Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Titration Results of Leviathan Mine Water with Ca(OH)2
3.2. Titration Results of Berkeley Pit Water with Ca(OH)2
3.3. Mixing of Leviathan AMD with a Clean Tributary
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bigham, J.M.; Nordstrom, D.K. Iron and aluminum hydroxysulfates from acid sulfate waters. In Sulfate Minerals—Crystallography, Geochemistry, and Environmental Significance; Reviews in Mineralogy and Geochemistry Series; Alpers, C.N., Jambor, J.L., Nordstrom, D.K., Eds.; Mineralogical Society of America and Geochemistry Society: Washington, DC, USA, 2000; Volume 40, pp. 351–403. [Google Scholar]
- Druhan, J.; Tournassat, C. (Eds.) Reactive Transport in Natural and Engineered Systems; Reviews in Mineralogy and Geochemistry Series; Mineralogical Society of America and Geochemistry Society: Washington, DC, USA, 2019; Volume 85. [Google Scholar]
- Bigham, J.M.; Schwertmann, U.; Carlson, L. Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage. Catena Suppl. 1992, 21, 219–232. [Google Scholar]
- Flynn, C.M., Jr. Hydrolysis of inorganic iron(III) salts. Chem. Rev. 1984, 84, 31–41. [Google Scholar] [CrossRef]
- Valente, T.M.; Gomes, C. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci. Total Environ. 2009, 407, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, C.; Dinelli, E.; Marescotti, P.; Gasparotto, G.; Lucchetti, G. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. J. Geochem. Explor. 2013, 132, 188–200. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrentó, C.; Nieto, J.-M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- Schwertmann, U.; Carlson, L. The pH-dependent transformation of schwertmannite to goethite. Clay Mineral. 2005, 40, 63–66. [Google Scholar] [CrossRef]
- Sanchez-España, J. Crystallization in acidic media: From nanoparticles to macrocrystals. Seminar. Soc. Españ. Mineral. 2017, 13, 15–34. [Google Scholar]
- Henderson, G.S.; Neuville, D.R.; Downs, R.T. (Eds.) Spectroscopic Methods in Mineralogy and Materials Science; Reviews in Mineralogy and Geochemistry Series; Mineralogical Society of America Geochemistry Society: Washington, DC, USA, 2014; Volume 78. [Google Scholar]
- Beran, A.; Libowitzky, E. Spectroscopic Methods in Mineralogy; European Mineralogical Union Notes in Mineralogy; Eötvös University Press: Budapest, Hungary, 2004; Volume 6. [Google Scholar]
- Adams, F.; Hajek, B.F. Effects of solution sulfate, hydroxide, and potassium concentrations on the crystallization of alunite, basaluminite, and gibbsite from dilute aluminum solutions. Soil Sci. 1978, 126, 169–173. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description and Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In USGS Techniques and Methods 6-A43; USGS: Denver, CO, USA, 2013. [Google Scholar]
- Ball, J.W.; Nordstrom, D.K. User’s Manual for WATEQ4F, with Revised Database and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters. In U.S. Geological Survey Open-File Report 91-183; USGS: Menlo Park, CA, USA, 1991. [Google Scholar]
- Ball, J.W.; Nordstrom, D.K. Final Revised Analyses of Major and Trace Elements from Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada—October 1981 to October 1982. In U.S. Geological Survey Water-Resources Investigation Report 89-4138; USGS: Menlo Park, CA, USA, 1989. [Google Scholar]
- Duaime, T.E.; McGrath, S.F. Butte, Montana: The Berkeley Pit, Changes in Water Quality and Water Sampling Methods, 1982–2017. In Montana Bureau of Mines and Geology Bulletin 138; Montana Bureau of Mines and Geology: Butte, MT, USA, 2019. [Google Scholar]
- Pabst, A. Cryptocrystalline pyrite from Alpine County, California. Am. Miner. 1940, 25, 425–431. [Google Scholar]
- Ball, J.W.; Nordstrom, D.K. Major and Trace Element Analyses of Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada—October 1981 to October 1982. In U.S. Geological Survey Water-Resources Investigations Report 85-4169; USGS: Menlo Park, CA, USA, 1985. [Google Scholar]
- Webster, J.G.; Nordstrom, D.K.; Smith, K.S. Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant Creeks. In Environmental Geochemistry of Sulfide Oxidation; Alpers, C.N., Blowes, D.W., Eds.; American Chemical Society Symposium Series 550; American Chemical Society: Washington, DC, USA, 1994; pp. 244–260. [Google Scholar]
- Ball, J.W.; Nordstrom, D.K. A Comparison of Simultaneous Plasma, Atomic Absorption, and Iron Colorimetric Techniques for the Determination of Major and Trace Constituents in Acid Mine Waters. In U.S. Geological Survey Water-Resources Investigations Report 93-4122; USGS: Menlo Park, CA, USA, 1994. [Google Scholar]
- Nordstrom, D.K. Advances in the hydrogeochemistry and microbiology of acid mine waters. Int. Geol. Rev. 2000, 42, 499–515. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Campbell, K.M. Modeling low-temperature geochemical processes. In Surface and Ground Water, Weathering, and Soils, 2nd ed.; Drever, J.I., Ed.; Treatise on Geochemistry Series; Elsevier: New York, NY, USA, 2014; Volume 7, pp. 27–68. [Google Scholar]
- Nordstrom, D.K. The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system A12O3-SO3-H2O at 298 K. Geochim. Cosmochim. Acta 1982, 46, 681–692. [Google Scholar] [CrossRef]
- Sanchez-España, J.; Yusta, I.; Diez-Ercilla, M. Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminum concentration in acidic pit lakes. Appl. Geochem. 2011, 26, 1752–1774. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J. Acid-neutralization mechanisms in inactive mine tailings. In The Environmental Geochemistry of Sulfide Mine-Wastes; Blowes, D.W., Jambor, J.L., Eds.; Mineralogical Association Canada: Toronto, ON, Canada, 1994; Volume 22, pp. 271–292. [Google Scholar]
- Jurjovec, J.; Ptacek, C.J.; Blowes, D.W. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment. Geochim. Cosmochim. Acta 2002, 66, 1511–1523. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G.; Paktunc, D.; Gould, W.D.; Johnson, D.B. The geochemistry of acid mine drainage. In Environmental Geochemistry, 2nd ed.; Sherwood Lollar, B., Ed.; Treatise on Geochemistry Series; Elsevier: New York, NY, USA, 2014; Volume 11, pp. 149–204. [Google Scholar]
- Adams, F.; Rawajfih, Z. Basaluminite and alunite: A possible cause of sulfate retention by acid soils. Soil Sci. Soc. Amer. J. 1977, 41, 686–692. [Google Scholar] [CrossRef]
- Bigham, J.M.; Schwertmann, U.; Traina, S.J.; Winland, R.L.; Wolf, M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta 1996, 60, 2111–2121. [Google Scholar] [CrossRef]
- Regenspurg, S.; Brand, A.; Peiffer, S. Formation and stability of schwertmannite in acidic mining lakes. Geochem. Cosmochim. Acta 2004, 68, 1185–1197. [Google Scholar] [CrossRef]
- Caraballo, M.A.; Rimstidt, J.D.; Macías, F.; Nieto, J.M.; Hochella, M.F., Jr. Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of schwertmannite solubility. Chem. Geol. 2013, 360–361, 22–31. [Google Scholar] [CrossRef]
- Carlson, L.; Schwertmann, U. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 1981, 45, 421–425, 427–429. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Caraballo, M.A.; Wanty, R.B.; Verplanck, P.L.; Navarro-Valdivia, L.; Ayora, C.; Hochella, M.F., Jr. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale. Chem. Geol. 2019, 519, 1–10. [Google Scholar] [CrossRef]
Parameters | Leviathan Creek | Mountaineer Creek |
---|---|---|
Temperature, °C | 19.5 | 12.5 |
Discharge, m3/s | 0.071 (44%) | 0.091 (56%) |
pH | 3.25 | 8.85 |
Specific conductance, µS/cm | 1100 | 150 |
Constituents (mg/L) | ||
Alkalinity, as HCO3 | 0.0 | 94.3 |
Al | 19.8 | 0.045 |
Ba | 0.048 | 0.039 |
Ca | 82.2 | 13.7 |
Cd | 0.0079 | 0.0002 |
Cl | 1.1 | 1 |
Cu | 0.231 | 0.001 |
F | 0.52 | 0.04 |
Fe (II) | 9.01 | 0.0086 |
Fe (total dissolved) | 18.4 | 0.0099 |
Mg | 23.6 | 5.78 |
Mn | 3.04 | 0.022 |
K | 4.57 | 2.29 |
SiO2 | 46.4 | 42.6 |
Na | 11.8 | 6.83 |
Sr | 0.708 | 0.237 |
SO4 | 483 | 1.89 |
Constituent (mg/L, Except pH) | A | B | C | D | E | Measured |
---|---|---|---|---|---|---|
pH | 6.13 | 4.41 | 5.36 | 4.55 | 4.57 (4.64) | 4.90 |
Al | 8.75 | 4.80 | 5.90 | 4.16 | 3.67 (2.61) | 5.06 |
Ba | 0.043 | 0.043 | 0.043 | 0.043 | 0.042 (0.043) | 0.042 |
HCO3 | 37.5 | 0.87 | 0.87 | 0.88 | 0.88 (0.88) | 0.0 |
Ca | 43.8 | 43.8 | 43.8 | 43.8 | 43.8 (42.4) | 44.7 |
Cd | 0.0036 | 0.0036 | 0.0036 | 0.0036 | 0.0036 (0.0034) | 0.0040 |
Cu | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 (0.098) | 0.093 |
F | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 (0.24) | 0.30 |
Fe (total) | 8.13 | 0.00000054 | 0.0181 | 0.00167 | 0.0254 (0.0223) | 4.72 |
K | 3.30 | 3.29 | 3.30 | 3.29 | 3.29 (3.25) | 3.21 |
Mg | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 (13.3) | 13.5 |
Mn | 1.35 | 1.35 | 1.35 | 1.35 | 1.35 (1.29) | 1.26 |
Na | 9.03 | 9.02 | 9.03 | 9.02 | 9.02 (8.89) | 8.60 |
SiO2 | 44.3 | 44.2 | 44.3 | 44.2 | 44.2 (44.1) | 42.6 |
Sr | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 (0.44) | 0.44 |
SO4 | 214 | 214 | 214 | 209 | 207 (197) | 206 |
© 2020 by the USGS. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirk Nordstrom, D. Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage. Minerals 2020, 10, 547. https://doi.org/10.3390/min10060547
Kirk Nordstrom D. Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage. Minerals. 2020; 10(6):547. https://doi.org/10.3390/min10060547
Chicago/Turabian StyleKirk Nordstrom, Darrell. 2020. "Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage" Minerals 10, no. 6: 547. https://doi.org/10.3390/min10060547
APA StyleKirk Nordstrom, D. (2020). Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage. Minerals, 10(6), 547. https://doi.org/10.3390/min10060547