Extraction and Purification of Flavonoids and Antiviral and Antioxidant Activities of Polygonum perfoliatum L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results of One-Way Experiments on Flavonoid Extraction
2.1.1. Ethanol Concentration
2.1.2. Extraction Temperature
2.1.3. Solid-to-Liquid Ratio
2.1.4. Extraction Time
2.1.5. Number of Extractions
2.2. Response Surface Optimization Results for Flavonoid Extraction
2.2.1. Model Fit and Significance Test
2.2.2. Model Verification
2.3. Purification of Total Flavonoids Using Macroporous Resin
2.3.1. Screening of Macroporous Resin Models
2.3.2. Static Adsorption and Desorption Kinetic Curves of D101 Macroporous Resin
2.3.3. Results of One-Factor Adsorption Experiments
2.3.4. Results of One-Factor Elution Experiments
2.3.5. Optimal Condition Verification
2.4. Purification of Flavonoids by Coupling Macroporous Resins with Polyamides
2.4.1. Screening of Polyamide Mesh
2.4.2. Comparison of the Order of Macroporous Resins in Combination with Polyamides
2.4.3. Ratio of Macroporous Resin to Polyamide
2.4.4. Static Adsorption and Desorption Kinetic Curves for Mixed Packing Materials
2.4.5. Results of One-Way Experiments
2.4.6. Verification of Optimal Conditions
2.5. Analysis of Flavonoid Compounds Using HPLC-MS/MS
2.6. Total Flavonoid Anti-VZV Assay
2.6.1. Measurement of TCID50
2.6.2. Determination of Maximum Non-Toxic Concentration
2.6.3. Anti-VZV Activity
2.7. Examination of the Antioxidant Activity of Flavonoids of Polygonum perfoliatum L.
2.7.1. Determination of Total Reducing Power of Total Flavonoids
2.7.2. Determination of the Scavenging Capacity of Total Flavonoids Against DPPH Free Radicals
2.7.3. Determination of Free Radical Scavenging Capacity of Total Flavonoids (ABTS)
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Determination of Total Flavonoids
3.3. One-Way Experimental Design for Flavonoid Extraction
3.4. Response Surface Methodology (RSM) Experiments
3.5. Purification of Flavonoids Using Macroporous Resins
3.5.1. Selection of Large-Pore Adsorbent Resin Types
3.5.2. Kinetic Curves of Adsorption and Desorption
3.5.3. Effect of pH on Static Adsorption
3.5.4. One-Factor Experiments for the Purification of Flavonoid Compounds Using Macroporous Resins
3.6. Purification of Flavonoids by Combining Macroporous Resin and Polyamide
3.6.1. Screening of Polyamide Mesh
3.6.2. Order of Macroporous Resins in Combination with Polyamides
3.6.3. Dosage Ratio of Macroporous Resin to Polyamide
3.6.4. Adsorption and Desorption Kinetic Curves
3.6.5. One-Factor Investigation of Flavonoids Purified from Mixed Packing Materials
3.7. HPLC-MS/MS Analysis
3.7.1. Test Sample
3.7.2. Chromatographic Conditions
3.7.3. Mass Spectrometry Conditions
3.8. Analysis of Anti-Varicella-Zoster Virus (VZV) Activity
3.8.1. Cell Culture and Virus Resuscitation
3.8.2. Determination of Viral Half-Tissue Infectivity (TCID50)
3.8.3. Cytotoxicity Assay
3.8.4. Anti-VZV Test
3.9. Analysis of Antioxidant Activity
3.9.1. Total Reduction Measurement
3.9.2. DPPH Free Radical Scavenging
3.9.3. ABTS Free Radical Scavenging Rate
3.10. Methods of Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Zeng, Y.; Sun, G.; Yu, S.; Xu, Y.; He, C.; Li, Z.; Jin, S.; Qin, X. Polygonum perfoliatum L. an Excellent Herbal Medicine Widely Used in China: A Review. Front. Pharmacol. 2020, 11, 581266. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Du, Y. Development and utilization prospect and cultivation techniques of Polygonum perfoliatum L. World Trop. Agric. Inf. 2014, 11, 11–13. [Google Scholar]
- Lin, S.; Qin, Z.; Deng, Y.; Zhu, H. Research Survey of Zhuang Medicine Gangbangui (Polygoni perfoliati Herba). J. Liaoning Univ. TCM 2022, 24, 84–89. [Google Scholar]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, S.; Wu, Y.; Shen, X.; Xu, S.; Guo, Z.; Zhang, R.; Xing, D. The Physiologic Activity and Mechanism of Quercetin-Like Natural Plant Flavonoids. Curr. Pharm. Biotechnol. 2020, 21, 654–658. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Q.; Wang, S.; Li, X.; Zhu, L.; Zhang, X. Orthogonal experiments to optimise the extraction process of total flavonoids from Polygonum perfoliatum L. Her. Med. 2017, 36, 73–75. [Google Scholar]
- Huang, D.; Huang, P.; Shen, L. Optimization of Extraction Process of Total Flavonoids from Polygonum perfoliatum by Response Surface Methodology. China Pharm. 2020, 29, 31–34. [Google Scholar]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Cheng, J.-H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Chua, L.S.; Abd Latiff, N.; Mohamad, M. Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract. J. Appl. Res. Med. Aromat. Plants 2016, 3, 64–70. [Google Scholar] [CrossRef]
- Hadiyat, M.A.; Sopha, B.M.; Wibowo, B.S. Response surface methodology using observational data: A systematic literature review. Appl. Sci. 2022, 12, 10663. [Google Scholar] [CrossRef]
- Shen, Y.; Li, H.; Ding, X.; Zhan, Z.; An, Q.; Zheng, Y.; Zhang, D. Optimization of Extraction and Quality Evaluation of Abri Herba by Response Surface Methodology Combined with Quantitative Analysis of Multi-Components by a Single Marker. J. AOAC Int. 2023, 106, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cui, X.; Zhang, Z.; Chen, L.; Zhang, Y.; Wang, C.; Yang, X.; Qu, Y.; Xiong, Y. Optimisation of ethanol-reflux extraction of saponins from steamed Panax notoginseng by response surface methodology and evaluation of hematopoiesis effect. Molecules 2018, 23, 1206. [Google Scholar] [CrossRef] [PubMed]
- Tang, D. Advances in the extraction, isolation and purification of flavonoids. Strait Pharm. J. 2009, 21, 101–104. [Google Scholar]
- Li, J.; Chase, H.A. Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat. Prod. Rep. 2010, 27, 1493–1510. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, H.; Shao, Q.; Bilia, A.R.; Wang, Y.; Zhao, X. Enrichment and Purification of the Bioactive Flavonoids from Flower of Abelmoschus manihot (L.) Medic Using Macroporous Resins. Molecules 2018, 23, 2649. [Google Scholar] [CrossRef]
- Wan, P.; Sheng, Z.; Han, Q.; Zhao, Y.; Cheng, G.; Li, Y. Enrichment and purification of total flavonoids from Flos populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J. Chromatogr. B 2014, 945, 68–74. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, J.; Xiao, J.; Su, S.; Xu, M.; Lei, T.; Zhong, S. Preparation of phenolic hydroxyl-modified hyper-crosslinked polymers and their adsorption performance towards small molecular aromatic amines. Sep. Purif. Technol. 2024, 332, 125733. [Google Scholar] [CrossRef]
- Li, R.; Xia, Z.; Tian, Y.; Guan, M.; Zheng, Y.; Bin, L.; Dong, J.; Jiang, Q.; Du, L.; Li, M. Purification of total flavonoids from Ginkgo biloba flowers with resin column chromatography and evaluation of antioxidant activities in vitro. Prep. Biochem. Biotechnol. 2023, 53, 308–316. [Google Scholar] [CrossRef]
- Ruan, X.; Zhan, L.M.; Gao, X.X.; Yan, L.Y.; Zhang, H.; Zhu, Z.Y.; Wang, Q.; Jiang, D.A. Separation and purification of flavonoid from Taxus remainder extracts free of taxoids using polystyrene and polyamide resin. J. Sep. Sci. 2013, 36, 1925–1934. [Google Scholar]
- Yu, F.; Xu, K.; Xu, Q.; Li, T. Optimization of isolation and purification process for Gynura divaricate total flavonoids by macroporous adsorption resin. Chin. Tradit. Pat. Med. 2023, 45, 2827–2831. [Google Scholar]
- Kennedy, P.G.; Gershon, A.A. Clinical features of varicella-zoster virus infection. Viruses 2018, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhu, C.; Liu, L.; Hu, H. Different dosages of valaciclovir for the treatment of herpes zoster in adults: A randomized clinical study. J. Clin. Pharm. Ther. 2021, 46, 717–723. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, F.; Liu, Q.; Chen, L.; Liu, Y.; Luo, F.; Xiong, H.; Yang, Z. The flavonoid from Polygonum perfoliatum L. inhibits herpes simplex virus 1 infection. Acta Virol. 2014, 58, 368–373. [Google Scholar] [CrossRef]
- Liu, J.; Mu, T.; Sun, H.; Fauconnier, M.L. Optimization of ultrasonic–microwave synergistic extraction of flavonoids from sweet potato leaves by response surface methodology. J. Food Process. Preserv. 2019, 43, e13928. [Google Scholar] [CrossRef]
- Li, D.; Qian, Y.; Tian, Y.-J.; Yuan, S.-M.; Wei, W.; Wang, G. Optimization of ionic liquid-assisted extraction of biflavonoids from Selaginella doederleinii and evaluation of its antioxidant and antitumor activity. Molecules 2017, 22, 586. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, Y.; Xu, H.; Wang, B. Optimization of extraction process of Polygonum bistorta flavonoids by response surface methodology. J. Harbin Univ. Commer. 2021, 37, 408–414. [Google Scholar]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F. Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, M.; Lin, L. Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Y.; Qin, C.; Ou, X.; Chen, S.; Ao, X. Purification of total flavonoids from bamboo shoots of Pleioblastus amarus with macroporous resin and its anti-inflammation activity. Food Ferment. Ind. 2020, 46, 184–192. [Google Scholar]
- Wang, Y.; Liu, Q.; Geng, J. Purification and Resisting Movement Fatigue Activity of Flavonoids from Hippophae rhamnoides L. Sci. Technol. Food Ind. 2020, 41, 169–174. [Google Scholar]
- López-Álvarez, Ó.; Zas, R.; Marey-Perez, M. Resin tapping: A review of the main factors modulating pine resin yield. Ind. Crops Prod. 2023, 202, 117105. [Google Scholar] [CrossRef]
- López-Álvarez, Ó.; Zas, R.; Martínez, E.; Marey-Perez, M. Resin yield response to different tapping methods and stimulant pastes in Pinus pinaster Ait. Eur. J. For. Res. 2023, 142, 1281–1292. [Google Scholar] [CrossRef]
- Hou, M.; Hu, W.; Xiu, Z.; Shi, Y.; Hao, K.; Cao, D.; Guan, Y.; Yin, H. Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J. Chromatogr. B 2020, 1138, 121960. [Google Scholar] [CrossRef]
- Ning, B.; Yu, L.; Wang, X.; Tan, N. Research on purification of total flavonoids extracted from polygonatum by macroporous resin. Sci. Technol. Cereals Oils Foods 2016, 24, 45–49. [Google Scholar]
- Huang, P.; Zhang, Q.; Pan, H.; Luan, L.; Liu, X.; Wu, Y. Optimization of integrated extraction-adsorption process for the extraction and purification of total flavonoids from Scutellariae barbatae herba. Sep. Purif. Technol. 2017, 175, 203–212. [Google Scholar] [CrossRef]
- Delgado, J.A.; Uguina, M.A.; Sotelo, J.L.; Águeda, V.I.; García, A.; Roldán, A. Separation of ethanol–water liquid mixtures by adsorption on silicalite. Chem. Eng. J. 2012, 180, 137–144. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Wang, S.; Bai, L.; Deng, Y.; Tao, J. Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. Molecules 2021, 26, 5267. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Duan, X.; Ying, R. Purification of flavonoids from Zostera marina L. with polyamide-macroporous resin. Food Sci. Technol. 2016, 41, 203–207. [Google Scholar]
- Jin, H.; Gu, H.; Tan, X.; Liu, M.; Wang, F.; Cai, W.; Zhang, Y.; Deng, J. Purification of Total Flavonoids from Ampelopsis grossedentata by Combined Use of Macroporous Adsorption Resin and Polyamide. Food Sci. Technol. 2016, 37, 13–18. [Google Scholar]
- Yang, Y.; Liang, Q.; Zhang, B.; Zhang, J.; Fan, L.; Kang, J.; Lin, Y.; Huang, Y.; Tan, T.-C.; Ho, L.-H. Adsorption and desorption characteristics of flavonoids from white tea using macroporous adsorption resin. J. Chromatogr. A 2024, 1715, 464621. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, Z.; Aliannezhadi, M.; Ghominejad, M.; Tehrani, F.S. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method. Sci. Rep. 2023, 13, 6131. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lv, Q.; Liu, C.; Yuan, H.; Li, C.; Liu, Y.; Zhang, W. Optimization of Extraction and Purification of Flavonoids from Stigmaless Floral Residues of Crocus sativus L. and Their Stimulatory Effect on Glucose Uptake In Vitro. Molecules 2024, 29, 3271. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Wang, Y.; Ren, X.; Zhao, Y.; Liu, N.; An, X.; Qi, J. Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. Fermentation 2022, 8, 306. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Chu, X.; Zhang, X.; Kan, Q.; Liu, R.; Fu, X. Adsorption and desorption characteristics of total flavonoids from Acanthopanax senticosus on macroporous adsorption resins. Molecules 2021, 26, 4162. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Q.; Zhang, B.; Guo, P.; Wang, Z.; Liu, Y.; Meng, M.; Liu, A.; Yang, Z.; Du, G. Exploration of SARS-CoV-2 3CLpro inhibitors by virtual screening methods, FRET detection, and CPE assay. J. Chem. Inf. Model. 2021, 61, 5763–5773. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Yin, Q.; Dong, Z.; Zheng, L.; Qian, Y.; Sun, Y.; Chen, Z.; Zhai, K. Extraction, Identification, and Antioxidant Activity of Flavonoids from Hylotelephium spectabile (Boreau) H. Ohba. Foods 2024, 13, 2652. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Pang, X.; Hua, P.; Gao, X.; Li, Q.; Li, Z. Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of Angelica keiskei using response surface methodology (RSM). Molecules 2019, 24, 3461. [Google Scholar] [CrossRef]
- Fan, S.; Yang, G.; Zhang, J.; Li, J.; Bai, B. Optimization of ultrasound-assisted extraction using response surface methodology for simultaneous quantitation of six flavonoids in Flos Sophorae Immaturus and antioxidant activity. Molecules 2020, 25, 1767. [Google Scholar] [CrossRef]
Serial Number | A | B | C | Yield (mg/g) |
---|---|---|---|---|
1 | −1 | −1 | 0 | 13.4189 |
2 | 1 | −1 | 0 | 13.0966 |
3 | −1 | 1 | 0 | 12.2646 |
4 | 1 | 1 | 0 | 13.6247 |
5 | −1 | 0 | −1 | 12.8519 |
6 | 1 | 0 | −1 | 12.3806 |
7 | −1 | 0 | 1 | 13.0024 |
8 | 1 | 0 | 1 | 13.7025 |
9 | 0 | −1 | −1 | 12.9768 |
10 | 0 | 1 | −1 | 11.6393 |
11 | 0 | −1 | 1 | 13.0202 |
12 | 0 | 1 | 1 | 13.6123 |
13 | 0 | 0 | 0 | 14.6431 |
14 | 0 | 0 | 0 | 14.3891 |
15 | 0 | 0 | 0 | 14.5616 |
16 | 0 | 0 | 0 | 14.653 |
17 | 0 | 0 | 0 | 14.4096 |
Source of Variance | Sum of Squares | Degree of Freedom | Mean Squared | F Value | p | Significance |
---|---|---|---|---|---|---|
Model | 12.76 | 9 | 1.42 | 53.97 | <0.0001 | Significant |
A | 0.20 | 1 | 0.20 | 7.64 | 0.0280 | |
B | 0.24 | 1 | 0.24 | 8.95 | 0.0202 | |
C | 1.52 | 1 | 1.52 | 57.93 | 0.0001 | |
AB | 0.71 | 1 | 0.71 | 26.95 | 0.0013 | |
AC | 0.34 | 1 | 0.34 | 13.06 | 0.0086 | |
BC | 0.93 | 1 | 0.93 | 35.44 | 0.0006 | |
A2 | 1.67 | 1 | 1.67 | 63.42 | <0.0001 | |
B2 | 2.70 | 1 | 2.70 | 102.90 | <0.0001 | |
C2 | 3.55 | 1 | 3.55 | 135.11 | <0.0001 | |
Residual | 0.18 | 7 | 0.026 | |||
Lack of Fit | 0.12 | 3 | 0.040 | 2.54 | 0.1946 | Not significant |
Pure Error | 0.063 | 4 | 0.016 | |||
Cor Total | 12.94 | 16 | ||||
Std.Dev. | 0.16 | R-Squared | 0.9858 | |||
Mean | 13.43 | Adj R-Squared | 0.9675 | |||
C.V.% | 1.21 | Pred R-Squared | 0.8433 | |||
PRESS | 2.03 | Adeq Precision | 22.601 |
Macroporous Resin | Adsorption Rate (%) | Desorption Rate (%) |
---|---|---|
HPD-600 | 70.56 ± 1.53 | 45.81 ± 0.78 |
NKA-9 | 35.08 ± 0.97 | 72.31 ± 0.53 |
DM-130 | 27.56 ± 0.10 | 67.91 ± 0.91 |
AB-8 | 63.66 ± 0.87 | 86.45 ± 0.82 |
D-101 | 66.68 ± 0.67 | 92.87 ± 0.18 |
HPD-100 | 52.52 ± 2.37 | 83.63 ± 1.03 |
HP-20 | 56.27 ± 0.03 | 87.20 ± 0.74 |
Virus Dilution | Lesion Hole | Non-Pathological Hole | Accumulate | Percentage of Lesion Holes Present (%) | |
---|---|---|---|---|---|
Lesion Hole | Non-Pathological Hole | ||||
10−1 | 8 ± 0.00 | 0.00 ± 0.00 | 38.00 ± 1.00 | 0.00 ± 0.00 | 100 ± 0.00 |
10−2 | 8 ± 0.00 | 0.00 ± 0.00 | 30.00 ± 1.00 | 0.00 ± 0.00 | 100 ± 0.00 |
10−3 | 8 ± 0.00 | 0.00 ± 0.00 | 22.00 ± 1.00 | 0.00 ± 0.00 | 100 ± 0.00 |
10−4 | 8 ± 0.00 | 0.00 ± 0.00 | 16.00 ± 0.00 | 0.00 ± 0.00 | 100 ± 0.00 |
10−5 | 6.00 ± 1.00 | 2.33 ± 0.58 | 8.00 ± 0.00 | 2.33 ± 0.578 | 77.58 ± 4.20 |
10−6 | 2.00 ± 1.00 | 6.00 ± 1.00 | 2.00 ± 1.00 | 8.33 ± 0.578 | 19.09 ± 8.67 |
10−7 | 0.00 ± 0.00 | 8.00 ± 0.00 | 0.00 ± 0.00 | 16.33 ± 0.578 | 0.00 ± 0.00 |
Variable | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
(A) Ethanol concentration | 70 | 80 | 90 |
(B) Extraction temperature | 80 | 90 | 100 |
(C) Solid-to-liquid ratio | 20 | 30 | 40 |
Macroporous Resin | Polarity | Surface Area (m2/g) | Pore Size (nm) |
---|---|---|---|
HPD-600 | Polarities | 550~600 | 80 |
NKA-9 | Polarities | 500~550 | 100~120 |
DM-130 | Weak polarity | 500~550 | 90~100 |
AB-8 | Weak polarity | 480~520 | 130~140 |
D-101 | Non-polar | 550~600 | 90~100 |
HPD-100 | Non-polar | 650~700 | 85~90 |
HP-20 | Neutral polarity | 550~600 | 90~100 |
Time (min) | Flow Rate (mL/min) | B% (Acetonitrile) |
---|---|---|
0–2 | 0.3 | 5 |
2–6 | 0.3 | 30 |
6–7 | 0.3 | 30 |
7–12 | 0.3 | 78 |
12–14 | 0.3 | 78 |
14–17 | 0.3 | 95 |
17–20 | 0.3 | 95 |
20–21 | 0.3 | 5 |
21–25 | 0.3 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Xu, J.; Liu, Y.; Xu, P.; Yi, J.; Feng, L.; Miao, Y.; Zhang, Y. Extraction and Purification of Flavonoids and Antiviral and Antioxidant Activities of Polygonum perfoliatum L. Molecules 2025, 30, 29. https://doi.org/10.3390/molecules30010029
Zhao C, Xu J, Liu Y, Xu P, Yi J, Feng L, Miao Y, Zhang Y. Extraction and Purification of Flavonoids and Antiviral and Antioxidant Activities of Polygonum perfoliatum L. Molecules. 2025; 30(1):29. https://doi.org/10.3390/molecules30010029
Chicago/Turabian StyleZhao, Chan, Jian Xu, Yao Liu, Peng Xu, Jin Yi, Lin Feng, Yanyan Miao, and Yongping Zhang. 2025. "Extraction and Purification of Flavonoids and Antiviral and Antioxidant Activities of Polygonum perfoliatum L." Molecules 30, no. 1: 29. https://doi.org/10.3390/molecules30010029
APA StyleZhao, C., Xu, J., Liu, Y., Xu, P., Yi, J., Feng, L., Miao, Y., & Zhang, Y. (2025). Extraction and Purification of Flavonoids and Antiviral and Antioxidant Activities of Polygonum perfoliatum L. Molecules, 30(1), 29. https://doi.org/10.3390/molecules30010029