Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization
Abstract
:1. Introduction
2. Regional Geology
3. Geology of the Waxing Deposit
4. Sampling and Methods
5. Results
5.1. Geochronology
5.1.1. Zircon U-Pb Ages
5.1.2. Molybdenite Re-Os Ages
5.2. Zircon Lu-Hf Isotope
5.3. Whole-Rock Geochemistry
5.4. Apatite Major Element Compositions
6. Discussion
6.1. Petrogenesis of Granitoids in Waxing Revealed by the Whole-Rock and Mineral Geochemistry
6.1.1. Magmatic Source
6.1.2. Fractionation Crystallization Process of the Magma
6.2. Volatile Characteristics and Redox State of the Magma and Fertility Implications
6.2.1. Volatile Characteristics of the Ore-Related Magma
6.2.2. Redox State of the Ore-Related Magma
6.3. Implications for Regional Mineralization and Exploration
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arndt, N.; Ganino, C. Metals and society-an introduction to economic geology. In Metals and Society; Springer: Berlin/Heidelberg, Germany, 2012; pp. 88–94. [Google Scholar]
- Mao, J.W.; Pirajno, F.; Xiang, J.F.; Gao, J.J.; Ye, H.S.; Li, Y.F.; Guo, B.J. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings. Ore Geol. Rev. 2011, 43, 264–293. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, J.; Chu, S.; Wang, Y.; Sun, Y.; Duan, X.; Zhou, L. Mesozoic Mo deposits in the East Xingmeng orogenic belt, NE China: Characteristics and tectonic setting. Int. Geol. Rev. 2012, 54, 1843–1869. [Google Scholar] [CrossRef]
- Shu, Q.H.; Chang, Z.S.; Lai, Y.; Zhou, Y.T.; Sun, Y.; Yan, C. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Econ. Geol. 2016, 111, 1783–1798. [Google Scholar] [CrossRef]
- Shu, Q.H.; Chiaradia, M. Mesozoic Mo mineralization in northeastern China did not require regional-scale pre-enrichment. Econ. Geol. 2021, 116, 1227–1237. [Google Scholar] [CrossRef]
- Wallace, S.R. The Climax-type molybdenite deposits: What they are, where they are, and why they are. Econ. Geol. 1995, 90, 1359–1380. [Google Scholar]
- Seedorff, E.; Einaudi, M.T. Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Econ. Geol. 2004, 99, 39–72. [Google Scholar] [CrossRef]
- Gaynor, S.P.; Rosera, J.M.; Coleman, D.S. Intrusive history of the Oligocene porphyry molybdenum deposit. New Mex. Geosph. 2019, 15, 548–575. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Pettke, T.; Oberli, F.; Heinrich, C.A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 2010, 296, 267–277. [Google Scholar] [CrossRef]
- Richards, J.P. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat. Geosci. 2013, 6, 911–916. [Google Scholar] [CrossRef]
- Audétat, A.; Li, W.T. The genesis of Climax-type porphyry Mo deposits: Insights from fluid inclusions and melt inclusions. Ore Geol. Rev. 2017, 88, 436–460. [Google Scholar] [CrossRef]
- Chiaradia, M. How much water in basaltic melts parental to porphyry copper deposits? Front. Earth Sci. 2020, 8, 138. [Google Scholar] [CrossRef]
- Candela, P.A.; Piccoli, P.M. Magmatic processes in the develop- ment of porphyry-type ore systems. Econ. Geol. 2005, 100, 25–37. [Google Scholar]
- Audétat, A.; Simon, A. Magmatic controls on porphyry Cu genesis. Soc. Econ. Geol. Spec. Publ. 2012, 16, 553–572. [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 8. [Google Scholar] [CrossRef]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Ge, W.C. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Sci. China Earth Sci. 2018, 61, 527–559. [Google Scholar] [CrossRef]
- Sun, M.D.; Chen, H.; Milan, L.A.; Wilde, S.A.; Jourdan, F.; Xu, Y. Continental arc and back-arc migration in eastern NE China: New constraints on Cretaceous Paleo-Pacific subduction and rollback. Tectonics 2018, 37, 3893–3915. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.M.; Huang, M.W. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatismin NE China: Constraints on the architecture of Paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 2019, 124, 2525–2550. [Google Scholar] [CrossRef]
- Zhou, J.B.; Li, L. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. J. Asian Earth Sci. 2017, 145, 91–100. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Zhou, J.; Zhou, Z.H.; Wu, Y.; Hou, L. Geodynamic setting of Mesozoic magmatism NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits. J. Asian Earth Sci. 2013, 78, 222–236. [Google Scholar] [CrossRef]
- Shu, Q.H.; Chang, Z.S.; Lai, Y.; Hu, X.L.; Wu, H.Y.; Zhang, Y.; Wang, P.; Zhai, D.G.; Zhang, C. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Miner. Depos. 2019, 54, 645–656. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Hu, R.Z.; Caufield, J.; Zhou, Z.H. Controlls on the metal endowment of porphyry Mo deposits: Insights from the Luming porphyry Mo deposit, northeastern China. Econ. Geol. 2021, 116, 1711–1735. [Google Scholar] [CrossRef]
- Cai, P.R.; Wang, T.; Wang, Z.Q.; Li, L.M.; Jia, J.L.; Wang, M.Q. Geochronology and geochemistry of late Paleozoic volcanic rocks from eastern Inner Mongolia, NE China: Implications for igneous petrogenesis, tectonic setting, and geodynamic evolution of the south-eastern Central Asian Orogenic Belt. Lithos 2020, 362–363, 105480. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quant, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Geoanal. Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Hu, Z.C.; Li, X.H.; Luo, T.; Zhang, W.; Crowley, J.; Li, Q.L.; Ling, X.X.; Yang, C.; Li, Y.; Feng, L.P.; et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U–Pb ages and Zr–O isotopes. J. Anal. At. Spectrom. 2021, 36, 2715–2734. [Google Scholar] [CrossRef]
- Ling, X.X.; Li, Q.L.; Yang, C.A.; Chu, Z.Y.; Feng, L.J.; Huang, C.; Huang, L.L.; Zhang, H.; Hou, Z.H.; Xu, J.J.; et al. Zircon ZS—A homogenous natural reference material for U–Pb age and O–Hf isotope microanalyses. At. Spectrosc. 2022, 43, 134–144. [Google Scholar] [CrossRef]
- Ludwig, R. Isoplot v. 4.15: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2011; Volume 4, p. 75. [Google Scholar]
- Du, A.D.; Wu, S.Q.; Sun, D.Z.; Wang, S.X.; Qu, W.J.; Markey, R.; Stein, H.; Morgan, J.W.; Malinovskiy, D. Preparation and certification of Re–Os dating reference materials: Molybdenite HLP and JDC. Geostand. Geoanalytical Res. 2004, 28, 41–52. [Google Scholar] [CrossRef]
- Markey, R.; Stein, H.; Morgan, J. Highly precise Re–Os dating for molybdenite using alkaline fusion and NTIMS. Talanta 1998, 45, 935–946. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Bierlein, F.; Qu, W.J.; Du, A.D.; Ye, H.S.; Pirajno, F.; Li, H.M.; Guo, B.J.; Li, Y.F.; et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta 2008, 72, 4607–4626. [Google Scholar] [CrossRef]
- Smoliar, M.I.; Walker, R.J.; Morgan, J.W. Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 1996, 271, 1099–1102. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; 39p. [Google Scholar]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Zou, T.R.; Qu, X.M.; Shi, Y.R.; Xie, G.Q. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol. Sin. 2007, 23, 2595–2604, (In Chinese with English abstract). [Google Scholar]
- Elhlou, S.; Belousova, E.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta 2006, 70, A158. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jiang, S.Y.; Mao, Q.; Chen, Z.Y.; Rao, C.; Li, X.L.; Li, W.C.; Yang, W.Q.; He, P.L.; Li, X. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. At. Spectrosc. 2022, 43, 186–200. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Achterbergh, E.V.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–148. [Google Scholar] [CrossRef]
- Soderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Miner. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Loucks, R.R.; Fiorentini, M.L.; Henríquez, G.J. New magmatic oxybarometer using trace elements in zircon. J. Petrol. 2020, 61, 1–30. [Google Scholar] [CrossRef]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonoung, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.; McCuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q.; Kirkland, C.L.; Kobussen, A. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Soc. Econ. Geol. Spec. Publ. 2016, 19, 329–347. [Google Scholar]
- Zou, X.Y.; Qin, K.Z.; Han, X.L.; Li, G.M.; Evans, N.J.; Li, Z.Z.; Yang, W. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth Planet. Sci. Lett. 2019, 506, 87–96. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Wooden, J.L. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib. Mineral. Petrol. 2010, 160, 511–531. [Google Scholar] [CrossRef]
- Miles, A.J.; Graham, C.M.; Hawkesworth, C.J.; Gillespie, M.R.; Hinton, R.W.; Bromiley, G.D. Apatite: A new redox proxy for silicic magmas? Geochim. Cosmochim. Acta 2014, 132, 101–119. [Google Scholar] [CrossRef]
- Meng, X.Y.; Kleinsaser, J.M.; Richards, J.P.; Tapster, S.R.; Jugo, P.J.; Simon, A.C.; Kontak, D.J.; Robb, L.; Bybee, G.M.; Marsh, J.H.; et al. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga. Nat. Commun. 2021, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Loader, M.A.; Nathwani, C.L.; Wilkinson, J.J.; Armstrong, R.N. Controls on the magnitude of Ce anomalies in zircon. Geochim. Cosmochim. Acta 2022, 328, 242–257. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Lond. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Wolf, M.B.; London, D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanism. Geochim. Cosmochim. Acta 1994, 58, 4127–4145. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Sun, D.Y. Phanerozoic continental crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Gaschnig, R.M.; Rudnick, R.L.; McDonough, W.F.; Kaufman, A.J.; Hu, Z.C.; Gao, S. Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth Planet. Sci. Lett. 2014, 408, 87–99. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Deveration of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Xu, J.F.; Zhao, Z.H.; Jian, P.; Xiong, X.L.; Bao, Z.W.; Li, C.F.; Bai, Z.H. Petrogenesis of Cretaceous adakitic, shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos 2006, 89, 424–446. [Google Scholar] [CrossRef]
- Brandon, A.D.; Draper, D.S. Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochim. Cosmochim. Acta 1996, 60, 1739–1749. [Google Scholar] [CrossRef]
- Kelley, K.A.; Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 2009, 325, 605–607. [Google Scholar] [CrossRef]
- Romick, J.D.; Kay, S.M.; Kay, R.W. The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib. Mineral. Petrol. 1992, 112, 101–118. [Google Scholar] [CrossRef]
- Rooney, T.O.; Franceschi, P.; Hall, C.M. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation? Contrib. Mineral. Petrol. 2011, 161, 373–388. [Google Scholar] [CrossRef]
- Blundy, J.D.; Wood, B.J. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 1991, 55, 193–209. [Google Scholar] [CrossRef]
- Ewart, A.; Griffin, W.L. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem. Geol. 1994, 117, 251–284. [Google Scholar] [CrossRef]
- Sisson, T.W. Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol. 1994, 117, 331–344. [Google Scholar] [CrossRef]
- Davidson, J.; Turner, S.; Handley, H.; Macpherson, C.; Dosseto, A. Amphibole “sponge” in arc crust? Geology 2007, 35, 787–790. [Google Scholar] [CrossRef]
- Loucks, R.R. Distinctive composition of copper-ore-forming. Aust. J. Earth Sci. 2014, 61, 5–16. [Google Scholar] [CrossRef]
- Hanson, G.N. Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci. 1980, 8, 371–406. [Google Scholar] [CrossRef]
- Richards, J.P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Klein, M.; Stosch, H.G.; Seck, H. Partitioning of high field- strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study. Chem. Geol. 1997, 138, 257–271. [Google Scholar] [CrossRef]
- Bachmann, O.; Dungan, M.; Bussy, F. Insights into shallow magmatic processes in large silicic magma bodies: The trace element record in the Fish Canyon magma body, Colorado. Contrib. Mineral. Petrol. 2005, 149, 338–349. [Google Scholar] [CrossRef]
- Loader, M.A.; Wilkinson, J.J.; Armstrong, R.N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 2017, 472, 107–119. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- Costa, F.; Scaillet, B.; Pichavant, M. Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36° S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J. Petrol. 2004, 45, 855–881. [Google Scholar] [CrossRef]
- Streck, M.J.; Dilles, J.H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 1998, 26, 523–526. [Google Scholar] [CrossRef]
- Parat, F.; Holtz, F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib. Mineral. Petrol. 2004, 147, 201–212. [Google Scholar] [CrossRef]
- Parat, F.; Holtz, F. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contrib. Mineral. Petrol. 2005, 150, 643–651. [Google Scholar] [CrossRef]
- Webster, J.D.; Piccoli, P.M. Magmatic apatite: A powerful, yet deceptive, mineral. Elements 2015, 11, 177–182. [Google Scholar] [CrossRef]
- Konecke, B.A.; Fiege, A.; Simon, A.C.; Parat, F.; Stechern, A. Co-variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer. Am. Mineral. 2017, 102, 548–557. [Google Scholar] [CrossRef]
- Xing, K.; Shu, Q.; Lentz, D.R.; Wang, F. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China. Am. Mineral. 2020, 105, 382–396. [Google Scholar]
- Xing, K.; Shu, Q.; Lentz, D.R. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. J. Petrol. 2021, 62, egab018. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y. In situ major-, trace-elements and Sr-Nd isotopes of apatite from the Luming porphyry Mo deposit, NE China: Constraints on the petrogenetic-metallogenic features. Ore Geol. Rev. 2018, 94, 93–103. [Google Scholar] [CrossRef]
- Pan, L.-C.; Hu, R.-Z.; Wang, X.-S.; Bi, X.-W.; Zhu, J.-J.; Li, C. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos 2016, 254, 118–130. [Google Scholar] [CrossRef]
- Audétat, A. Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado. J. Petrol. 2015, 56, 1519–1546. [Google Scholar] [CrossRef]
- Mercer, C.N.; Hofstra, A.H.; Todorov, T.I.; Roberge, J.; Burgisser, A.; Adams, D.T.; Cosca, M. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. J. Petrol. 2015, 56, 645–679. [Google Scholar] [CrossRef]
- Zafar, T.; Rehman, H.U.; Mahar, M.A.; Alam, M.; Oyebamiji, A.; Rehman, S.U.; Leng, C.B. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in North and East China: New insights from apatite geochemistry. J. Geodyn. 2020, 136, 101723. [Google Scholar] [CrossRef]
- Jugo, P.J.; Wilke, M.; Botcharnikov, R.E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochim. Cosmochim. Acta 2010, 74, 5926–5938. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R.; Zhu, M.; Wang, X.; Li, J.; Wan, B.; Xiao, W.; Zeng, Q.; Shen, P.; Sun, J.; et al. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. J. Asian Earth Sci. 2018, 165, 7–36. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Hu, R.Z. Geochemistry and crystallization conditions of magmas related to porphyry Mo mineralization in northeastern China. Econ. Geol. 2020, 115, 79–100. [Google Scholar] [CrossRef]
- Chen, J.S.; Ge, W.C.; Chen, H.J.; Xing, D.H.; Liu, M.; Li, W.W. Geochemistry and genesis of the host rock of Daheishan molybdenum deposit in Yongji, Jilin province. Geol. Resour. 2015, 24, 93–101, (In Chinese with English Abstract). [Google Scholar]
- Hu, X.L.; Yao, S.Z.; Zeng, G.P.; Liu, W.H.; Zhang, Z.J. Multistage magmatism resulting in large-scale mineralizaion: A case from the Huojihe porphyry Mo deposit in NE China. Lithos 2019, 326–327, 397–414. [Google Scholar] [CrossRef]
- Zhang, L.S.; Sun, F.Y.; Li, B.L.; Qian, Y.; Zhang, Y.J.; Wang, L.; Wang, L.L. Petrogenesis and tectonic setting of granitoids in the Fu’anpu molybdenum deposit, Lesser Xing’an-Zhangguangcai range metallogenic belt: Constraints from element geochemistry, zircon U-Pb geochronology and Sr-Nd-Hf isotopes. Acta Geol. Sin. 2021, 95, 2471–2492, (In Chinese with English Abstract). [Google Scholar]
- Qu, P.; Niu, H.C.; Weng, Q.; Li, N.B.; Zhao, Y.; Zhang, H.J. Apatite and zircon geochemistry for discriminating ore-forming intrusions in the Luming giant porphyry Mo deposit, Northeastern China. Ore Geol. Rev. 2022, 143, 104771. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhang, J.J.; Li, L.; Liu, Y.Y.; Wang, J.M.; Wang, M. Geochronology and geochemistry of the Heilongjiang Complex and the granitoids from the Lesser Xing’an-Zhangguangcai Range: Implications for the late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics 2017, 717, 565–584. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhang, J.J.; Li, L.; Liu, K. A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Lesser Xing’an-Zhangguangcai Range granitoids. Lithos 2018, 302, 263–277. [Google Scholar]
- Ge, M.H.; Zhang, J.J.; Li, L.; Liu, K. Ages and geochemistry of Early Jurassic granitoids in the Lesser Xing’an–Zhangguangcai Ranges, NE China: Petrogenesis and tectonic implications. Lithosphere 2019, 11, 804–820. [Google Scholar] [CrossRef]
- Xu, W.L.; Ji, W.Q.; Pei, F.P.; Meng, E.; Yu, Y.; Yang, D.B.; Zhang, X.Z. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications. J. Asian Earth Sci. 2009, 34, 392–402. [Google Scholar] [CrossRef]
- Wang, F.; Xu, W.L.; Xu, Y.G.; Gao, F.H.; Ge, W.C. Late Triassic bimodal igneous rocks in eastern Heilongjiang Province, NE China: Implications for the initiation of subduction of the Paleo-Pacific Plate beneath Eurasia. J. Asian Earth Sci. 2015, 97, 406–423. [Google Scholar] [CrossRef]
- Rohrlach, B.D.; Loucks, R.R. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In Super Porphyry Copper & Gold Deposits—A Global Perspective; PCG Publishing: Austin, TX, USA, 2005; pp. 369–407. [Google Scholar]
- Richards, J.P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol. 2011, 106, 1075–1081. [Google Scholar] [CrossRef]
- Dilles, J.H.; Kent, A.J.R.; Wooden, J.L.; Tosdal, R.M.; Koleszar, A.; Lee, R.G.; Farmer, L.P. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ. Geol. 2015, 110, 241–251. [Google Scholar] [CrossRef]
- Lee, R.G.; Dilles, J.H.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons. Econ. Geol. 2017, 112, 245–273. [Google Scholar] [CrossRef]
- Lee, R.G.; Byrne, K.; D’Anelo, M.; Hart, C.J.; Hollings, P.; Gleeson, S.A.; Alfaro, M. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley copper deposit, south-central British Columbia. Miner. Depos. 2020, 56, 215–238. [Google Scholar] [CrossRef]
- Li, Z.X.A.; Lee, C.T.A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 2004, 228, 483–493. [Google Scholar]
- Loucks, R.R. Distinctive composition and genesis of copper ore-forming arc magmas. Mineral. Mag. 2013, 77, 1642. [Google Scholar]
- Zhou, L.L.; Zeng, Q.D.; Liu, J.M.; Zhang, Z.L.; Duan, X.X. What triggers fertile porphyritic Mo magmas in subduction setting: A case study from the giant Daheishan Mo deposit, NE China. Lithos 2018, 316–317, 212–231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, D.-Y.; Gao, Y.; Wang, H.-C.; Ma, Y.-X.; Xu, J.; Liu, X.-T. Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization. Minerals 2024, 14, 1104. https://doi.org/10.3390/min14111104
Liu Y, Sun D-Y, Gao Y, Wang H-C, Ma Y-X, Xu J, Liu X-T. Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization. Minerals. 2024; 14(11):1104. https://doi.org/10.3390/min14111104
Chicago/Turabian StyleLiu, Yang, De-You Sun, Yang Gao, Hong-Chao Wang, Yu-Xin Ma, Jun Xu, and Xin-Tong Liu. 2024. "Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization" Minerals 14, no. 11: 1104. https://doi.org/10.3390/min14111104
APA StyleLiu, Y., Sun, D.-Y., Gao, Y., Wang, H.-C., Ma, Y.-X., Xu, J., & Liu, X.-T. (2024). Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization. Minerals, 14(11), 1104. https://doi.org/10.3390/min14111104