | 17 | 33 | A or D > C or B |
Refined groats—at least once a day | 43 | 7 | 12 | 28 | A > D > C or B |
Eggs—at least once a day | 47 | 6 | 17 | 36 | A or D > C > B |
Red meats—at least once a day | 21 | 15 | 12 | 14 | ns |
Fried foods—at least once a day | 35 | 25 | 27 | 18 | A > D |
Wholemeal groats—at least once a day | 26 | 4 | 5 | 26 | A or D > B or C |
Processed meats—at least once a day | 36 | 79 | 45 | 36 | B > C > A or D |
Refined bread—at least once a day | 30 | 78 | 55 | 26 | B > C > A or D |
Butter—at least once a day | 45 | 80 | 50 | 45 | B > C or A or D |
Cheese—at least once a day | 21 | 42 | 27 | 18 | B > C or A or D |
Sweets—at least once a day | 19 | 45 | 30 | 22 | B > C or A or D; C > A |
Tinned meats—at least 1–3 times/week | 1 | 8 | 3 | 3 | B > A |
Sweetened drinks—at least once a day | 11 | 22 | 29 | 7 | C > A or D; B > A or D |
Energy drinks—at least 1–3 times/week | 12 | 8 | 21 | 3 | C > B or D; A > D |
Alcohol—at least 1–3 times/week | 23 | 31 | 44 | 21 | C > B or A or D |
Fast foods—at least 1–3 times/week | 7 | 9 | 18 | 2 | C > B or A or D; B > D |
Fruit—at least once a day | 69 | 53 | 33 | 78 | D > B > C; A > B > C |
Vegetables—at least once a day | 74 | 58 | 40 | 81 | D > B > C; A > B > C |
Fermented milk beverages—at least once a day | 36 | 17 | 21 | 43 | D > C or B; A > C or B |
Wholemeal bread—at least once a day | 35 | 24 | 20 | 55 | D > A > C |
Fish—at least 1–3 times/week | 34 | 12 | 15 | 40 | D > C or B; A > C or B |
Cottage cheese—at least once a day | 19 | 12 | 11 | 19 | ns |
Milk—at least once a day | 44 | 37 | 40 | 53 | D > C or B |
Legumes—at least 1–3 times/week | 17 | 6 | 8 | 25 | D > C or B; A > C or B |
Lard—at least 1–3 times/week | 8 | 4 | 3 | 7 | ns |
Lifestyles behaviours | |||||
5 or more meals per day | 47 | 18 | 19 | 46 | A or D > B or C |
High recreational physical activity | 64 | 28 | 41 | 59 | A or D > C > B |
Current smoking | 35 | 22 | 44 | 21 | C or A > B or D |
Smoking in the past | 35 | 45 | 64 | 53 | C > B or A; D >A |
High physical activity at work or at school | 27 | 19 | 26 | 31 | D > B |
Screen time ≥8 h | 16 | 34 | 20 | 16 | B > C or A or D |
Adherence 2 to DLPs | Overweight (BMI = 25–29.9 kg/m2) | Central Obesity (WHtR ≥ 0.5) | General Obesity (Body Fat ≥ 25%) | Excess of Visceral Fat Tissue (≥ Me, i.e., 1.565 l) | Increased Skeletal Muscle Mass (≥ Me, i.e., 37%) |
---|---|---|---|---|---|
Ref.: 18.5–24.9 kg/m2 | Ref.: < 0.5 | Ref.: < 20% | Ref.: < Me | Ref.: < Me | |
Protein food, fried-food and recreational physical activity DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 1.02 (0.56; 1.86) | 0.54 ** (0.31; 0.95) | 0.55 (0.28; 1.09) | 0.56 * (0.32; 0.99) | 1.53 (0.88;2.66) |
Higher | 2.22 * (1.19; 4.15) | 0.65 (0.37; 1.13) | 0.23 **** (0.11; 0.45) | 0.45 ** (0.26; 0.79) | 2.02 * (1.17; 3.50) |
Sandwiches and convenient diet DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 0.71 (0.39; 1.28) | 1.18 (0.67; 2.09) | 2.27 * (1.12; 4.59) | 1.87 * (1.06; 3.31) | 0.54 * (0.31;0.94) |
Higher | 0.68 (0.39; 1.21) | 1.99 * (1.14; 3.47) | 3.45 **** (1.77; 6.83) | 2.59 *** (1.48; 4.54) | 0.53 * (0.31; 0.90) |
Fast foods and stimulants DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 0.89 (0.51; 1.56) | 1.42 (0.81; 2.49) | 1.84 (0.92; 3.65) | 1.68 (0.95; 2.95) | 0.81 (0.48; 1.39) |
Higher | 0.91 (0.50; 1.65) | 2.07 * (1.13; 3.78) | 4.76 *** (2.10; 10.74) | 3.17 *** (1.68; 5.98) | 0.48 * (0.27; 0.86) |
Healthy diet, active at work, past smokers DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 1.71 (0.94; 3.10) | 1.28 (0.73; 2.25) | 0.73 (0.37; 1.48) | 0.98 (0.55; 1.76) | 0.97 (0.55; 1.69) |
Higher | 3.35 **** (1.82; 6.18) | 0.79 (0.45; 1.39) | 0.38 ** (0.19; 0.74) | 0.51 * (0.29; 0.89) | 1.47 (0.86; 2.51) |
Adherence 2 to DLPs | Elevated FBG (≥ 100 mg/dL) | Elevated TG (≥ 150 mg/dL) | Elevated TC (≥ 200 mg/dL) | Elevated SBP (≥ 130 mmHg) or DBP (≥ 85 mmHg) | At Least 2 Metabolic Abnormalities |
---|---|---|---|---|---|
Ref.: < 100 mg/dL | Ref.: < 150 mg/dL | Ref.: < 200 mg/dL | Ref.: SBP < 130 and DBP < 85 | Ref.: No Metabolic Abnormalities | |
Protein food, fried-food and recreational physical activity DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 0.78 (0.32; 1.91) | 0.57 (0.32; 1.01) | 0.58 (0.33; 1.02) | 0.88 (0.51; 1.52) | 0.36 * (0.16; 0.79) |
Higher | 1.05 (0.43; 2.57) | 0.63 (0.35; 1.13) | 0.44 ** (0.25; 0.79) | 1.15 (0.67; 1.99) | 0.49 (0.23; 1.06) |
Sandwiches and convenient diet DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 2.15 (0.84; 5.49) | 2.07 * (1.13; 3.79) | 1.28 (0.70; 2.32) | 0.62 (0.37; 1.07) | 1.32 (0.62; 2.83) |
Higher | 1.78 (0.69; 4.64) | 1.87 * (1.03; 3.39) | 2.72 *** (1.53; 4.86) | 0.83 (0.48; 1.41) | 2.54 * (1.20;5.39) |
Fast foods and stimulants DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 1.11 (0.45; 2.75) | 0.90 (0.50; 1.61) | 1.40 (0.80; 2.45) | 0.86 (0.50; 1.47) | 1.02 (0.48; 2.14) |
Higher | 1.23 (0.50; 3.04) | 1.68 (0.92; 3.05) | 1.59 (0.88; 2.89) | 1.41 (0.82; 2.43) | 1.41 (0.66; 3.01) |
Healthy diet, active at work, past smokers DLP | |||||
Lower | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate | 1.14 (0.51; 2.54) | 1.02 (0.57; 1.81) | 0.88 (0.50; 1.56) | 0.83 (0.49; 1.42) | 0.72 (0.34; 1.54) |
Higher | 0.32 * (0.11; 0.92) | 0.99 (0.54; 1.83) | 0.76 (0.43; 1.35) | 0.90 (0.53; 1.52) | 0.64 (0.29; 1.40) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonnie, M.; Wadolowska, L.; Bandurska-Stankiewicz, E. Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project). Nutrients 2020, 12, 751. https://doi.org/10.3390/nu12030751
Lonnie M, Wadolowska L, Bandurska-Stankiewicz E. Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project). Nutrients. 2020; 12(3):751. https://doi.org/10.3390/nu12030751
Chicago/Turabian StyleLonnie, Marta, Lidia Wadolowska, and Elzbieta Bandurska-Stankiewicz. 2020. "Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project)" Nutrients 12, no. 3: 751. https://doi.org/10.3390/nu12030751