Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Optimal Extraction Process for Black Garlic Protein
2.1.1. Determination of the Isoelectric Point and Analysis of the Results
2.1.2. Analysis of Single-Factor Results
2.1.3. Response Surface Analysis Results
2.1.4. Validation of the Response Surface Optimization Model
2.2. The Spectra and Morphology Analysis of Black Garlic Protein and Its Hydrolysates
2.2.1. Particle Size and Zeta Potential Analysis
2.2.2. Analysis of Scanning Electron Microscopy (SEM) Observation Results
2.2.3. Fourier Transform Infrared Spectroscopy Analysis
2.3. Analysis of Functional Properties Results of Black Garlic Protein and Its Hydrolysates
2.3.1. Solubility Determination
2.3.2. Water and Oil Holding Capacity Measurements
2.3.3. Results of Emulsifying Activity and Emulsifying Stability Measurement
2.3.4. Foaming Capacity and Foam Stability Measurements
2.4. Antioxidant Activity of Black Garlic Protein and Its Hydrolysates
2.5. In Vitro Inhibitory Effects of Black Garlic Protein and Its Hydrolysates on Enzyme Activity
2.6. Activity (Antioxidant and Hypoglycemic) Comparison with Other Materials
3. Materials and Methods
3.1. Materials and Instruments
3.2. Calculation of Black Garlic Protein Content and Yield
3.3. Optimal Extraction Process of Black Garlic Protein
3.3.1. Determination of the Isoelectric Point
3.3.2. Single-Factor Experimental Design and Implementation
3.3.3. Optimization of Extraction Conditions for Black Garlic Protein Using the Response Surface Methodology
3.4. Preparation of Black Garlic Protein Hydrolysates
3.5. Structural Characterization of Black Garlic Protein and Its Hydrolysates
3.5.1. Measurement of Particle Size and Zeta Potential
3.5.2. Scanning Electron Microscopy Observation
3.5.3. Analysis by Fourier Transform Infrared Spectroscopy
3.6. Functional Properties of Black Garlic Protein and Its Hydrolysates
3.6.1. Solubility Measurement
3.6.2. Water-Holding Capacity Measurement
3.6.3. Oil-Holding Capacity Measurement
3.6.4. Emulsifying Activity and Stability Measurement
3.6.5. Measurement of Foaming Capacity and Foaming Stability
3.7. Measurement of Antioxidant Activity of Black Garlic Protein and Its Hydrolysates
3.7.1. DPPH Radical Scavenging Activity
3.7.2. ABTS+ Radical Scavenging Activity
3.8. In Vitro Enzyme Inhibition Assay of Black Garlic Protein and Its Hydrolysates
3.8.1. α-Glucosidase Inhibition Assay
3.8.2. α-Amylase Inhibition Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, H.; Sun, L.; Chen, M.; Wang, J. An Analysis of the Changes on Intermediate Products during the Thermal Processing of Black Garlic. Food Chem. 2018, 239, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, Nutritional Value, and Enhancement of Characteristic Components in Black Garlic: A Review for Maximizing the Goodness to Humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef]
- Ahmed, T.; Wang, C.K. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021, 26, 5028. [Google Scholar] [CrossRef]
- Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive Peptides in Plant-Derived Foodstuffs. J. Proteom. 2016, 147, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Tuo, Y.; You, H.; Li, J.; Wang, L.; Liu, X.; Ding, L. Quinoa Protein and Its Hydrolysate Ameliorated DSS-Induced Colitis in Mice by Modulating Intestinal Microbiota and Inhibiting Inflammatory Response. Int. J. Biol. Macromol. 2023, 253, 127588. [Google Scholar] [CrossRef] [PubMed]
- Paterson, S.; Fernández-Tomé, S.; Galvez, A.; Hernández-Ledesma, B. Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models. Nutrients 2023, 15, 1220. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang-O’Dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Singh, J.; Bhat, Z.F.; Jaglan, S. Multifunctional Apple Seed Protein Hydrolysates: Impact of Enzymolysis on the Biochemical, Techno-Functional and In Vitro α-Glucosidase, Pancreatic Lipase and Angiotensin-Converting Enzyme Inhibition Activities. Int. J. Biol. Macromol. 2024, 257, 128553. [Google Scholar] [CrossRef]
- Liu, F.F.; Li, Y.Q.; Wang, C.Y.; Liang, Y.; Zhao, X.Z.; He, J.X.; Mo, H.Z. Physicochemical, Functional and Antioxidant Properties of Mung Bean Protein Enzymatic Hydrolysates. Food Chem. 2022, 393, 133397. [Google Scholar] [CrossRef]
- Chan, K.H.; Chang, C.K.; Gavahian, M.; Yudhistira, B.; Santoso, S.P.; Cheng, K.C.; Hsieh, C.W. The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules 2022, 27, 6992. [Google Scholar] [CrossRef]
- Gao, X.; Xue, Z.; Ma, Q.; Guo, Q.; Xing, L.; Santhanam, R.K.; Zhang, M.; Chen, H. Antioxidant and Antihypertensive Effects of Garlic Protein and Its Hydrolysates and the Related Mechanism. J. Food Biochem. 2020, 44, e13126. [Google Scholar] [CrossRef]
- Ezeorba, T.P.C.; Ezugwu, A.L.; Chukwuma, I.F.; Anaduaka, E.G.; Udenigwe, C.C. Health-Promoting Properties of Bioactive Proteins and Peptides of Garlic (Allium sativum). Food Chem. 2024, 435, 137632. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Han, Q.; Chen, K.; Yang, J.; Yang, H.; Zhang, Y.; Wu, L. The Impact of Extraction Processes on the Physicochemical, Functional Properties and Structures of Bamboo Shoot Protein. Food Res. Int. 2024, 187, 114368. [Google Scholar] [CrossRef]
- Hojilla-Evangelista, M.P.; Selling, G.W.; Hatfield, R.; Digman, M. Extraction, Composition, and Functional Properties of Dried Alfalfa (Medicago sativa L.) Leaf Protein. J. Sci. Food Agric. 2017, 97, 882–888. [Google Scholar] [CrossRef]
- Siriwat, W.; Ungwiwatkul, S.; Unban, K.; Laokuldilok, T.; Klunklin, W.; Tangjaidee, P.; Potikanond, S.; Kaur, L.; Phongthai, S. Extraction, Enzymatic Modification, and Anti-Cancer Potential of an Alternative Plant-Based Protein from Wolffia globosa. Foods 2023, 12, 3815. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.L.; Maria John, K.; Marupaka, R.; Natarajan, S. Recent Update on Methodologies for Extraction and Analysis of Soybean Seed Proteins. J. Sci. Food Agric. 2018, 98, 5572–5580. [Google Scholar] [CrossRef]
- Brudar, S.; Hribar-Lee, B. Effect of Buffer on Protein Stability in Aqueous Solutions: A Simple Protein Aggregation Model. J. Phys. Chem. B 2021, 125, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Mills, B.J.; Chadwick, J.S.L. Effects of Localized Interactions and Surface Properties on Stability of Protein-Based Therapeutics. J. Pharm. Pharmacol. 2018, 70, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Padmapriya, D.; Shanthi, C. Hydrolysates with Emulsifying Properties Prepared from Protein Wastes Using Microbial Protease. Food Sci. Biotechnol. 2024, 33, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Rivera Del Rio, A.; Keppler, J.K.; Boom, R.M.; Janssen, A.E.M. Protein Acidification and Hydrolysis by Pepsin Ensure Efficient Trypsin-Catalyzed Hydrolysis. Food Funct. 2021, 12, 4570–4581. [Google Scholar] [CrossRef] [PubMed]
- Sareen, J.; Shi, D.; Stone, A.K.; Xu, C.; Polley, B.; House, J.D.; Nickerson, M.T. Effect of Enzyme Hydrolysis on the Physicochemical, Functional, and Nutritional Properties of Pea and Faba Bean Protein Isolates. Eur. Food Res. Technol. 2023, 249, 3175–3190. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, H.; Zhang, S.; Li, J.; Zhu, X.; Jin, H.; Xu, J. Improvement of Protein Emulsion Stability through Glycosylated Black Bean Protein Covalent Interaction with (−)-Epigallocatechin-3-Gallate. RSC Adv. 2021, 11, 2546–2555. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Zhang, B.; Chen, J.; Ao, Q.; Wang, X. XRD, SEM, and XPS Analysis of Soybean Protein Powders Obtained through Extraction Involving Reverse Micelles. J. Am. Oil Chem Soc. 2015, 92, 975–983. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Regenstein, J.M.; Wang, F. Limited Hydrolysis of Dehulled Walnut (Juglans regia L.) Proteins Using Trypsin: Functional Properties and Structural Characteristics. LWT 2020, 133, 110035. [Google Scholar]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Sukumaran, S. Protein Secondary Structure Elucidation Using FTIR Spectroscopy; Thermo Fisher Scientific: St. Bend, OR, USA, 2017. [Google Scholar]
- Chatterjee, P.; Biswas, S.; Chakraborty, T. Hydrogen Bonding Effects on Vibrational Dynamics and Photochemistry in Selected Binary Molecular Complexes. J. Indian Inst. Sci. 2020, 100, 155–165. [Google Scholar] [CrossRef]
- Pang, L.; Liu, M.; Chen, C.; Huang, Z.; Liu, S.; Man, C.; Jiang, Y.; Zhang, W.; Yang, X. Effects of Ultrasound Pretreatment on the Structure, IgE Binding Capacity, Functional Properties and Bioactivity of Whey Protein Hydrolysates via Multispectroscopy and Peptidomics Revealed. Ultrason. Sonochem. 2024, 110, 107025. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Ma, C.M.; Bian, X.; Liu, X.F.; Wang, Y.; Chen, F.L.; Wang, B.; Zhang, G.; Zhang, N. Characterization of the Structure, Antioxidant Activity and Hypoglycemic Activity of Soy (Glycine max L.) Protein Hydrolysates. Food Res. Int. 2023, 173, 113473. [Google Scholar] [CrossRef]
- Oeller, M.; Kang, R.; Bell, R.; Ausserwöger, H.; Sormanni, P.; Vendruscolo, M. Sequence-Based Prediction of pH-Dependent Protein Solubility Using CamSol. Brief. Bioinform. 2023, 24, bbad004. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.M.; Shende, V.R.; Motl, N.; Pace, C.N.; Scholtz, J.M. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility. Biophys. J. 2012, 102, 1907–1915. [Google Scholar] [CrossRef]
- Zha, F.; Rao, J.; Chen, B. Modification of Pulse Proteins for Improved Functionality and Flavor Profile: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3036–3060. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.D.; Bains, A.; Sridhar, K.; Bhaswant, M.; Kaur, S.; Tripathi, M.; Lanterbecq, D.; Chawla, P.; Sharma, M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024, 13, 1398. [Google Scholar] [CrossRef]
- Sakai, K.; Okada, M.; Yamaguchi, S. Protein-Glutaminase Improves Water-/Oil-Holding Capacity and Beany Off-Flavor Profiles of Plant-Based Meat Analogs. PLoS ONE 2023, 18, e0294637. [Google Scholar] [CrossRef]
- Yin, S.W.; Tang, C.H.; Cao, J.S.; Hu, E.K.; Wen, Q.B.; Yang, X.Q. Effects of Limited Enzymatic Hydrolysis with Trypsin on the Functional Properties of Hemp (Cannabis sativa L.) Protein Isolate. Food Chem. 2008, 106, 1004–1013. [Google Scholar] [CrossRef]
- Yu, S.; Thoegersen, J.B.; Kragh, K.M. Comparative Study of Protease Hydrolysis Reaction Demonstrating Normalized Peptide Bond Cleavage Frequency and Protease Substrate Broadness Index. PLoS ONE 2020, 15, e0239080. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.S.; Nickerson, M.T. Food Proteins: A Review on Their Emulsifying Properties Using a Structure-Function Approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L.; Zhuang, Y.; Gu, Y.; Cheng, G.; Fan, X.; Ding, Y.; Liu, H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023, 12, 2703. [Google Scholar] [CrossRef]
- Ye, S.J.; Park, H.J.; Baik, M.Y. Modification of Plant Proteins as Alternatives to Animal Proteins: A Review. Food Sci. Biotechnol. 2024, 1–15. [Google Scholar] [CrossRef]
- Delahaije, R.J.B.M.; Wierenga, P.A. Hydrophobicity Enhances the Formation of Protein-Stabilized Foams. Molecules 2022, 27, 2358. [Google Scholar] [CrossRef]
- Qiao, X.; Miller, R.; Schneck, E.; Sun, K. Influence of pH on the Surface and Foaming Properties of Aqueous Silk Fibroin Solutions. Soft Matter 2020, 16, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Moukette, B.M.; Pieme, C.A.; Njimou, J.R.; Biapa, C.P.; Marco, B.; Ngogang, J.Y. In Vitro Antioxidant Properties, Free Radicals Scavenging Activities of Extracts and Polyphenol Composition of a Non-Timber Forest Product Used as Spice: Monodora myristica. Biol. Res. 2015, 48, 15. [Google Scholar] [CrossRef]
- Moure, A.; Domínguez, H.; Parajó, J.C. Antioxidant Properties of Ultrafiltration-Recovered Soy Protein Fractions from Industrial Effluents and Their Hydrolysates. Process Biochem. 2006, 41, 447–456. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Chen, L.; Liu, S.; Cui, Q.; Qin, W. Effects of Sequential Enzymolysis and Glycosylation on the Structural Properties and Antioxidant Activity of Soybean Protein Isolate. Antioxidants 2023, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Alpha-Glucosidase Inhibitors. Endocrinol. Metab. Clin. N. Am. 1997, 26, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D. α-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-Amylase and Starch Digestion: An Interesting Marriage. Starch-Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant Activity and Sensory Characteristics of Maillard Reaction Products Derived from Different Peptide Fractions of Soybean Meal Hydrolysate. Food Chem. 2018, 243, 249–257. [Google Scholar] [CrossRef]
- De Oliveira, C.F.; Corrêa, A.P.; Coletto, D.; Daroit, D.J.; Cladera-Olivera, F.; Brandelli, A. Soy Protein Hydrolysis with Microbial Protease to Improve Antioxidant and Functional Properties. J. Food Sci. Technol. 2015, 52, 2668–2678. [Google Scholar] [CrossRef]
- Daliri, H.; Ahmadi, R.; Pezeshki, A.; Hamishehkar, H.; Mohammadi, M.; Beyrami, H.; Ghorbani, M. Quinoa Bioactive Protein Hydrolysate Produced by Pancreatin Enzyme: Functional and Antioxidant Properties. LWT 2021, 150, 111853. [Google Scholar] [CrossRef]
- Abbasi, S.; Moslehishad, M.; Salami, M. Antioxidant and Alpha-Glucosidase Enzyme Inhibitory Properties of Hydrolyzed Protein and Bioactive Peptides of Quinoa. Int. J. Biol. Macromol. 2022, 213, 602–609. [Google Scholar] [CrossRef]
- Yang, X.; Ma, M.; Ma, L.; Yu, J.; Fu, J.; Fan, Y. Characterization and Biological Activity Evaluation of Lycium Barbarum Leaf Protein Extracts. Sci. Technol. Food Ind. 2024, 45, 15–24. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Zhang, B.; Sun, L.; Liang, Z.; Huang, Q. Wheat Gluten Protein Inhibits α-Amylase Activity More Strongly than Soy Protein Isolate Based on Kinetic Analysis. Int. J. Biol. Macromol. 2019, 129, 433–441. [Google Scholar] [CrossRef]
- Chaipoot, S.; Punfa, W.; Ounjaijean, S.; Phongphisutthinant, R.; Kulprachakarn, K.; Parklak, W.; Phaworn, L.; Rotphet, P.; Boonyapranai, K. Antioxidant, Anti-Diabetic, Anti-Obesity, and Antihypertensive Properties of Protein Hydrolysate and Peptide Fractions from Black Sesame Cake. Molecules 2023, 28, 211. [Google Scholar] [CrossRef] [PubMed]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford Assay for Determining Protein Concentration. Cold Spring Harb. Cold Spring Harb. Protoc. 2020, 2020, 102269. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Y.; Chen, Z.; Xue, Z.; Jia, Y.; Guo, Q.; Ma, Q.; Zhang, M.; Chen, H. Identification and Antimicrobial Activity Evaluation of Three Peptides from Laba Garlic and the Related Mechanism. Food Funct. 2019, 10, 4486–4496. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Violleau, F.; Silvestre, F.; Durrieu, V. A New Way of Valorizing Biomaterials: The Use of Sunflower Protein for α-Tocopherol Microencapsulation. Food Res. Int. 2013, 53, 115–124. [Google Scholar] [CrossRef]
- Wang, M.; Bu, G.; Chen, F.; Li, P.; Huang, Y. The Preparation and Structural Characterization of Peanut Peptide-Calcium Chelate. J. Henan Univ. Technol. 2021, 42, 47–54. [Google Scholar]
- Vargas, S.A.; Delgado-Macuil, R.J.; Ruiz-Espinosa, H.; Amador-Espejo, G. Use of High-Intensity Ultrasound as a Pre-Treatment for Complex Coacervation from Whey Protein Isolate and Iota-Carrageenan. Food Sci. Technol. Int. 2023, 29, 831–846. [Google Scholar] [CrossRef]
- Ding, Q.; Sheikh, A.R.; Zhu, Y.; Zheng, Y.; Sun, N.; Luo, L.; Raynaldo, F.A.; Ma, H.; Liu, J. Preparation and Characterization of Ultrasound-Assisted Novel Peptide–Calcium Chelates from Nannochloropsis oceanica. Food Bioprocess Technol. 2024, 1–20. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Gill, B.S. Physico-Chemical and Functional Properties of Native and Hydrolysed Protein Isolates from Indian Black Gram (Phaseolus mungo L.) Cultivars. LWT-Food Sci. Technol. 2015, 60, 848–854. [Google Scholar] [CrossRef]
- Lqari, H.; Vioque, J.; Pedroche, J.; Millán, F. Lupinus angustifolius Protein Isolates: Chemical Composition, Functional Properties and Protein Characterization. Food Chem. 2002, 76, 349–356. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High Intensity Ultrasound Treatment of Protein Isolate Extracted from Dephenolized Sunflower Meal: Effect on Physicochemical and Functional Properties. Ultrason. Sonochem. 2017, 39, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An Efficient Ultrasound-Assisted Extraction Method of Pea Protein and Its Effect on Protein Functional Properties and Biological Activities. LWT 2020, 127, 109348. [Google Scholar] [CrossRef]
- Renn, T.Y.; Yang, C.P.; Wu, U.I.; Chen, L.Y.; Mai, F.D.; Tikhonova, M.A.; Chang, H.M. Water Composed of Reduced Hydrogen Bonds Activated by Localized Surface Plasmon Resonance Effectively Enhances Anti-Viral and Anti-Oxidative Activities of Melatonin. Chem. Eng. J. 2022, 427, 131626. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Liu, Q.; Lin, Y.; Zhang, Z.; Li, S. Study on Extraction and Antioxidant Activity of Flavonoids from Hemerocallis fulva (Daylily) Leaves. Molecules 2022, 27, 2916. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Z.C.; Yuan, T.; Wang, H.; Xie, X.; Fu, Z.F. Antioxidants and α-Glucosidase Inhibitors from Ipomoea batatas Leaves Identified by Bioassay-Guided Approach and Structure-Activity Relationships. Food Chem. 2016, 208, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Lee, C.M. In Vitro Potential of Ascophyllum nodosum Phenolic Antioxidant-Mediated Alpha-Glucosidase and Alpha-Amylase Inhibition. J. Food Sci. 2010, 75, H97–H102. [Google Scholar] [CrossRef] [PubMed]
Test Number | A: Extraction Time (min) | B: Solid–Liquid Ratio (g/mL) | C: Extraction Temperature (°C) | D: pH | Yield (%) |
---|---|---|---|---|---|
1 | 120 | 50 | 30 | 10 | 11.35 |
2 | 100 | 50 | 20 | 10 | 10.43 |
3 | 80 | 60 | 30 | 9 | 11.58 |
4 | 80 | 40 | 30 | 9 | 10.72 |
5 | 120 | 50 | 30 | 8 | 10.69 |
6 | 100 | 60 | 30 | 10 | 10.84 |
7 | 100 | 40 | 30 | 8 | 10.62 |
8 | 100 | 40 | 30 | 10 | 10.83 |
9 | 120 | 50 | 20 | 9 | 11.06 |
10 | 100 | 60 | 20 | 9 | 10.89 |
11 | 120 | 50 | 40 | 9 | 11.47 |
12 | 100 | 50 | 30 | 9 | 12.25 |
13 | 100 | 40 | 40 | 9 | 10.95 |
14 | 80 | 50 | 20 | 9 | 11.37 |
15 | 80 | 50 | 40 | 9 | 10.92 |
16 | 80 | 50 | 30 | 8 | 11.28 |
17 | 100 | 40 | 20 | 9 | 11.06 |
18 | 100 | 50 | 20 | 8 | 11.32 |
19 | 120 | 60 | 30 | 9 | 11.05 |
20 | 80 | 50 | 30 | 10 | 11.11 |
21 | 100 | 50 | 30 | 9 | 12.18 |
22 | 100 | 50 | 30 | 9 | 12.19 |
23 | 100 | 50 | 30 | 9 | 12.18 |
24 | 100 | 60 | 30 | 8 | 11.05 |
25 | 100 | 50 | 40 | 10 | 11.91 |
26 | 100 | 60 | 40 | 9 | 11.52 |
27 | 120 | 40 | 30 | 9 | 11.79 |
28 | 100 | 50 | 30 | 9 | 12.4 |
29 | 100 | 50 | 40 | 8 | 10.24 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 908.98 | 14 | 64.93 | 27.72 | <0.0001 | ** |
A-Time | 1.54 | 1 | 1.54 | 0.6579 | 0.4309 | |
B-Solid–liquid ratio | 7.68 | 1 | 7.68 | 3.28 | 0.0917 | |
C-Temperature | 6.45 | 1 | 6.45 | 2.76 | 0.1192 | * |
D-pH | 13.44 | 1 | 13.44 | 5.74 | 0.0311 | * |
AB | 64 | 1 | 64 | 27.32 | 0.0001 | ** |
AC | 18.49 | 1 | 18.49 | 7.89 | 0.0139 | * |
AD | 17.22 | 1 | 17.22 | 7.35 | 0.0169 | * |
BC | 13.69 | 1 | 13.69 | 5.84 | 0.0298 | * |
BD | 4.41 | 1 | 4.41 | 1.88 | 0.1916 | |
CD | 163.84 | 1 | 163.84 | 69.95 | <0.0001 | ** |
A2 | 107.27 | 1 | 107.27 | 45.8 | <0.0001 | ** |
B2 | 228.03 | 1 | 228.03 | 97.36 | <0.0001 | ** |
C2 | 205.54 | 1 | 205.54 | 87.76 | <0.0001 | ** |
D2 | 361.63 | 1 | 361.63 | 154.4 | <0.0001 | ** |
Residual | 32.79 | 14 | 2.34 | |||
Lack of Fit | 29.25 | 10 | 2.93 | 3.31 | 0.1303 | not significant |
Pure Error | 3.54 | 4 | 0.885 | |||
Cor Total | 941.77 | 28 |
Sample | Mean Particle Size (nm) | Zeta Potential (mV) |
---|---|---|
BGP | 200.07 ± 2.86 a | −21.60 ± 1.85 a |
BGPH-T | 193.73 ± 0.69 b | −26.73 ± 1.00 b |
BGPH-P | 188.57 ± 1.93 c | −29.93 ± 0.42 c |
BGPH-PT | 191.20 ± 0.65 bc | −29.73 ± 0.56 c |
Plant | Protein/Peptide | Concentration | DPPH Scavenging Rate | ABTS+ Scavenging Rate | α-Glucosidase Inhibition Rate | α-Amylase Inhibition Rate | Reference |
---|---|---|---|---|---|---|---|
Black Garlic | BGP | 4 mg/mL | 91.53% | 98.92% | 73.90% | 77.61% | / |
BGPH-T | 4 mg/mL | 40.11% | 99.55% | 43.62% | 66.12% | / | |
BGPH-P | 4 mg/mL | 52.54% | 99.26% | 65.00% | 72.30% | / | |
BGPH-PT | 4 mg/mL | 43.05% | 99.43% | 32.32% | 60.52% | / | |
Soybean | Protein/its hydrolysates | 10 mg/mL | <20% | 43% | / | / | [51,52] |
Quinoa | Protein/its hydrolysates | 10 mg/mL | <50% | <90% | 44.79% | / | [53,54] |
Lycium Leaf | Protein/its hydrolysates | 4 mg/mL | / | / | <20% | <20% | [55] |
Wheat | Protein/its hydrolysates | 5 mg/mL | / | / | / | 58.75% | [56] |
Black Sesame | Protein/its hydrolysates | 10 mg/mL | / | / | 57.25% | 31.08% | [57] |
Levels | A Extraction Time (min) | B Solid-to-Liquid Ratio (g/mL) | C Extraction Temperature (°C) | D pH |
---|---|---|---|---|
−1 | 80 | 40 | 20 | 8 |
0 | 100 | 50 | 30 | 9 |
1 | 120 | 60 | 40 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, Y.; Wang, B.; Zhang, W.; Ren, X.; Zhang, Y.; Jiang, L.; Dong, C.; Zhao, G. Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products. Molecules 2025, 30, 125. https://doi.org/10.3390/molecules30010125
Liu J, Wang Y, Wang B, Zhang W, Ren X, Zhang Y, Jiang L, Dong C, Zhao G. Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products. Molecules. 2025; 30(1):125. https://doi.org/10.3390/molecules30010125
Chicago/Turabian StyleLiu, Jian, Yuanyuan Wang, Bo Wang, Wei Zhang, Xiaoyu Ren, Youchuang Zhang, Lijun Jiang, Chunming Dong, and Guihong Zhao. 2025. "Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products" Molecules 30, no. 1: 125. https://doi.org/10.3390/molecules30010125
APA StyleLiu, J., Wang, Y., Wang, B., Zhang, W., Ren, X., Zhang, Y., Jiang, L., Dong, C., & Zhao, G. (2025). Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products. Molecules, 30(1), 125. https://doi.org/10.3390/molecules30010125