Tuning Electronic Structure and Optical Properties of Monolayered h-BN by Doping C, Cu and Al
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Stability of C-Doped h-BN at Different Positions
2.2. Electronic Structure of C-Doped h-BN at Different Positions
2.3. The Stability of Cu-Al Co-Doped BCxN
2.4. Electronic Structure of Cu-Al Co-Doped BCxN
2.5. Optical Properties
2.5.1. Complex Dielectric Function
2.5.2. Light Absorption Spectrum and Reflection Spectrum
2.5.3. Complex Refractive Indexes and Extinction Coefficient
3. Computational Details
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhang, K.; Che, X.; Gao, T.; Wang, S.; Ni, G. Preparation of BN nanoparticle with high sintering activity and its formation mechanism. Molecules 2024, 29, 3458. [Google Scholar] [CrossRef]
- Amir, P.; Yoshio, B.; Dmitri, G. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959. [Google Scholar]
- Weng, Q.; Wang, X.; Wang, X.; Yoshio, B.; Dmitri, G. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef] [PubMed]
- Janotti, A.; Wei, S.H.; Singh, D.J. First-principles study of the stability of BN and C. Phys. Rev. B. 2001, 64, 174107. [Google Scholar] [CrossRef]
- Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 2015, 112, 42–45. [Google Scholar] [CrossRef]
- Nikaido, Y.; Ichibha, T.; Hongo, K.; Reboredo, F.A.; Kumar, K.H.; Mahadevan, P.; Maezono, R.; Nakano, K. Diffusion Monte Carlo Study on Relative Stabilities of Boron Nitride Polymorphs. J. Phys. Chem. C. 2022, 126, 6000–6007. [Google Scholar] [CrossRef]
- Hua, L.L.; Jiri, C.; Kenji, W.; Takashi, T.; Ying, C. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462. [Google Scholar]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zou, J. Field emitters: Ultrathin BN nanosheets protruded from BN fibers. J. Mater. Chem. 2011, 21, 1191–1195. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Yin, J. Boron nitride nanosheets: Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J. Mater. Chem. 2011, 21, 11371–11377. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Matveev, A.T.; Permyakova, E.S.; Leybo, D.V.; Konopatsky, A.S.; Sorokin, P.B. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials 2022, 12, 2810. [Google Scholar] [CrossRef]
- Ji, H.P.; Cheol, P.J.; Joon, Y.S.; Hyun, K.; Hoa, L.D.; Min, K.S.; Ho, C.S.; Woochul, Y.; Jing, K.; Kang, K.K.; et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 2014, 8, 8520–8528. [Google Scholar]
- Li, H.P.; Zhu, S.W.; Zhang, M.; Wu, P.W.; Pang, J.Y.; Zhu, W.S.; Jiang, W.; Li, H.M. Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega 2017, 2, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Wang, M.S.; Yoshio, B.; Dmitri, G. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 2011, 5, 2916–2922. [Google Scholar] [CrossRef]
- Xue, Y.F.; Liu, Q.; He, G.J.; Xu, K.B.; Jiang, L.; Hu, X.H.; Hu, J.Q. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 2013, 8, 49. [Google Scholar] [CrossRef]
- He, B.; Qiu, M.; Yuen, M.F.; Zhang, W.J. Electrical properties and electronic structure of Si-implanted hexagonal boron nitride films. Appl. Phys. Lett. 2014, 105, 012104. [Google Scholar] [CrossRef]
- Khan, M.S.H.; Mime, F.I.; Islam, M.R. Electronic and optical properties of sn doped hexagonal BN monolayer: A first-principles study. TENSYMP 2020, 230–233. [Google Scholar]
- Brito, E.; Leite, L.; Azevedo, S.; Martins, J.; Bernardo, B. Theoretical investigation of the electronic and optical properties of gallium-doped hexagonal boron nitride through Monte Carlo and ab initio calculations. Phys. E 2018, 106, 277–282. [Google Scholar] [CrossRef]
- Legesse, M.; Rashkeev, S.N.; Saidaoui, H.; Mellouhi, F.E.; Ahzi, S.; Alharbi, F.H. Band gap tuning in aluminum doped two-dimensional hexagonal boron nitride. Mater. Chem. Phys. 2020, 250, 123176. [Google Scholar] [CrossRef]
- Liu, X.; Duan, T.; Sui, Y.; Meng, C.; Han, Y. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation. RSC Adv. 2014, 4, 38750–38760. [Google Scholar] [CrossRef]
- Ain, A.Q.; Akhtar, H.; Muhammad, K.; Muhammad, T.; Muhammad, R.H. Computational study of electronic properties of X-doped hexagonal boron nitride (h-BN): X = (Li, Be, Al, C, Si). J. Mol. Model. 2021, 27, 319. [Google Scholar]
- Yu, C.; Wang, F.; Liu, Y. First principles study of Zn doped cubic BN crystal. ISNE 2019, 1–3. [Google Scholar]
- Said, A.; Debbichi, M.; Said, M. Theoretical study of electronic and optical properties of BN, GaN and BxGa1−xN in zinc blende and wurtzite structures. Optik 2016, 127, 9212–9221. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Yu, S.S.; Zheng, W.T.; Wen, Q.B.; Jiang, Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 2008, 46, 537–543. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, W.; Fan, Z.; Jiang, H.; Hou, Y.; Luo, Q.; Wang, Y. Investigation of Electronic and Optical Properties of (Cs, Br, Cs-Br) Doped Mono-Layer Hexagonal Boron Nitride Using First Principles. Crystals 2022, 12, 1406. [Google Scholar] [CrossRef]
- Wilson, J.N.; Frost, J.M.; Wallace, S.K.; Walsh, A. Dielectric and ferroic properties of metal halide perovskites. Apl. Mater. 2019, 7, 1. [Google Scholar] [CrossRef]
- Jiang, Y.; Green, M.A.; Sheng, R.; Hobaillie, A. Room temperature optical properties of organic–inorganic lead halide perovskites. Sol. Energy Mater. Sol. C 2015, 137, 253–257. [Google Scholar] [CrossRef]
- Alsaad, A.; Telfah, A.; Baaziz, H.; Ghellab, T.; Charifi, Z.; Abdalla, S.; Mei, W.N.; Sabirianov, R. Ab initio investigation of mechanical, electronic and optical properties in the orthorhombic [formula omitted] inorganic perovskite. Mat. Sci. Semicon. Proc. 2024, 177, 108375. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Chen, J.; Li, Y.; Zheng, K.; Chen, L. Electronic structure and improved optical properties of Al, P, and Al-P doped h-BN. Diam. Relat. Mater. 2023, 131, 109561. [Google Scholar] [CrossRef]
- Vazhappilly, T.; Micha, D.A. Computational modeling of the dielectric function of silicon slabs with varying thickness. J. Phys. Chem. C 2014, 118, 4429–4436. [Google Scholar] [CrossRef]
- Wu, F.; Xie, A.; Jiang, L.; Mukherjee, S.; Gao, H.; Shi, J.; Wu, J.; Shang, H.; Sheng, Z.; Guo, R. Inorganic–organic hybrid dielectrics for energy conversion: Mechanism, strategy, and applications. Adv. Funct. Mater. 2023, 33, 2212861. [Google Scholar] [CrossRef]
- Cooper, J.K.; Gul, S.; Toma, F.M.; Chen, L.; Liu, Y.S.; Guo, J.; Ager, J.W.; Yano, J.; Sharp, I.D. Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. J. Phys. Chem. C 2015, 119, 2969–2974. [Google Scholar] [CrossRef]
- Weng, Q.; Ide, Y.; Wang, X.; Zhang, C.; Jiang, X.; Xue, Y.; Dai, P.; Komaguchi, K.; Bando, Y.; Golberg, D. Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer. Nano Energy 2015, 16, 19–27. [Google Scholar] [CrossRef]
Materials | Cu-Al-BC0N | Cu-Al-BC1N | Cu-Al-BC2N |
---|---|---|---|
Formation energy/eV | 14.56 | 19.79 | 23.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Gao, T.; Zhang, K.; Che, X.; Ni, G. Tuning Electronic Structure and Optical Properties of Monolayered h-BN by Doping C, Cu and Al. Molecules 2025, 30, 192. https://doi.org/10.3390/molecules30010192
Li Q, Gao T, Zhang K, Che X, Ni G. Tuning Electronic Structure and Optical Properties of Monolayered h-BN by Doping C, Cu and Al. Molecules. 2025; 30(1):192. https://doi.org/10.3390/molecules30010192
Chicago/Turabian StyleLi, Qun, Tengchao Gao, Kuo Zhang, Xiangming Che, and Guolong Ni. 2025. "Tuning Electronic Structure and Optical Properties of Monolayered h-BN by Doping C, Cu and Al" Molecules 30, no. 1: 192. https://doi.org/10.3390/molecules30010192
APA StyleLi, Q., Gao, T., Zhang, K., Che, X., & Ni, G. (2025). Tuning Electronic Structure and Optical Properties of Monolayered h-BN by Doping C, Cu and Al. Molecules, 30(1), 192. https://doi.org/10.3390/molecules30010192