Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition
2.3. Single-Crystal X-Ray Diffraction Analysis
3. Results
4. Discussion
4.1. End-Member Chemical Formula
4.2. Polytype Identification and Symmetry
4.3. Structural Complexity and Relative Stability of Berthierine and Chamosite
(Fe2+2.844Al1.95Fe3+0.364Mg0.314Li0.07Mn0.004)(Si2.664Al1.336)O10(OH)8 (chamosite)
4.4. Note on Relative Topological Complexity of Berthierine and Chamosite
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth, T.A.; Fritz, S.J. An Fe-Berthierine From A Cretaceous Laterite: Part I. Characterization. Clays Clay Miner. 1997, 45, 564–579. [Google Scholar] [CrossRef]
- Fritz, S.J.; Toth, T.A. An Fe-Berthierine from a Cretaceous Laterite: Part II. Estimation of Eh, pH and pCO2 Conditions of Formation. Clays Clay Miner. 1997, 45, 580–586. [Google Scholar] [CrossRef]
- Kodama, H.; Foscolos, A.E. Occurrence of Berthierine in Canadian Arctic Desert Soils. Can. Mineral. 1981, 19, 279–283. [Google Scholar]
- Iljima, A.; Matsumoto, R. Berthierine and Chamosite in Coal Measures of Japan. Clays Clay Miner. 1982, 30, 264–274. [Google Scholar] [CrossRef]
- Nikulin, I.I.; Starostin, V.I.; Samsonov, A.A. Pre-Visean Bauxites and Iron-Aluminum Ores Deposit of the KMA and Prospects for Development. Geol. Ore Depos. 2021, 63, 368–381. [Google Scholar] [CrossRef]
- Savko, A.D.; Ovchinnikova, M.Y.; Boeva, N.M. Berthierine-Rich Bauxites in the Kursk Magnetic Anomaly (KMA). Lithol. Miner. Resour. 2021, 56, 49–55. [Google Scholar] [CrossRef]
- Steiner, T.M.C.; Gawlick, H.-J.; Melcher, F.; Schlagintweit, F. Ophiolite Derived Material as Parent Rocks for Late Jurassic Bauxite: Evidence for Tithonian Unroofing in the Northern Calcareous Alps (Eastern Alps, Austria). Int. J. Earth Sci. 2021, 110, 1847–1862. [Google Scholar] [CrossRef]
- Savko, A.D.; Nikulin, I.I.; Ovchinnikova, M.Y.; Boeva, N.M. Historical-Genetic Analysis of the Formation of High-Grade Iron Ores and Related Bauxites in the Kursk Magnetic Anomaly (Russia). Lithol. Miner. Res. 2022, 57, 290–298. [Google Scholar] [CrossRef]
- Ali Khoudja, S.A.; Chellat, S.; Hacini, M.; Semiani, A. Petrography and Authigenic Chlorite in the Siegenian Reservoir Rocks, Berkine Basin, Eastern Algerian Sahara. Arab. J. Geosci. 2020, 13, 767. [Google Scholar] [CrossRef]
- Poluektov, V.V.; Petrov, V.A.; Andreeva, O.V. Migration and Sorption of Uranium in Various Redox Conditions on the Example of Volcanic-Related Deposits in the Streltsovka Caldera, SE Transbaikalia. Geol. Ore Dep. 2021, 63, S29–S61. [Google Scholar] [CrossRef]
- Petrov, V.A.; Andreeva, O.V.; Poluektov, V.V. The Character of Magmatism, Hydrothermal-Metasomatic, and Filtration-Transport Processes in Uranium-Bearing Volcanic-Related Structures. J. Volcanol. Seismol. 2023, 17, 353–373. [Google Scholar] [CrossRef]
- Pribavkin, S.V.; Soroka, E.I.; Azovskova, O.B.; Smoleva, I.V.; Leonova, L.V.; Gottman, I.A.; Sustavov, S.G.; Rovnushkin, M.Y. Association of Siderite with Iron Sulfides and Silicates in Rocks of the Mikheevskoe Cu(Mo,Au) Porphyry Deposit (Southern Urals). Geol. Ore Dep. 2023, 65, 332–345. [Google Scholar] [CrossRef]
- Xi, J.; Yang, Y.; He, H.; Xian, H.; Tan, W.; Li, R.; Zhu, J.; Xu, H. Microstructural and Compositional Evolutions during Transformation from Biotite to Berthierine: Implications for Phyllosilicate Alteration Processes. Am. Mineral. 2024, 109, 656–666. [Google Scholar] [CrossRef]
- Wise, M.A. Crystallization of ‘pocket’ berthierine from the Pulsifer granitic pegmatite, Poland, Maine, USA. Clays Clay Miner. 2007, 55, 583–592. [Google Scholar] [CrossRef]
- Pekov, I.V.; Chukanov, N.V.; Turchkova, A.G.; Grishin, V.G. News in mineralogy of the Lovozero massif. Tr. Fersmanovskoy Sess. GI KCS RAS 2004, 30–33. (In Russian) [Google Scholar]
- Bertoldi, C.; Benisek, A.; Cemic, L.; Dachs, E. The Heat Capacity of Two Natural Chlorite Group Minerals Derived from Differential Scanning Calorimetry. Phys. Chem. Miner. 2001, 28, 332–336. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Trotet, F. A Thermodynamic Model for Fe-Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600 °C, 1 to 25 Kb Range. Am. J. Sci. 2001, 301, 557–592. [Google Scholar] [CrossRef]
- Bertoldi, C.; Dachs, E.; Cemic, L.; Theye, T.; Wirth, R.; Groger, W. The heat capacity of the serpentine subgroup mineral berthierine (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4. Clays Clay Miner. 2005, 53, 380–388. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Vieillard, P. Thermodynamic Properties of the Tschermak Solid Solution in Fe-Chlorite: Application to Natural Examples and Possible Role of Oxidation. Am. Mineral. 2005, 90, 347–358. [Google Scholar] [CrossRef]
- Blanc, P.; Gailhanou, H.; Rogez, J.; Mikaelian, G.; Kawaji, H.; Warmont, F.; Gaboreau, S.; Grangeon, S.; Grenèche, J.-M.; Vieillard, P.; et al. Thermodynamic Properties of Chlorite and Berthierine Derived from Calorimetric Measurements. Phys. Chem. Miner. 2014, 41, 603–615. [Google Scholar] [CrossRef]
- James, R.S.; Turnock, A.C.; Fawcett, J.J. The Stability and Phase Relations of Iron Chlorite below 8.5 Kb PH2O. Contrib. Mineral. Petrol. 1976, 56, 1–25. [Google Scholar] [CrossRef]
- Cho, M.; Fawcett, J.J. A Kinetic Study of Clinochlore and Its High Temperature Equivalent Forsterite-Cordierite-Spinel at 2 Kbar Water Pressure. Am. Mineral. 1986, 71, 68–77. [Google Scholar]
- Ostwald, W. Studien Über Die Bildung Und Umwandlung Fester Körper. 1. Abhandlung: Übersättigung Und Überkaltung. Z. Physik. Chem. 1897, 22, 289–330. [Google Scholar] [CrossRef]
- Nývlt, J. The Ostwald Rule of Stages. Cryst. Res. Technol. 1995, 30, 443–449. [Google Scholar] [CrossRef]
- Threlfall, T. Structural and Thermodynamic Explanations of Ostwald’s Rule. Org. Process Res. Dev. 2003, 7, 1017–1027. [Google Scholar] [CrossRef]
- Hedges, L.O.; Whitelam, S. Limit of Validity of Ostwald’s Rule of Stages in a Statistical Mechanical Model of Crystallization. J. Chem. Phys. 2011, 135, 164902. [Google Scholar] [CrossRef]
- Cardew, P.T. Ostwald Rule of Stages─Myth or Reality? Cryst. Growth Des. 2023, 23, 3958–3969. [Google Scholar] [CrossRef]
- Goldsmith, J.R. A “simplexity principle” and its relation to “ease” of crystallization. J. Geol. 1953, 61, 439–451. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013, 77, 275–326. [Google Scholar] [CrossRef]
- Cempírek, J.; Grew, E.S.; Kampf, A.R.; Ma, C.; Novák, M.; Gadas, P.; Škoda, R.; Vašinová-Galiová, M.; Pezzotta, F.; Groat, L.A.; et al. Vránaite, ideally Al16B4Si4O38, a new mineral related to boralsilite, Al16B6Si2O37, from the Manjaka pegmatite, Sahatany Valley, Madagascar. Amer. Mineral. 2016, 101, 2108–2117. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Zhitova, E.S.; Spratt, J.; Zolotarev, A.A.; Krivovichev, S.V. Isolueshite, NaNbO3, from the Kovdor carbonatite, Kola peninsula, Russia: Composition, crystal structure and possible formation scenarios. N. Jb. Mineral. Abh. 2017, 194, 165–173. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Hydrogen bonding and structural complexity of the Cu3(AsO4)(OH)3 polymorphs (clinoclase, gilmarite): A theoretical study. J. Geosci. 2017, 62, 79–85. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Hawthorne, F.C.; Williams, P.A. Structural complexity and crystallization: The Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Struct. Chem. 2017, 28, 153–159. [Google Scholar] [CrossRef]
- Plášil, J. Structural complexity of uranophane and uranophane-β: Implications for their formation and occurrence. Eur. J. Mineral. 2018, 30, 253–257. [Google Scholar] [CrossRef]
- Huskić, I.; Novendra, N.; Lim, D.-W.; Topić, F.; Titi, H.M.; Pekov, I.V.; Krivovichev, S.V.; Navrotsky, A.; Kitagawa, H.; Friščić, T. Functionality in metal-organic framework minerals: Proton conductivity, stability and potential for polymorphism. Chem. Sci. 2019, 10, 4923–4929. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, A.A.; Krivovichev, S.V.; Panikorovskii, T.L.; Gurzhiy, V.V.; Bocharov, V.N.; Rassomakhin, M.A. Dmisteinbergite, CaAl2Si2O8, a Metastable Polymorph of Anorthite: Crystal-Structure and Raman Spectroscopic Study of the Holotype Specimen. Minerals 2019, 9, 570. [Google Scholar] [CrossRef]
- Kolitsch, U.; Weil, M.; Kovrugin, V.M.; Krivovichev, S.V. Crystal Chemistry of the Variscite and Metavariscite Groups: Crystal Structures of Synthetic CrAsO4·2H2O, TlPO4·2H2O, MnSeO4·2H2O, CdSeO4·2H2O and Natural Bonacinaite, ScAsO4·2H2O. Miner. Mag. 2020, 84, 568–583. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Metastable Crystallization and Structural Complexity of Minerals. Dokl. Earth Sci. 2022, 507, 1040–1043. [Google Scholar] [CrossRef]
- Brindley, G.W. The Crystal Structure of Some Chamosite Minerals. Miner. Mag. 1951, 29, 502–525. [Google Scholar]
- Brindley, G.W. Chemical Compositions of Berthierines—A Review. Clays Clay Miner. 1982, 30, 153–155. [Google Scholar] [CrossRef]
- Agilent Technologies. CrysAlisPro, Version 1.171.36.20; Agilent Technologies: Santa Clara, CA, USA, 2012. Available online: https://www.rsc.org/suppdata/cc/c3/c3cc43513j/c3cc43513j.txt (accessed on 24 December 2024).
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Gagné, O.C.; Hawthorne, F.C. Mean Bond-Length Variations in Crystals for Ions Bonded to Oxygen. Acta Crystallogr. B 2017, 73, 1019–1031. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-Length Distributions for Ions Bonded to Oxygen: Results for the Transition Metals and Quantification of the Factors Underlying Bond-Length Variation in Inorganic Solids. IUCrJ 2020, 7, 581–629. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-Length Distributions for Ions Bonded to Oxygen: Metalloids and Post-Transition Metals. Acta Crystallogr. B 2018, 74, 63–78. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Malferrari, D.; Laurora, A.; Elmi, C. Structure and mineralogy of layered silicates: Recent perspectives and new trends. EMU Notes Mineral. 2011, 11, 1–71. [Google Scholar]
- Mellini, M.; Zanazzi, P.F. Crystal Structures of Lizardite-1T and Lizardite-2H1 from Coli, Italy. Am. Mineral. 1987, 72, 943–948. [Google Scholar]
- Zheng, H.; Bailey, S.W. Refinement of an Amesite-2H1 Polytype from Postmasburg, South Africa. Clays Clay Miner. 1997, 45, 301–310. [Google Scholar] [CrossRef]
- del Mar Abad-Ortega, M.; Mieto, F. Genetic and Chemical Relationships between Berthierine, Chlorite and Cordierite in Nodules Associated to Granitic Pegmatites of Sierra Albarrana (Iberian Massif, Spain). Contrib. Mineral. Petrol. 1995, 120, 327–336. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Topological Complexity of Crystal Structures: Quantitative Approach. Acta Crystallogr. A 2012, 68, 393–398. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Krivovichev, V.G.; Hazen, R.M.; Aksenov, S.M.; Avdontceva, M.S.; Banaru, A.M.; Gorelova, L.A.; Ismagilova, R.M.; Kornyakov, I.V.; Kuporev, I.V.; et al. Structural and chemical complexity of minerals: An update. Mineral. Mag. 2022, 86, 183–204. [Google Scholar] [CrossRef]
- Walker, J.R.; Bish, D.L. Application of Rietveld Refinement Techniques to a Disordered IIb Mg-Chamosite. Clays Clay Miner. 1992, 40, 319–322. [Google Scholar] [CrossRef]
- Pankova, Y.A.; Gorelova, L.A.; Krivovichev, S.V.; Pekov, I.V. The Crystal Structure of Ginorite, Ca2[B14O20(OH)6]·5H2O, and the Analysis of Dimensional Reduction and Structural Complexity in the CaO-B2O3-H2O System. Eur. J. Miner. 2018, 30, 277–287. [Google Scholar] [CrossRef]
- Wilson, J.; Savage, D.; Cuadros, J.; Shibata, M.; Ragnarsdottir, K.V. The Effect of Iron on Montmorillonite Stability. (I) Background and Thermodynamic Considerations. Geochim. Cosmochim. Acta 2006, 70, 306–322. [Google Scholar] [CrossRef]
- Wilson, J.; Cressey, G.; Cressey, B.; Cuadros, J.; Ragnarsdottir, K.V.; Savage, D.; Shibata, M. The Effect of Iron on Montmorillonite Stability. (II) Experimental Investigation. Geochim. Cosmochim. Acta 2006, 70, 323–336. [Google Scholar] [CrossRef]
- Bertoldi, C.; Dachs, E.; Appel, P. Heat-Pulse Calorimetry Measurements on Natural Chlorite-Group Minerals. Am. Mineral. 2007, 92, 553–559. [Google Scholar] [CrossRef]
- Mosser-Ruck, R.; Cathelineau, M.; Guillaume, D.; Charpentier, D.; Rousset, D.; Barres, O.; Michau, N. Effects of Temperature, pH, and Iron/Clay and Liquid/Clay Ratios on Experimental Conversion of Dioctahedral Smectite to Berthierine, Chlorite, Vermiculite, or Saponite. Clays Clay Miner. 2010, 58, 280–291. [Google Scholar] [CrossRef]
- Morse, J.W.; Casey, W.H. Ostwald Processes and Mineral Paragenesis in Sediments. Amer. J. Sci. 1988, 288, 537–560. [Google Scholar] [CrossRef]
1 | 2 | 3 | |
---|---|---|---|
SiO2 | 19.59 | 19.95 | 20.01 |
Al2O3 | 26.16 | 26.08 | 26.97 |
FeO * | 40.79 | 41.84 | 40.54 |
MgO | 0.41 | 0.34 | 0.34 |
MnO | 0.87 | 0.89 | 1.00 |
H2O ** | 10.29 | 10.42 | 10.43 |
Total | 98.89 | 99.52 | 99.29 |
Si | 1.14 | 1.15 | 1.15 |
IVAl | 0.86 | 0.85 | 0.85 |
Total | 2.00 | 2.00 | 2.00 |
VIAl | 0.93 | 0.92 | 0.98 |
Fe | 1.99 | 2.01 | 1.95 |
Mg | 0.04 | 0.03 | 0.03 |
Mn | 0.04 | 0.04 | 0.05 |
Total | 3.00 | 3.00 | 3.00 |
OH | 3.92 | 3.97 | 3.94 |
O | 5.08 | 5.03 | 5.06 |
Total | 9.00 | 9.00 | 9.00 |
Crystal data | |
Chemical formula | Fe2+1.99Al1.79Mg0.03Mn0.04Si1.15O9H4 |
Mr | |
Crystal system, space group | Hexagonal, P63cm |
Temperature (K) | 296(2) |
a, c (Å) | 5.3903(4), 14.0146(10) |
V (Å3) | 352.64(6) |
Z | 2 |
µ (mm−1) | 4.612 |
ρ (g/cm3) | 3.227 |
Crystal size (mm3) | 0.03 × 0.03 × 0.08 |
Data collection parameters | |
Diffractometer | Rigaku XtaLAB Synergy-S |
Radiation type | MoKα |
Absorption correction | Gaussian |
2Θmin, 2Θmax | 2.907, 27.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3355, 339, 338 |
Rint | 0.037 |
Refinement parameters | |
R1 [F2 > 2σ(F2)], wR(F2), S | 0.053, 0.110, 1.157 |
No. of reflections | 338 |
No. of parameters | 27 |
Δρmax, Δρmin (e Å−3) | 0.884, −1.470 |
Atom | x | y | z | Ueq | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|---|---|---|---|
M * | 0.3361(6) | 0 | 0.2570(1) | 0.0107(7) | 0.009(1) | 0.009(1) | 0.0141(9) | 0 | −0.001(1) | 0.0046(7) |
T ** | 2/3 | 1/3 | 0.4541(3) | 0.007(1) | 0.006(2) | 0.006(2) | 0.009(2) | 0 | 0.000 | 0.0030(8) |
O1 | 2/3 | 1/3 | 0.3331(9) | 0.018(3) | 0.020(5) | 0.020(5) | 0.012(6) | 0 | 0.000 | 0.010(3) |
Oh2 | 0 | 0 | 0.331(1) | 0.019(5) | 0.026(8) | 0.026(8) | 0.007(8) | 0 | 0.000 | 0.013(4) |
Oh3 | 0.669(3) | 0 | 0.1883(7) | 0.020(3) | 0.027(5) | 0.025(7) | 0.007(5) | 0 | −0.003(5) | 0.013(4) |
O4 *** | 0 | 0.444(2) | 0.4936(7) | 0.010(2) |
M—Oh3 | 2.036(14) | T—O4 | 1.679(4) 3× |
M—Oh3 | 2.040(8) 2× | T—O1 | 1.696(15) |
M—O1 | 2.083(7) 2× | <T—O> | 1.683 |
M—Oh2 | 2.087(9) | ||
<M—O> | 2.055 |
Chemical Formula | IG [Bit/Atom] | IG,total [Bit/Cell] | ΔfH°298, kJ.mol−1 | S°298, J.mol−1K−1 | ΔfG°298, kJ.mol−1 | Ref. |
---|---|---|---|---|---|---|
Berthierine * | ||||||
(Fe2+1.99Al0.94Mg0.03Mn0.04) [(Si1.15Al0.85)Σ2.00O5](OH)3.92O0.08 | 2.891 | 104.078 | This work | |||
2{(Fe2+1.422Al0.975Fe3+0.182Mg0.157Li0.035Mn0.002) [(Si1.332Al0.668)O5](OH)4} | −6944.56 | 514.54 | −7548.92 | [20] | ||
2{(Fe2+1.44Al0.976Fe3+0.182Mg0.157) [(Si1.332Al0.668)O5](OH)4} | −6936.62 | 514.00 | −7548.92 | [20] | ||
2{(Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4} | 568.2 | −7140.60 | [18] | |||
Chamosite | ||||||
(Fe2+2.72Al1.33Mn0.08□0.10) [(Si2.85Al1.145Ti0.005)O10](OH)8 | 4.225 | 152.117 | [52] | |||
(Fe2+5Al)[(Si3Al)O10](OH)8 | −7120.85 | 559.4 | [17] | |||
(Fe2+4Al2)[(Si2Al2)O10](OH)8 | −7607.46 | 514.8 | [19] |
Mineral Group | Serpentine | Chlorite | |
---|---|---|---|
General formula | M3[T2O5](OH)4 | M6[T2O5]2(OH)8 = M3[T2O5]2(OH)2 + 3M(OH)2 | |
Layer formula | M3[T2O5](OH)4 | M(OH)2 | M3[T2O5]2(OH)2 |
Layer symmetry group | p31m | m1 | c2/m11 |
Site distribution | M:[3], T:[2], O:[2+3], Oh:[3+1], H:[3+1] | M:[1], Oh:[2], H:[2] | M:[1+2], T:[4], O:[2+4+4], Oh:[2], H:[2] |
IG [bit/atom] | 2.891 | 1.522 | 2.869 |
IG,total [bit/cell] | 52.039 | 7.610 | 60.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivovichev, S.V.; Yakovenchuk, V.N.; Goychuk, O.F.; Pakhomovskii, Y.A.; Krivovichev, V.G. Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations. Minerals 2025, 15, 13. https://doi.org/10.3390/min15010013
Krivovichev SV, Yakovenchuk VN, Goychuk OF, Pakhomovskii YA, Krivovichev VG. Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations. Minerals. 2025; 15(1):13. https://doi.org/10.3390/min15010013
Chicago/Turabian StyleKrivovichev, Sergey V., Victor N. Yakovenchuk, Olga F. Goychuk, Yakov A. Pakhomovskii, and Vladimir G. Krivovichev. 2025. "Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations" Minerals 15, no. 1: 13. https://doi.org/10.3390/min15010013
APA StyleKrivovichev, S. V., Yakovenchuk, V. N., Goychuk, O. F., Pakhomovskii, Y. A., & Krivovichev, V. G. (2025). Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations. Minerals, 15(1), 13. https://doi.org/10.3390/min15010013