AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties
Abstract
:1. Introduction
2. Bulk Crystal Synthesis
2.1. Negative Thermal Expansion of AgGaS2 Crystals
2.2. Second-Phase Precipitation of AgGaS2 Crystals
3. AgGaS2 and Derivatives for Nonlinear Optics
3.1. Bandgap Modification
3.2. SHG Modification
4. Nanocrystal Synthesis
4.1. Solvothermal Synthesis
4.2. Heat-Up Synthesis
4.3. Cation-Exchange Synthesis
5. Optical Tuning of AgGaS2 Nanocrystals for Lighting and Photovoltaic Applications
5.1. Element Alloying for Lighting Applications
5.2. Core–Shell Engineering for Lighting and Photovoltaic Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NLO | Nonlinear optics |
OPO | Optical parametric oscillation |
SHG | Second harmonic generation |
LIDT | Laser-induced damage threshold |
SOJT | Second-order Jahn–Teller |
VEC | Valence electron concentration |
ICP-AES | Inductively coupled plasma atomic emission spectroscopy |
FWHM | Full width at half-maximum |
LEDs | Light-emitting diodes |
References
- Sandroni, M.; Wegner, K.D.; Aldakov, D.; Reiss, P. Prospects of chalcopyrite-type nanocrystals for energy applications. ACS Energy Lett. 2017, 2, 1076–1088. [Google Scholar] [CrossRef]
- Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I–III–VI materials. Chem. Mater. 2018, 30, 1446–1461. [Google Scholar] [CrossRef]
- Berends, A.C.; Mangnus, M.J.; Xia, C.; Rabouw, F.T.; de Mello Donega, C. Optoelectronic properties of ternary I–III–VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600–1616. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, S.; Xu, B.; Jiang, J.; Cai, B.; Lv, X.; Zou, Y.; Fan, Z.; Yang, H.; Zeng, H. I–III–VI Quantum Dots and Derivatives: Design, Synthesis, and Properties for Light-Emitting Diodes. Nano Lett. 2023, 23, 2443–2453. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, W.; Chun, F.; Xu, X.; Zhao, Q.; Wang, F. Synthesis and hybridization of CuInS2 nanocrystals for emerging applications. Chem. Soc. Rev. 2023, 52, 8374–8409. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Petrov, V.; Miyata, K. Refined Sellmeier equations for AgGaS2 down to 0.565 µm. Appl. Opt. 2023, 62, 6375–6379. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, X.; Jiang, X.; Lin, Z.; Zhou, Z. The compatibly large nonlinear optical effect and high laser-induced damage threshold in a thiophosphate CsInP2S7 constructed with [P2S7]4− and [InS6]9−. Chin. Chem. Lett. 2024, 35, 109108. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, S.; Gong, P.; Liang, F.; Lin, Z. AgIn5Se8: A defect diamond-like non-linear optical selenide. Inorg. Chem. Front. 2023, 10, 3248–3254. [Google Scholar] [CrossRef]
- Kinyaevskiy, I.O.; Koribut, A.V.; Grudtsyn, Y.V.; Ionin, M.V.; Klimachev, Y.M.; Yudin, N.N.; Ionin, A.A. Frequency conversion of femtosecond Ti: Sapphire laser pulse into 5–11 μm wavelength range with ZnGeP2, AgGaS2 and LiGaS2 crystals. Opt. Laser. Technol. 2025, 183, 112270. [Google Scholar] [CrossRef]
- Laksari, S.; Chahed, A.; Abbouni, N.; Benhelal, O.; Abbar, B. First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2. Comput. Mater. Sci 2006, 38, 223–230. [Google Scholar] [CrossRef]
- Abrahams, S.; Bernstein, J. Crystal structure of piezoelectric nonlinear-optic AgGaS2. J. Chem. Phys. 1973, 59, 1625–1629. [Google Scholar] [CrossRef]
- Rudysh, M.Y.; Ftomyn, N.; Shchepanskyi, P.; Myronchuk, G.; Popov, A.; Lemée, N.; Stadnyk, V.; Brik, M.; Piasecki, M. Electronic Structure, Optical, and Elastic Properties of AgGaS2 Crystal: Theoretical Study. Adv. Theory Simul. 2022, 5, 2200247. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Huang, J.; Abudurusuli, A.; Yang, Z.; Pan, S. Emergent Mid-Infrared Nonlinear Optical Candidates with Targeted Balance Performances. Small 2024, 2409997. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhu, S.; Zhao, B.; Lei, Y.; Wu, X.; Yuan, Z.; He, Z. Differential thermal analysis and crystal growth of AgGaS2. J. Cryst. Growth 2008, 310, 635–638. [Google Scholar] [CrossRef]
- Route, R.K.; Raymakers, R.; Feigelson, R. Preparation of large untwinned single crystals of AgGaS2. J. Cryst. Growth 1975, 29, 125–126. [Google Scholar] [CrossRef]
- Petit, J.; Bejet, M.; Daux, J.-C. Highly transparent AgGaS2 single crystals, a compound for mid-IR laser sources, using a combined static/dynamic vacuum annealing method. Mater. Chem. Phys. 2010, 119, 1–3. [Google Scholar] [CrossRef]
- Wu, J.; Huang, W.; Liu, H.-g.; He, Z.; Chen, B.; Zhu, S.; Zhao, B.; Lei, Y.; Zhou, X. Investigation of the thermal properties and crystal growth of the nonlinear optical crystals AgGaS2 and AgGaGeS4. Cryst. Growth Des. 2020, 20, 3140–3153. [Google Scholar] [CrossRef]
- Catella, G.C.; Burlage, D. Crystal growth and optical properties of AgGaS2 and AgGaSe2. MRS Bulletin 1998, 23, 28–36. [Google Scholar] [CrossRef]
- Exner, G.; Susner, M.A.; Murray, J.; Grigorov, A.; Siebenaller, R.; Conner, B.S.; Rowe, E.; Guha, S.; Petrov, V. Thermo-mechanical properties of BaGa2GeS(e)6 nonlinear optical crystals. Opt. Mater. Express 2023, 13, 1335–1344. [Google Scholar] [CrossRef]
- Sabanin, A.; Paterova, A. Prospects of using novel nonlinear crystals in SU(1,1) interferometry. Laser Phys. Lett. 2025, 22, 015205. [Google Scholar] [CrossRef]
- Suleimanova, D.Z.; Migal, E.A.; Badikov, D.V.; Potemkin, F.V. Advances in the development of few-cycle gigawatt-peak-power mid-IR optical parametric amplifiers pumped by Cr:Forsterite laser using non-oxide nonlinear crystals. Appl. Phys. Lett. 2024, 124, 161103. [Google Scholar] [CrossRef]
- Wu, K.; Pan, S. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances. Coord. Chem. Rev. 2018, 377, 191–208. [Google Scholar] [CrossRef]
- Lin, H.; Wei, W.-B.; Chen, H.; Wu, X.-T.; Zhu, Q.-L. Rational design of infrared nonlinear optical chalcogenides by chemical substitution. Coord. Chem. Rev. 2020, 406, 213150. [Google Scholar] [CrossRef]
- Zaręba, J.K.; Nyk, M.; Samoć, M. Nonlinear Optical Properties of Emerging Nano-and Microcrystalline Materials. Adv. Opt. Mater. 2021, 9, 2100216. [Google Scholar] [CrossRef]
- Chen, H.; Ran, M.-Y.; Wei, W.-B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coord. Chem. Rev. 2022, 470, 214706. [Google Scholar] [CrossRef]
- Hao, T.; Cen, Q.; Guan, S.; Li, W.; Dai, Y.; Zhu, N.; Li, M. Optoelectronic parametric oscillator. Light Sci. Appl. 2020, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Harmon, W.; Robben, K.; Cheatum, C.M. Adding a second AgGaS2 stage to Ti: Sapphire/BBO/AgGaS2 setups increases mid-infrared power twofold. Opt. Lett. 2023, 48, 4797–4800. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.-Y.; Zhou, S.-H.; Wei, W.-B.; Li, B.-X.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. Breaking Through the Trade-Off Between Wide Band Gap and Large SHG Coefficient in Mercury-Based Chalcogenides for IR Nonlinear Optical Application. Small 2024, 20, 2304563. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.-D.; Li, M.-Z.; Lin, S.-J.; Chen, W.-F.; Jiang, X.-M.; Liu, B.-W.; Guo, G.-C. Cs4Zn5P6S18I2: The Largest Birefringence in Chalcohalide Achieved by Highly Polarizable Nonlinear Optical Functional Motifs. Small 2023, 19, 2303847. [Google Scholar] [CrossRef]
- Chemla, D.; Kupecek, P.; Robertson, D.; Smith, R. Silver thiogallate, a new material with potential for infrared devices. Opt. Commun. 1971, 3, 29–31. [Google Scholar] [CrossRef]
- Okorogu, A.; Mirov, S.; Lee, W.; Crouthamel, D.; Jenkins, N.; Dergachev, A.Y.; Vodopyanov, K.; Badikov, V. Tunable middle infrared downconversion in GaSe and AgGaS2. Opt. Commun. 1998, 155, 307–312. [Google Scholar] [CrossRef]
- Fan, Y.X.; Eckardt, R.; Byer, R.; Route, R.; Feigelson, R. AgGaS2 infrared parametric oscillator. Appl. Phys. Lett. 1984, 45, 313–315. [Google Scholar] [CrossRef]
- Vodopyanov, K.; Maffetone, J.; Zwieback, I.; Ruderman, W. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm. Appl. Phys. Lett. 1999, 75, 1204–1206. [Google Scholar] [CrossRef]
- Kildal, H.; Mikkelsen, J. The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2. Opt. Commun. 1973, 9, 315–318. [Google Scholar] [CrossRef]
- Boyd, G.; Buehler, E.; Storz, F. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl. Phys. Lett. 1971, 18, 301–304. [Google Scholar] [CrossRef]
- Liang, F.; Kang, L.; Lin, Z.; Wu, Y.; Chen, C. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord. Chem. Rev. 2017, 333, 57–70. [Google Scholar] [CrossRef]
- Hewage, N.W.; Viswanathan, G.; Yox, P.; Wu, K.; Kovnir, K.; Akopov, G. Synthesis of chiral high-entropy sulfides for non-linear optical applications. Inorg. Chem. Front. 2023, 10, 6613–6621. [Google Scholar] [CrossRef]
- Jomaa, M.; Mishra, V.; Mumbaraddi, D.; Sikdar, R.; Sarkar, D.; Sun, M.; Yao, J.; Michaelis, V.K.; Mar, A. Structure and Optical Properties of LixAg1–xGaSe2 and LixAg1–xInSe2. Inorg. Chem. 2023, 62, 7491–7502. [Google Scholar] [CrossRef]
- Ran, M.-Y.; Wang, A.Y.; Wei, W.-B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. Recent progress in the design of IR nonlinear optical materials by partial chemical substitution: Structural evolution and performance optimization. Coord. Chem. Rev. 2023, 481, 215059. [Google Scholar] [CrossRef]
- Kang, L.; Liang, F.; Jiang, X.; Lin, Z.; Chen, C. First-principles design and simulations promote the development of nonlinear optical crystals. Acc. Chem. Res. 2019, 53, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ran, M.-Y.; Zhou, S.-H.; Wu, X.-T.; Lin, H. Ag2GeS3: A Diamond-Like Chalcogenide as an IR Nonlinear Optical Material with Outstanding Second-Harmonic Generation Response. Adv. Opt. Mater. 2024, 12, 2401100. [Google Scholar] [CrossRef]
- Han, Y.-X.; Hu, C.-L.; Chen, W.-T.; Mao, J.-G. Multi-step cation substitution facilitating the exploration of potential infrared nonlinear optical materials. Inorg. Chem. Front. 2024, 11, 5905–5912. [Google Scholar] [CrossRef]
- Lin, C.-S.; Zhou, A.-Y.; Cheng, W.-D.; Ye, N.; Chai, G.-L. Atom-resolved analysis of birefringence of nonlinear optical crystals by Bader charge integration. J. Phys. Chem. C 2019, 123, 31183–31189. [Google Scholar] [CrossRef]
- Yang, H.-D.; Ran, M.-Y.; Wei, W.-B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. Recent advances in IR nonlinear optical chalcogenides with well-balanced comprehensive performance. Mat. Today Phys. 2023, 35, 101127. [Google Scholar] [CrossRef]
- Bai, L.; Lin, Z.; Wang, Z.; Chen, C.; Lee, M.-H. Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X = S, Se, and Te) crystals. J. Chem. Phys. 2004, 120, 8772–8778. [Google Scholar] [CrossRef]
- Yang, S.; Lin, C.; Chen, K.; Fan, H.; Chen, J.; Fang, S.; Ye, N.; Luo, M. Trade-Off for Better Balanced Nonlinear Optical Performance with Disordered Si in ZnGeP2. Chem. Mater. 2022, 34, 11007–11013. [Google Scholar] [CrossRef]
- Yun, Y.; Xie, W.; Yang, Z.; Li, G.; Pan, S. Na+/Ag+ substitution induced birefringence enhancement from AgGaS2 to NaGaS2. J. Alloys Compd. 2022, 896, 163093. [Google Scholar] [CrossRef]
- Li, G.; Chu, Y.; Zhou, Z. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage threshold together with large second-harmonic generation response. Chem. Mater. 2018, 30, 602–606. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.-Y.; Li, B.; Liu, P.-F.; Lin, H.; Zhu, Q.-L.; Wu, X.-T. Salt-inclusion chalcogenide [Ba4Cl2][ZnGa4S10]: Rational design of an IR nonlinear optical material with superior comprehensive performance derived from AgGaS2. Chem. Mater. 2020, 32, 8012–8019. [Google Scholar] [CrossRef]
- Petrov, V.; Yelisseyev, A.; Isaenko, L.; Lobanov, S.; Titov, A.; Zondy, J.-J. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2. Appl. Phys. B 2004, 78, 543–546. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Liu, P.-F.; Wu, L.-M. Ba6Zn7Ga2S16: A wide band gap sulfide with phase-matchable infrared NLO properties. Chem. Mater. 2017, 29, 5259–5266. [Google Scholar] [CrossRef]
- Zhou, H.M.; Xiong, L.; Chen, L.; Wu, L.M. Dislocations that decrease size mismatch within the lattice leading to ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2. Angew. Chem. Int. Ed. 2019, 58, 9979–9983. [Google Scholar] [CrossRef]
- Li, G.; Wu, K.; Liu, Q.; Yang, Z.; Pan, S. Na2ZnGe2S6: A new infrared nonlinear optical material with good balance between large second-harmonic generation response and high laser damage threshold. J. Am. Chem. Soc. 2016, 138, 7422–7428. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-F.; Jiang, X.-M.; Liu, B.-W.; Yan, D.; Zeng, H.-Y.; Guo, G.-C. Strong infrared nonlinear optical efficiency and high laser damage threshold realized in quaternary alkali metal sulfides Na2Ga2MS6 (M = Ge, Sn) containing mixed nonlinear optically active motifs. Inorg. Chem. 2018, 57, 6783–6786. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Wang, N.; Tang, C.; Li, C.; Lin, Z.; Yao, J.; Yin, W.; Kang, B. From AgGaS2 to AgHgPS4: Vacancy defects and highly distorted HgS4 tetrahedra double-induced remarkable second-harmonic generation response. J. Mater. Chem. C 2021, 9, 1062–1068. [Google Scholar] [CrossRef]
- Gao, L.; Xu, J.; Tian, X.; Zhang, B.; Wu, X.; Wu, K. AgGaSe2-inspired nonlinear optical materials: Tetrel selenides of alkali metals and mercury. Chem. Mater. 2022, 34, 5991–5998. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Hu, Z.; Wang, J.; Wu, Y.; Yu, H. AllHgMIVS4 (All = Sr, Ba, MIV = Si, Ge): A Series of Materials with Large Second Harmonic Generation Response and Wide Band Gaps. Adv. Opt. Mater. 2024, 12, 2301735. [Google Scholar] [CrossRef]
- Grechenkov, J.; Gopejenko, A.; Bocharov, D.; Isakoviča, I.; Popov, A.I.; Brik, M.G.; Piskunov, S. Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications. Energies 2023, 16, 4823. [Google Scholar] [CrossRef]
- Li, J.; Yao, W.-D.; Li, J.-N.; Li, X.-H.; Liu, W.; Guo, S.-P. Partial substitution induced structural transformation and enhanced nonlinear optical properties of Na2GaxIn6-xSe10 (x = 3, 3.76). Mater. Today Phys. 2023, 32, 101007. [Google Scholar] [CrossRef]
- Tang, G.; He, Y.; Liao, H.; Zhang, S.; Chu, X.; Si, R.; Jin, Z.; Du, Y.; Wang, C.; Chen, B.; et al. Crystal Growth, Characterization, and Properties of Nonlinear Optical Crystals of Li0.5Ag0.5GaTe2 for Mid-Infrared Applications. ACS Appl. Mater. Inter. 2024, 16, 62411–62420. [Google Scholar] [CrossRef]
- Tang, J.; Yao, A.; Wu, Q.; Tang, C.; Wu, J.; Kang, L.; Xia, M.; Yin, W.; Kang, B.; Deng, J. AAg2MS4 (A = Na, K, Rb; M = P, As) Nonlinear Optical Series with Unique Cation-Regulated Highly Anisotropic [AgS4] Hypertetrahedral Layered Framework. Adv. Opt. Mater. 2024, 12, 2401126. [Google Scholar] [CrossRef]
- Adhikary, A.; Yaghoobnejad Asl, H.; Sandineni, P.; Balijapelly, S.; Mohapatra, S.; Khatua, S.; Konar, S.; Gerasimchuk, N.; Chernatynskiy, A.V.; Choudhury, A. Unusual atmospheric water trapping and water induced reversible restacking of 2D gallium sulfide layers in NaGaS2 formed by supertetrahedral building unit. Chem. Mater. 2020, 32, 5589–5603. [Google Scholar] [CrossRef]
- Klepov, V.V.; Berseneva, A.A.; Pace, K.A.; Kocevski, V.; Sun, M.; Qiu, P.; Wang, H.; Chen, F.; Besmann, T.M.; zur Loye, H.C. NaGaS2: An Elusive Layered Compound with Dynamic Water Absorption and Wide-Ranging Ion-Exchange Properties. Angew. Chem. Int. Ed. 2020, 59, 10836–10841. [Google Scholar] [CrossRef]
- Zou, G.; Ye, N.; Huang, L.; Lin, X. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 2011, 133, 20001–20007. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-W.; Zeng, H.-Y.; Zhang, M.-J.; Fan, Y.-H.; Guo, G.-C.; Huang, J.-S.; Dong, Z.-C. Syntheses, structures, and nonlinear-optical properties of metal sulfides Ba2Ga8MS16 (M = Si, Ge). Inorg. Chem. 2015, 54, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, S.; Huang, Z.; Zhao, L.-D.; Uykur, E.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. Molecular construction from AgGaS2 to CuZnPS4: Defect-induced second harmonic generation enhancement and cosubstitution-driven band gap enlargement. Chem. Mater. 2020, 32, 3288–3296. [Google Scholar] [CrossRef]
- Nguyen, V.; Ji, B.; Wu, K.; Zhang, B.; Wang, J. Unprecedented mid-infrared nonlinear optical materials achieved by crystal structure engineering, a case study of (KX)P2S6 (X = Sb, Bi, Ba). Chem. Sci. 2022, 13, 2640–2648. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.H.; Hu, C.L.; Xu, X.; Li, B.X.; Zhang, M.J.; Mao, J.G. AgGa2PS6: A New Mid-Infrared Nonlinear Optical Material with a High Laser Damage Threshold and a Large Second Harmonic Generation Response. Chem. Euro. J. 2017, 23, 10978–10982. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, S.H.; Li, X.H.; Liu, W.; Guo, S.P. Eu2P2S6: The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold. Angew. Chem. Int. Ed. 2022, 61, e202206791. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-P.; Chi, Y.; Guo, G.-C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57. [Google Scholar] [CrossRef]
- Li, C.; Meng, X.; Li, Z.; Yao, J. Hg-based chalcogenides: An intriguing class of infrared nonlinear optical materials. Coord. Chem. Rev. 2022, 453, 214328. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, F.; Yao, J.; Lin, Z.; Yin, W.; Wu, Y.; Chen, C. Nonbonding electrons driven strong SHG effect in Hg2GeSe4: Experimental and theoretical investigations. Inorg. Chem. 2018, 57, 6795–6798. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.-H.; Yao, W.-D.; Liu, W.; Guo, S.-P. Three-in-One Strategy Constructing the First High-Performance Nonlinear Optical Sulfide Crystallizing with the P43 Space Group. Small 2023, 19, 2303090. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Jiang, X.-M.; Liu, B.-W.; Guo, G.-C. Excellent Nonlinear Optical M[M4Cl][Ga11S20] (M = A/Ba, A = K, Rb) Achieved by Unusual Cationic Substitution Strategy. Small 2024, 20, 2305711. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhang, B.; Pan, F.; Lin, Z. Thiotetrelates Li2ZnXS4 (X = Si, Ge, and Sn) As Potential Li-Ion Solid-State Electrolytes. ACS Appl. Mater. Inter. 2022, 14, 9203–9211. [Google Scholar] [CrossRef] [PubMed]
- Berseneva, A.A.; Masachchi, L.W.; Jacobsohn, L.G.; zur Loye, H.-C. Tunable Salt-Inclusion Chalcogenides for Ion Exchange, Photoluminescence, and Scintillation. Chem. Mater. 2023, 35, 1417–1431. [Google Scholar] [CrossRef]
- Yue, Q.-G.; Wei, W.-B.; Chen, H.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. Salt-inclusion chalcogenides: An emerging class of IR nonlinear optical materials. Dalton Trans. 2020, 49, 14338–14343. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-W.; Jiang, X.-M.; Zeng, H.-Y.; Guo, G.-C. [ABa2Cl][Ga4S8](A = Rb, Cs): Wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J. Am. Chem. Soc. 2020, 142, 10641–10645. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-F.; Jiang, X.-M.; Liu, B.-W.; Guo, G.-C. Wide band gaps in nonlinear optical materials AMgAgGa6S11 (A = K, Rb) achieved by the incorporation of dual s-block elements in Ag-based sulfide. Mater. Today Phys. 2023, 37, 101199. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, J.; Liu, W.; Guo, S.-P. Ag-based chalcogenides and derivatives as promising infrared nonlinear optical materials. Coord. Chem. Rev. 2023, 477, 214950. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Cheng, Y.; Xiao, Y.; Wu, Q.; Lin, H.; Xu, J.; Wang, Y. The synergistic role of double vacancies within AgGaS2 nanocrystals in carrier separation and transfer for efficient photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5838–5844. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, J.; Lin, O.; Yin, Z.; Li, X.; Zhang, Y.; Tang, A. Narrow-Bandwidth Blue-Emitting Ag–Ga–Zn–S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes. J. Phys. Chem. Lett. 2022, 13, 11857–11863. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tong, X.; Xia, L.; Zhao, H.; Luo, J.; Li, Z.; Wang, Z.M. Modulating Eco-friendly Colloidal AgGaS2 Quantum Dots for Highly Efficient Photodetection and Image Sensing via Direct Growth of Ternary AgInS2 Shell. Small 2024, 20, 2404261. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, J.; Liu, X.; Zhong, H.; Zhang, Z.; Luo, Q.; Chen, D.; Liu, J.; Lin, H. Indium-free silver thiogallate nanoflake-clusters grown on carbon nitride edges for hydrogen peroxide photosynthesis with enhanced activity and stability. J. Colloid Interface Sci. 2025, 680, 581–594. [Google Scholar] [CrossRef]
- Lin, O.; Wang, L.; Xie, X.; Wang, S.; Feng, Y.; Xiao, J.; Zhang, Y.; Tang, A. Seed-mediated growth synthesis and tunable narrow-band luminescence of quaternary Ag–In–Ga–S alloyed nanocrystals. Nanoscale 2024, 16, 4591–4599. [Google Scholar] [CrossRef] [PubMed]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Tozawa, M.; Ofuji, S.; Tanaka, M.; Akiyoshi, K.; Kameyama, T.; Yamamoto, T.; Motomura, G.; Fujisaki, Y.; Uematsu, T.; Kuwabata, S.; et al. Spectrally Narrow Blue-Light Emission from Nonstoichiometric AgGaS2 Quantum Dots for Application to Light-Emitting Diodes. ACS Appl. Mater. Inter. 2024, 16, 68169–68180. [Google Scholar] [CrossRef]
- Leach, A.D.; Macdonald, J.E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J. Phys. Chem. Lett. 2016, 7, 572–583. [Google Scholar] [CrossRef]
- Adhikari, S.D.; Dutta, A.; Prusty, G.; Sahu, P.; Pradhan, N. Symmetry break and seeded 2D anisotropic growth in ternary CuGaS2 nanocrystals. Chem. Mater. 2017, 29, 5384–5393. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, Z.; Bovero, E.; Lu, Z.; Van Veggel, F.C.; Scholes, G.D. Colloidal CuInSe2 nanocrystals in the quantum confinement regime: Synthesis, optical properties, and electroluminescence. J. Phys. Chem. C 2011, 115, 12396–12402. [Google Scholar] [CrossRef]
- Hu, J.; Lu, Q.; Tang, K.; Qian, Y.; Zhou, G.; Liu, X. Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M = Ga, In). Chem. Commun. 1999, 12, 1093–1094. [Google Scholar] [CrossRef]
- Junqing, H.; Bin, D.; Kaibin, T.; Qingyi, L.; Rongrong, J.; Yitai, Q. Hydrothermal preparation and characterization of nanocrystalline: Silver gallium sulfides. Solid State Sci. 2001, 3, 275–278. [Google Scholar] [CrossRef]
- Fan, C.-M.; Regulacio, M.D.; Ye, C.; Lim, S.H.; Zheng, Y.; Xu, Q.-H.; Xu, A.-W.; Han, M.-Y. Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals. Chem. Commun. 2014, 50, 7128–7131. [Google Scholar] [CrossRef]
- Paderick, S.; Kessler, M.; Hurlburt, T.J.; Hughes, S.M. Synthesis and characterization of AgGaS2 nanoparticles: A study of growth and fluorescence. Chem. Commun. 2018, 54, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Azhniuk, Y.; Lopushanska, B.; Selyshchev, O.; Havryliuk, Y.; Pogodin, A.; Kokhan, O.; Ehm, A.; Lopushansky, V.; Studenyak, I.; Zahn, D.R. Synthesis and Optical Properties of Ag–Ga–S Quantum Dots. Phys. Status Solidi B 2022, 259, 2100349. [Google Scholar] [CrossRef]
- Uematsu, T.; Doi, T.; Torimoto, T.; Kuwabata, S. Preparation of luminescent AgInS2–AgGaS2 solid solution nanoparticles and their optical properties. J. Phys. Chem. Lett. 2010, 1, 3283–3287. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Y.; Dai, Y.; Hu, J.; Zhu, L.; Xu, X.; Yu, Y.; Li, H.; Yao, B.; Zhou, H. Polyelectrolyte-Mediated Nontoxic AgGaxIn1–xS2 QDs/Low-Density Lipoprotein Nanoprobe for Selective 3D Fluorescence Imaging of Cancer Stem Cells. ACS Appl. Mater. Inter. 2019, 11, 9884–9892. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Liu, C.; Li, R.; Bai, F.; Bai, T.; Xing, S. Colloidal synthesis of AgGa (S1−xSex)2 solid solution nanocrystals with composition-dependent crystal phase for efficient photocatalytic degradation of methyl violet. CrystEngComm 2022, 24, 4540–4545. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, B.-Y.; Jang, E.-P.; Yoon, S.-Y.; Kim, K.-H.; Do, Y.R.; Yang, H. Synthesis of widely emission-tunable Ag–Ga–S and its quaternary derivative quantum dots. Chem. Eng. J. 2018, 347, 791–797. [Google Scholar] [CrossRef]
- Bai, T.; Wang, X.; Dong, Y.; Xing, S.; Shi, Z.; Feng, S. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg. Chem. Front. 2020, 59, 5975–5982. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Y.; Liu, Z.; Wei, J.; Zhu, Q.; Jiang, G.; Jin, X.; Li, Q.; Li, F. White light-emitting diodes based on quaternary Ag–In-Ga-S quantum dots and their influences on melatonin suppression index. J. Lumin. 2021, 233, 117903. [Google Scholar] [CrossRef]
- Kameyama, T.; Kishi, M.; Miyamae, C.; Sharma, D.K.; Hirata, S.; Yamamoto, T.; Uematsu, T.; Vacha, M.; Kuwabata, S.; Torimoto, T. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag–In–S nanoparticles via Ga3+ doping. ACS Appl. Mater. Inter. 2018, 10, 42844–42855. [Google Scholar] [CrossRef]
- Hoisang, W.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Luminescent Quaternary Ag(InxGa1–x)S2/GaSy Core/Shell Quantum Dots Prepared Using Dithiocarbamate Compounds and Photoluminescence Recovery via Post Treatment. Inorg. Chem. 2021, 60, 13101–13109. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tong, X.; Yue, S.; Liu, C.; Channa, A.I.; You, Y.; Wang, R.; Long, Z.; Zhang, Z.; Zhao, Z. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 2021, 89, 106392. [Google Scholar] [CrossRef]
- LaMer, V.K.; Dinegar, R.H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. [Google Scholar] [CrossRef]
- Alves Machado Filho, M.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Farmer, W.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Ankit, K.; Gueorguiev, G.K. Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core–Shell InAlN Nanorods. Cryst. Growth. Des. 2024, 24, 4717–4727. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, D.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, J.; Lin, O.; Niu, W.; Li, Y.; Wang, L.; Li, L.; Yin, Z.; Li, X.; Zhang, Y.; et al. One-Pot Synthesis of Color-Tunable Narrow-Bandwidth Ag–In–Ga–Zn–S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes. Nano Lett. 2024, 24, 9683–9690. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Koley, S.; Slobodkin, I.; Remennik, S.; Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 2020, 20, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, T.; Tepakidareekul, M.; Hirano, T.; Torimoto, T.; Kuwabata, S. Facile High-Yield Synthesis of Ag–In–Ga–S Quaternary Quantum Dots and Coating with Gallium Sulfide Shells for Narrow Band-Edge Emission. Chem. Mater. 2023, 35, 1094–1106. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B.; Wang, F. Shedding light on the role of misfit strain in controlling core–shell nanocrystals. Adv. Mater. 2020, 32, 2004142. [Google Scholar] [CrossRef]
- Berends, A.C.; Van Der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Mello Donega, C. Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals. Chem. Mater. 2018, 30, 2400–2413. [Google Scholar] [CrossRef]
- Chuang, P.-H.; Lin, C.C.; Liu, R.-S. Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl. Mater. Inter. 2014, 6, 15379–15387. [Google Scholar] [CrossRef] [PubMed]
- Jara, D.H.; Stamplecoskie, K.G.; Kamat, P.V. Two distinct transitions in CuxInS2 quantum dots. Bandgap versus sub-bandgap excitations in copper-deficient structures. J. Phys. Chem. Lett. 2016, 7, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, P.; Vega, A.; Weissflog, M.A.; Pertsch, T.; Setzpfandt, F. Mid-infrared photon pair generation in AgGaS2. Appl. Phys. Lett. 2021, 119, 244001. [Google Scholar] [CrossRef]
- Trovatello, C.; Marini, A.; Xu, X.; Lee, C.; Liu, F.; Curreli, N.; Manzoni, C.; Dal Conte, S.; Yao, K.; Ciattoni, A. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat. Photonics 2021, 15, 6–10. [Google Scholar] [CrossRef]
Type | Compound | Space Group | Eg (eV) | Band Types | IR Cutoff (μm) | Δ[email protected] μm | SHG dij (pm/V) | LIDT (×AgGaS2) | Ref |
---|---|---|---|---|---|---|---|---|---|
Commercially available | AgGaS2 | I-42d | 2.7 | Direct | 0.45–13 | 0.053 | d36 = 13.9 | 1.0 | [34] |
AgGaSe2 | I-42d | 1.8 | Direct | 0.76–17 | N.A. | d36 = 33.0 | N.A. | [46] | |
ZnGeP2 | I-42d | 1.74 | Direct | 0.74–12 | 0.046 | deff = 75.0 | N.A. | [47] | |
Bandgap modification | NaGaS2 | I-42d | 3.9 | Direct | 0.31–13.3 | 0.094 | d36 = 13.2 | 1.1 | [48] |
Li2ZnSiS4 | Pna21 | 3.9 | Direct | 25 | N.A. | d33 = 18.9 | 10.0 | [49] | |
[Ba4Cl2] [ZnGa4S10] | I-4 | 3.8 | Direct | 0.29–13.7 | [email protected] μm | d14 = 14.9 | 51.0 | [50] | |
LiGaS2 | Pna21 | 3.7 | Direct | 11.6 | 0.014 | d33 = 11.2 | 11.0 | [51] | |
Ba6Zn7Ga2S16 | R3 | 3.5 | Direct | N.A. | 0.036 | d11 = 6.1 | 28.0 | [52] | |
AgGaS2:Li | I-42d | 3.4 | Direct | N.A. | N.A. | d36 = 20.6 | 8.6 | [53] | |
Na2ZnGe2S6 | Cc | 3.2 | Direct | 0.38–22 | 0.026 | d33 = −5.3 | 6.0 | [54] | |
Na2Ga2GeS6 | Fdd2 | 3.1 | Direct | N.A. | N.A. | deff = 11.2 | 18.1 | [55] | |
Ba2Ga8GeS16 | P63mc | 3.0 | Direct | 0.42–20 | N.A. | deff = 26.0 | 22.0 | ||
CuZnPS4 | I-42m | 3.0 | Indirect | 16.5 | 0.07 | d14 = 15.9 | 6.0 | ||
SHG enhancement | Na2Ga2SnS6 | Fdd2 | 2.7 | Direct | N.A. | N.A. | deff = 13.1 | 17.9 | [55] |
AgHgPS4 | Pn | 2.6 | Indirect | 12 | [email protected] μm | d11 = −31.1 | N.A. | [56] | |
Li2HgGeSe4 | Pna21 | 1.7 | Direct | N.A. | 0.042–0.074 | d33 = −90.2 | 3.0 | [57] | |
Li2HgSnSe4 | Pna21 | 1.6 | Direct | N.A. | d33 = −104 | 3.5 | |||
Na2Hg3Ge2Se8 | P-4c2 | 1.3 | Direct | N.A. | 0.096–0.172 | d36 = 87.6 | 4.5 | ||
Na2Hg3Sn2Se8 | P-4c2 | 1.2 | Direct | N.A. | d36 = 96.4 | 3.0 |
Nanocrystals | Phase | Precursors | Size (nm) | Eg (eV) | Emission Range (nm) | Ref |
---|---|---|---|---|---|---|
AgGaS2 | Tetragonal | AgCl, Ga, and S | 5.0–7.0 | N.A. | N.A. | [92] |
AgGaS2 | Tetragonal | AgCl, GaCl3, and thiourea | 5.0 | N.A. | 446 | [93] |
AgGaS2 | Tetragonal | Ag-oleate, Ga(acac)3, S | 13.0 | 2.6–2.7 | 475 | [82] |
AgGaS2 | Orthorhombic | AgS2CN(C2H5)2, Ga(S2CN(C2H5)2)3 | 16.3–19.1 | 2.7 | N.A. | [94] |
AgGaS2 | Monoclinic | AgNO3, Ga(acac)3, and S | 3–5.6 | N.A. | 460, 650 | [95] |
AgGaS2 | Orthorhombic, rhombohedral | AgNO3, GaCl3, Na2S, | 2.0 | N.A. | N.A. | [96] |
AgGaS2: In | Tetragonal | AgInyGa1-y(S2CN(C2H5)2)4 | 4–5 | N.A. | 550–750 | [97] |
AgGaS2: In | Tetragonal | AgInS2, Ga(NO3)3 | 4.2 | N.A. | 550 | [98] |
AgGaS2: Zn | Tetragonal | AgNO3, Ga(acac)3, ZnSt2, and S | 4.2 | N.A. | 470–510 | [83] |
AgGaS2: Se | Orthorhombic, tetragonal | AgNO3, GaSt3, InSt3, Se, thiourea | 10–18 | 1.9–2.8 | N.A. | [99] |
AgGaS2: In@ZnS | Tetragonal | AgI, Ga(acac)3 In(Ac)3, and S | 5–5.3 | 2.4–2.9 | 515–570 | [100] |
AgGaS2: Zn@ZnS | Tetragonal | AgI, Ga(acac)3 ZnCl2, and S | 5–5.3 | 2.9–3.1 | 450–515 | |
AgGaS2: In@ZnS | Tetragonal | AgI, Ga(acac)3 ZnSt2, and S | 5.0 | 1.9–2.8 | 460–670 | [101] |
AgGaS2: In@ZnS | Tetragonal | AgNO3, Ga(Ac)3, In(Ac)3, and S | 3.8 | N.A. | 560–600 | [102] |
AgGaS2: In@GaSx | Tetragonal | AgAc, Ga(acac)3, In(acac)3, and S | 2.9–4.5 | 2.1–2.6 | 500–600 | [103] |
AgGaS2: In@GaSx | Tetragonal | AgAc, In(Ac)3, Ga(S2CN(C2H5)2)3 | 4.3 | 2.1–2.6 | 498–602 | [104] |
AgGaS2@CdSeS | Tetragonal | AgI, Ga(acac)3, and S | 5.1 ± 0.6 | 1.97 | 710 | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, G.; Chen, B. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Nanomaterials 2025, 15, 147. https://doi.org/10.3390/nano15020147
Xing G, Chen B. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Nanomaterials. 2025; 15(2):147. https://doi.org/10.3390/nano15020147
Chicago/Turabian StyleXing, Guansheng, and Bing Chen. 2025. "AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties" Nanomaterials 15, no. 2: 147. https://doi.org/10.3390/nano15020147
APA StyleXing, G., & Chen, B. (2025). AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Nanomaterials, 15(2), 147. https://doi.org/10.3390/nano15020147