Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation
2.3. Characterization
2.4. Adsorption Kinetics
2.5. Static Equilibrium Adsorption
2.6. Analysis
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Kinetics
3.3. Static Adsorption Equilibrium
3.4. Adsorption Properties of the Modified Resins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijayaraghavan, K.; Ashokkumar, T. Characterization and evaluation of reactive dye adsorption onto Biochar Derived from Turbinaria conoides Biomass. Environ. Prog. Sustain. Energy 2019, 38, 13143. [Google Scholar] [CrossRef]
- Jothirani, R.; Kumar, P.S.; Saravanan, A.; Narayan, A.S.; Dutta, A. Ultrasonic modified corn pith for the sequestration of dye from aqueous solution. J. Ind. Eng. Chem. 2016, 39, 162–175. [Google Scholar] [CrossRef]
- Malik, A.; Rahman, M.; Ansari, M.I.; Masood, F.; Grohmann, E. Environmental protection strategies: An overview. Environ. Prot. Strateg. Sustain. Dev. 2012, 1–34. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, J.; Chen, Z.; Ying, S.; Wang, J.; Hu, J. Rapid and selective removal of Hg(II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m-aminothiophenol) nanocomposite. J. Mol. Liq. 2019, 286, 110746. [Google Scholar] [CrossRef]
- Yadav, V.B.; Gadi, R.; Kalra, S. Clay based nanocomposites for removal of heavy metals from water: A review. J. Environ. Manag. 2019, 232, 803–817. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010, 262, 94–98. [Google Scholar] [CrossRef]
- Tsyurupa, M.P.; Blinnikova, Z.K.; Davidovich, Y.A.; Lyubimov, S.E.; Naumkin, A.V.; Davankov, V.A. On the nature of “functional groups” in non-functionalized hypercrosslinked polystyrenes. React. Funct. Polym. 2012, 72, 973–982. [Google Scholar] [CrossRef]
- Xiao, G.; Wen, R.; Wei, D.; Wu, D. Effects of the steric hindrance of micropores in the hyper-cross-linked polymeric adsorbent on the adsorption of p-nitroaniline in aqueous solution. J. Hazard. Mater. 2014, 280, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, J.; Li, A.; Liu, F.; Zhang, Q. Adsorption of resorcinol and catechol from aqueous solution by aminated hypercrosslinked polymers. React. Funct. Polym. 2005, 64, 63–73. [Google Scholar] [CrossRef]
- Salehi, E.; Shafie, M. Adsorptive removal of acetaldehyde from water using strong anionic resins pretreated with bisulfite: An efficient method for spent process water recycling in petrochemical industry. J. Water Process. Eng. 2020, 33, 101025. [Google Scholar] [CrossRef]
- Mansha, M.; Waheed, A.; Ahmad, T.; Kazi, I.W.; Ullah, N. Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution. Environ. Res. 2020, 184, 109337. [Google Scholar] [CrossRef] [PubMed]
- Tsyurupa, M.P.; Davankov, V.A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006, 66, 768–779. [Google Scholar] [CrossRef]
- Kuang, W.; Li, H.; Huang, J.; Liu, Y.-N. Tunable porosity and polarity of the polar hyper-cross-linked resins and the Enhanced adsorption toward phenol. Ind. Eng. Chem. Res. 2016, 55, 12213–12221. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Z.; Xi, H. Influence of the microporosity and surface chemistry of polymeric resins on adsorptive properties toward phenol. J. Hazard. Mater. 2004, 113, 131–135. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Q.; Chen, J.; Fei, Z.; Long, C.; Li, W. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4. React. Funct. Polym. 2001, 49, 225–233. [Google Scholar] [CrossRef]
- Huang, J.; Zha, H.; Jin, X.; Deng, S. Efficient adsorptive removal of phenol by a diethylenetriamine-modified hypercrosslinked styrene–divinylbenzene (PS) resin from aqueous solution. Chem. Eng. J. 2012, 195–196, 40–48. [Google Scholar] [CrossRef]
- Li, Q.; Lu, X.; Shuang, C.; Qi, C.; Wang, G.; Li, A.; Song, H. Preferential adsorption of nitrate with different trialkylamine modified resins and their preliminary investigation for advanced treatment of municipal wastewater. Chemosphere 2019, 223, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Shields, S.L.E. Powder Surface Area and Porosity; Chapman and Hall: New York, NY, USA, 1991; p. 119. [Google Scholar]
- Shuang, C.; Pan, F.; Zhou, Q.; Li, A.; Li, P.; Yang, W.J.I.; Research, E.C. Magnetic polyacrylic anion exchange resin: Preparation, characterization and adsorption behavior of humic acid. Ind. Eng. Chem. Res. 2012, 51, 4380–4387. [Google Scholar] [CrossRef]
- Horikawa, T.; Do, D.D.; Nicholson, D. Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface Sci. 2011, 169, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S.K. About the theory of so-called adsorption of solution substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G.; Pollution, S. Sorption of Copper(II) from aqueous solution by peat. Water Air Soil Pollut. 2004, 158, 77–97. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Sun, H.; Peng, Q. Separation of glycolic acid from glycolonitrile hydrolysate using adsorption technology. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 391–398. [Google Scholar] [CrossRef]
- Wang, J.; Huang, C.P.; Allen, H.E.; Cha, D.K.; Kim, D.-W. Adsorption characteristics of dye onto sludge particulates. J. Colloid Interface Sci. 1998, 208, 518–528. [Google Scholar] [CrossRef]
- Yang, W.; Xue, X.; Zheng, F.; Yang, X. Importance of surface area and pore size distribution of resin for organic toxicants adsorption. Sep. Sci. Technol. 2011, 46, 1321–1328. [Google Scholar] [CrossRef]
- Walker, G.M.; Weatherley, L. Adsorption of dyes from aqueous solution—The effect of adsorbent pore size distribution and dye aggregation. Chem. Eng. J. 2001, 83, 201–206. [Google Scholar] [CrossRef]
- Huang, J. Molecular sieving effect of a novel hyper-cross-linked resin. Chem. Eng. J. 2010, 165, 265–272. [Google Scholar] [CrossRef]
- Long, C.; Lu, J.; Li, A.; Hu, D.; Liu, F.; Zhang, Q. Adsorption of naphthalene onto the carbon adsorbent from waste ion exchange resin: Equilibrium and kinetic characteristics. J. Hazard. Mater. 2008, 150, 656–661. [Google Scholar] [CrossRef]
Number | Specific Surface Area (m2·g−1) | Sext% | Pore Volume (cm3·g−1) | Vmeso% | Average Pore Diameter (nm) | ||||
---|---|---|---|---|---|---|---|---|---|
SBET | Smicro | Sext | Vt | Vmicro | Vmeso | ||||
NDA-1 | 448.0 | 37.2 | 410.8 | 91.7 | 0.310 | 0.0098 | 0.3002 | 96.8 | 3.80 |
NDA-2 | 565.1 | 51.8 | 513.3 | 90.8 | 0.474 | 0.0148 | 0.4592 | 96.9 | 4.74 |
NDA-3 | 452.4 | 43.1 | 409.3 | 90.5 | 0.736 | 0.0213 | 0.7147 | 97.1 | 6.87 |
NDA-4 | 486.6 | 32.4 | 454.2 | 93.3 | 0.767 | 0.0091 | 0.7579 | 98.8 | 6.72 |
Number | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) | Modification Methods | Polarity | Mean Particle Size (mm) | Residual Chlorine Content (%) | Total Exchange Capacity (mmol·g−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
SBET | Smicro | Vt | Vmicro | |||||||
NDA-1800 | 852.3 | 93.3 | 1.470 | 0.022 | 7.47 | / | nonpolar | 0.4–0.6 | / | / |
NDA-1801 | 630.6 | 84.1 | 0.944 | 0.021 | 5.99 | Primary amine | polar | 0.4–0.6 | 6.8 | 1.13 |
NDA-1802 | 628.4 | 54.7 | 1.230 | 0.009 | 7.86 | Secondary amine | polar | 0.4–0.6 | 7.1 | 1.49 |
NDA-1803 | 602.6 | 59.0 | 0.961 | 0.010 | 6.38 | Tertiary amine | polar | 0.4–0.6 | 5.4 | 5.40 |
Pseudo-First-Order Rate Equation | Pseudo-Second-Order Rate Equation | |||||
---|---|---|---|---|---|---|
Qe (L·mmol−1) | K1 (L·mmol−1) | R2 | Qe (L·mmol−1) | K2 (L·mmol−1) | R2 | |
NDA-2 phenol | 0.583 | 0.102 | 0.963 | 0.611 | 0.284 | 0.969 |
NDA-3 phenol | 0.459 | 0.069 | 0.949 | 0.489 | 0.213 | 0.963 |
NDA-2 ABS acid | 0.364 | 0.005 | 0.974 | 0.477 | 0.011 | 0.980 |
NDA-3 ABS acid | 0.350 | 0.004 | 0.939 | 0.467 | 0.008 | 0.951 |
NDA-2 RBB4 | 0.267 | 0.002 | 0.957 | 0.384 | 0.003 | 0.958 |
NDA-3 RBB4 | 0.189 | 0.002 | 0.972 | 0.260 | 0.006 | 0.976 |
Resins | ABS Acid | RBB4 | ||||||
---|---|---|---|---|---|---|---|---|
Qm (mmol·g−1) | K1 (L·mmol−1) | K2 (L·mmol−1) | R2 | Qm (mmol·g−1) | K1 (L·mmol−1) | K2 (L·mmol−1) | R2 | |
NDA-1 | 0.407 | 6.239 | 0.040 | 0.971 | 0.066 | 6.727 | 0.252 | 0.971 |
NDA-2 | 0.683 | 7.862 | 0.038 | 0.995 | 0.113 | 4.054 | 0.200 | 0.995 |
NDA-3 | 0.576 | 10.830 | 0.050 | 0.994 | 0.239 | 6.015 | 0.154 | 0.999 |
NDA-4 | 0.493 | 10.080 | 0.047 | 0.985 | 0.166 | 5.884 | 0.212 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Y.; Wang, S.; Bai, L.; Deng, Y.; Tao, J. Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents. Molecules 2021, 26, 5267. https://doi.org/10.3390/molecules26175267
Liu W, Zhang Y, Wang S, Bai L, Deng Y, Tao J. Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents. Molecules. 2021; 26(17):5267. https://doi.org/10.3390/molecules26175267
Chicago/Turabian StyleLiu, Wei, Yuxi Zhang, Shui Wang, Lisen Bai, Yanhui Deng, and Jingzhong Tao. 2021. "Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents" Molecules 26, no. 17: 5267. https://doi.org/10.3390/molecules26175267
APA StyleLiu, W., Zhang, Y., Wang, S., Bai, L., Deng, Y., & Tao, J. (2021). Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents. Molecules, 26(17), 5267. https://doi.org/10.3390/molecules26175267