Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software
Abstract
:1. Introduction
2. Results and Discussion
2.1. BBP
2.2. BIMC
3. Materials and Methods
3.1. Experimental Materials
3.2. pKa Prediction
3.3. Molecular Dynamics
3.4. Quantum Chemical Computational Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Kamiya, M.; Urano, Y. Molecular Probes for Fluorescence Image-Guided Cancer Surgery. Curr. Opin. Chem. Biol. 2022, 67, 102112. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Yin, C.; Huo, F. Small-Molecule Fluorescent Probes for Detecting Several Abnormally Expressed Substances in Tumors. Micromachines 2022, 13, 1328. [Google Scholar] [CrossRef] [PubMed]
- Kulasingam, V.; Prassas, I.; Diamandis, E.P. Towards Personalized Tumor Markers. NPJ Precis. Oncol. 2017, 1, 17. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Long, S.; Xiong, T.; Zhao, X.; Sun, W.; Du, J.; Fan, J.; Peng, X. Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Cent. Sci. 2021, 7, 327–334. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, W.-L.; Wang, W.-X.; Mao, G.-J.; Li, Y.; Li, C.-Y. NAD(P)H-Triggered Probe for Dual-Modal Imaging during Energy Metabolism and Novel Strategy of Enhanced Photothermal Therapy in Tumor. Biomaterials 2021, 271, 120736. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kim, T. Comparative Study of TDDFT and TDDFT-Based STEOM-DLPNO-CCSD Calculations for Predicting the Excited-State Prop-erties of MR-TADF. Heliyon 2024, 10, e30926. [Google Scholar] [CrossRef]
- Sbai, A.; Guthmuller, J. Singlet and Triplet Excited States of a Series of BODIPY Dyes as Calculated by TDDFT and DLPNO-STEOM-CCSD Methods. Phys. Chem. Chem. Phys. 2024, 26, 25925–25935. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Fan, L.; Zhang, K.; Ou, T.; Li, Y.; Zhang, C.; Dong, C.; Shuang, S.; Wong, M.S. A Two-Photon Ratiometric Fluorescent Probe for Effective Monitoring of Lysosomal pH in Live Cells and Cancer Tissues. Sens. Actuators B Chem. 2018, 262, 913–921. [Google Scholar] [CrossRef]
- Korth, M. Third-Generation Hydrogen-Bonding Corrections for Semiempirical QM Methods and Force Fields. J. Chem. Theory Comput. 2010, 6, 3808–3816. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss Army Knife” Composite Electronic-Structure Method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. Molecular Electrostatic Potentials and Chemical Reactivity. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1991; pp. 273–312. ISBN 978-0-470-12579-3. [Google Scholar]
- Chattaraj, P.K. (Ed.) Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-13722-8. [Google Scholar]
- Politzer, P.; Murray, J.S. Chapter 8 The Average Local Ionization Energy: Concepts and Applications. In Theoretical and Computational Chemistry; Toro-Labbé, A., Ed.; Theoretical Aspects of Chemical Reactivity; Elsevier: Amsterdam, The Netherlands, 2007; Volume 19, pp. 119–137. [Google Scholar]
- Politzer, P.; Murray, J.S.; Bulat, F.A. Average Local Ionization Energy: A Review. J. Mol. Model. 2010, 16, 1731–1742. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Z.; Wang, G.; Fu, Z.; Zhong, F.; Xu, T.; Liu, X.; Huang, Z.; Liu, X.; Chen, K.; et al. Multi-Instance Learning of Graph Neural Networks for Aqueous pKa Prediction. Bioinformatics 2022, 38, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Lu, T. Sobtop, Version 1.0(dev5). Available online: http://sobereva.com/soft/Sobtop (accessed on 7 November 2024).
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Landrum, G. “RDKit” Q2. 2010. Available online: https://www.rdkit.org/ (accessed on 7 November 2024).
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. MOPAC2016. Available online: http://openmopac.net/MOPAC2016.html (accessed on 6 October 2024).
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Mov. Front. Quantum Chem. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Weigend, F. Hartree–Fock Exchange Fitting Basis Sets for H to Rn. J. Comput. Chem. 2008, 29, 167–175. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Hilborn, R.C. Einstein Coefficients, Cross Sections, f Values, Dipole Moments, and All That. Am. J. Phys. 1982, 50, 982–986. [Google Scholar] [CrossRef]
- Coyle, J.D. Introduction to Organic Photochemistry; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Zhu, X. EasySpecCalc, Version 0.0.1. 2020. Available online: https://github.com/CoomassieBrilliantBlue/EasySpecCalc (accessed on 20 November 2024).
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef] [PubMed]
Type | Electronic Transition | Wavelength (nm) | f | |
---|---|---|---|---|
BBP | Absorption | S0→S1 | 320.6 | 0.8519 |
Absorption | S0→S2 | 303.4 | 0.2940 | |
Absorption | S0→S3 | 290.0 | 0.3044 | |
Emission | S1→S0 | 369.1 | 1.2774 | |
Emission-Exp | S1→S0 | 385.0 | / | |
BBP-Protonated | Absorption | S0→S1 | 324.5 | 0.8417 |
Absorption | S0→S2 | 302.9 | 0.3461 | |
Emission | S1→S0 | 372.3 | 1.1886 | |
Emission-Exp | S1→S0 | 396.0 | / | |
BBP-Deprotonated | Absorption | S0→S1 | 328.9 | 0.8545 |
Absorption | S0→S2 | 315.0 | 0.1571 | |
Emission | S1→S0 | 381.6 | 1.2980 | |
Emission-Exp | S1→S0 | 410.0 | / |
Type | Electronic Transition | Wavelength (nm) | f | |
---|---|---|---|---|
BIMC | Absorption | S0→S1 | 378.5 | 1.4086 |
Absorption | S0→S2 | 330.2 | 0.0559 | |
Emission | S1→S0 | 484.7 | 1.8387 | |
Emission-Exp | S1→S0 | 454.0 | / | |
BIMC-Protonated | Absorption | S0→S1 | 419.0 | 1.1910 |
Absorption | S0→S2 | 360.2 | 0.2391 | |
Emission | S1→S0 | 499.7 | 1.7713 | |
Emission-Exp | S1→S0 | 514.0 | / |
Type | Electronic Transition | Wavelength (nm) | f | |
---|---|---|---|---|
BIMC | Emission | S1→S0 | 458.2 | 1.2263 |
Emission-Exp | S1→S0 | 454.0 | / | |
BIMC-Protonated | Emission | S1→S0 | 512.9 | 1.1905 |
Emission-Exp | S1→S0 | 514.0 | / |
Osc. Strength | Fl. Quantum Yield | Experimental | |
---|---|---|---|
BIMC * | 100% | 100% | 100% |
BIMC-Protonated | 97.1% | 66.1% | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Wei, Y.; Liu, X. Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software. Molecules 2025, 30, 273. https://doi.org/10.3390/molecules30020273
Zhu X, Wei Y, Liu X. Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software. Molecules. 2025; 30(2):273. https://doi.org/10.3390/molecules30020273
Chicago/Turabian StyleZhu, Ximeng, Yongchun Wei, and Xiaogang Liu. 2025. "Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software" Molecules 30, no. 2: 273. https://doi.org/10.3390/molecules30020273
APA StyleZhu, X., Wei, Y., & Liu, X. (2025). Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software. Molecules, 30(2), 273. https://doi.org/10.3390/molecules30020273