Label and Label-Free Detection Techniques for Protein Microarrays
Abstract
:1. Introduction
2. “New and Old” Detection Technologies
Labeling/Preparation | Handling | Instrumentation Cost | Quantitative | High Throughput | ||
---|---|---|---|---|---|---|
Labeling | Fluorescent probe | Yes/Medium | Easy | Inexpensive | Yes/No | Yes |
Radioisotope | Yes/Difficult | Difficult | Medium | Yes | Yes/No | |
Chemiluminescent probe | Yes/Medium | Easy | Inexpensive | Yes/No | Yes | |
Electrochemical probe | Yes/Medium | Easy | Inexpensive | Yes | Yes/No | |
Nanoparticles | Yes/Medium | Easy | Inexpensive | Yes | Yes | |
Non-Labeling | MS | No/Easy | Easy | Expensive | No | Yes/No |
Microcantilever | No/Difficult | Difficult | Expensive | Yes | No | |
QCM | No/Medium | Easy | Inexpensive | Yes | No | |
SPR | No/Medium | Easy | Expensive | Yes | Yes | |
AR | No/Medium | Easy | Inexpensive | Yes | Yes |
3. Label Detection
3.1. Fluorescent Labeling
3.2. Isotopic Labeling
3.3. Chemiluminescent Labeling
3.4. Electrochemically Active Probe Labeling
3.5. Nanoparticles: Macro-Labeling
4. Label-Free Detection
4.1. Mass Spectrometry (MS)
4.2. Microcantilevers
4.3. Quartz Crystal Microbalance (QCM)
4.4. Surface Plasmon Resonance (SPR) and Localized Surface Plasmon Resonance (LSPR)
4.5. Anomalous Reflection of Gold
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DeRisi, J.L.; Iyer, V.R.; Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278, 680–686. [Google Scholar] [CrossRef] [PubMed]
- MacBeath, G.; Schreiber, S.L. Printing Proteins as Microarrays for High-Throughput Function Determination. Science 2000, 289, 1760–1763. [Google Scholar] [PubMed]
- Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; et al. Global analysis of protein activities using proteome chips. Science 2001, 293, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Michaud, G.A.; Salcius, M.; Zhou, F.; Bangham, R.; Bonin, J.; Guo, H.; Snyder, M.; Predki, P.F.; Schweitzer, B.I. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotech. 2003, 21, 1509–1512. [Google Scholar] [CrossRef]
- Batista, R.; Saibo, N.; Lourenco, T.; Oliveira, M.M. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc. Natl. Acad. Sci. USA 2008, 105, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Gobert, G.N.; McInnes, R.; Moertel, L.; Nelson, C.; Jones, M.K.; Hu, W.; McManus, D.P. Transcriptomics tool for the human Schistosoma blood flukes using microarray gene expression profiling. Exp. Parasitol. 2006, 114, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.L.; Pilobello, K.T.; Mahal, L.K. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2006, 2, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Tateno, H.; Uchiyama, N.; Kuno, A.; Togayachi, A.; Sato, T.; Narimatsu, H.; Hirabayashi, J. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 2007, 17, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Feizi, T.; Fazio, F.; Chai, W.; Wong, C.H. Carbohydrate microarrays—A new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 2003, 13, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Phelps, T.J.; Palumbo, A.V.; Beliaev, A.S. Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol. 2002, 13, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Park, M.C.; Hur, J.Y.; Cho, H.S.; Park, S.H.; Suh, K.Y. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 2011, 11, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.-Y.; Usui, K.; Mihara, H. Protein-detecting microarrays: Current accomplishments and requirements. Chembiochem 2005, 6, 782–799. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.-Y.; Usui, K.; Mihara, H. Proteins: Array-Based Techniques. Wiley Enc. Chem. Biol. 2009, 4, 144–158. [Google Scholar]
- Bock, C.; Coleman, M.; Collins, B.; Davis, J.; Foulds, G.; Gold, L.; Greef, C.; Heil, J.; Heilig, J.S.; Hicke, B.; et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 2004, 4, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Kusnezow, W.; Jacob, A.; Walijew, A.; Diehl, F.; Hoheisel, J.D. Antibody microarrays: An evaluation of production parameters. Proteomics 2003, 3, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, B.; Predki, P.; Snyder, M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 2003, 3, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Uttamchandani, M.; Wang, J.; Yao, S.Q. Protein and small molecule microarrays: Powerful tools for high-throughput proteomics. Mol. Biosyst. 2006, 2, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Takahashi, M.; Nokihara, K.; Mihara, H. Peptide arrays with designed alpha-helical structures for characterization of proteins from FRET fingerprint patterns. Mol. Divers. 2004, 8, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Tomizaki, K.-Y.; Mihara, H. Screening of alpha-helical peptide ligands controlling a calcineurin-phosphatase activity. Bioorg. Med. Chem. Lett. 2007, 17, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Nokihara, K.; Mihara, H. Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem. Biol. 2003, 10, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Ojima, T.; Tomizaki, K.-Y.; Mihara, H. A designed glycopeptide array for characterization of sugar-binding proteins toward a glycopeptide chip technology. Nanobiotechnology 2005, 1, 191–200. [Google Scholar] [CrossRef]
- Tessier, P.M.; Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 2007, 447, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Snyder, M. Protein arrays and microarrays. Curr. Opin. Chem. Biol. 2001, 5, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kodadek, T. Protein microarrays: Prospects and problems. Chem. Biol. 2001, 8, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Templin, M.F.; Stoll, D.; Schwenk, J.M.; Potz, O.; Kramer, S.; Joos, T.O. Protein microarrays: Promising tools for proteomic research. Proteomics 2003, 3, 2155–2166. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.Y.; Usui, K.; Mihara, H. Protein-protein interactions and selection: Array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis. FEBS J. 2010, 277, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; Gunaratne, H.Q.; Gunnlaugsson, T.; Huxley, A.J.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef] [PubMed]
- Dwight, S.J.; Gaylord, B.S.; Hong, J.W.; Bazan, G.C. Perturbation of fluorescence by nonspecific interactions between anionic poly(phenylenevinylene)s and proteins: Implications for biosensors. J. Am. Chem. Soc. 2004, 126, 16850–16859. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Tomizaki, K.Y.; Mihara, H. Protein-fingerprint data mining of a designed α-helical peptide array. Mol. BioSyst. 2006, 2, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Giepmans, B.N.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013, 67, 215–252. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M.; Rigler, R. Sorting single molecules: Application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 1994, 91, 5740–5747. [Google Scholar] [CrossRef] [PubMed]
- Schwille, P.; Haupts, U.; Maiti, S.; Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 1999, 77, 2251–2265. [Google Scholar] [CrossRef] [PubMed]
- Doi, N.; Takashima, H.; Kinjo, M.; Sakata, K.; Kawahashi, Y.; Oishi, Y.; Oyama, R.; Miyamoto-Sato, E.; Sawasaki, T.; Endo, Y.; et al. Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res. 2002, 12, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.-Y.; Obi, M.; Mihara, H. Noncompetitive on-chip immunoassays for detection of nonlabeled antibodies based on the excluded volume effect of the target itself. Bull. Chem. Soc. Jpn. 2012, 85, 69–78. [Google Scholar] [CrossRef]
- Tomizaki, K.-Y.; Jie, X.; Mihara, H. A chromism-based assay (CHROBA) technique for in situ detection of protein kinase activity. Bioorg. Med. Chem. Lett. 2005, 15, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.-Y.; Mihara, H. Rational design of homogenous protein kinase assay platforms that allow both fluorometric and colorimetric signal readouts. Mol. Biosyst. 2006, 2, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.-Y.; Mihara, H. Phosphate-mediated molecular memory driven by two different protein kinases as information input elements. J. Am. Chem. Soc. 2007, 129, 8345–8352. [Google Scholar] [CrossRef] [PubMed]
- Yalow, R.S.; Berson, S.A. Assay of plasma insulin in human subjects by immunological methods. Nature 1959, 184, 1648–1649. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Huang, K.; Cross, F.R.; Cowburn, D.; Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 1999, 96, 6591–6596. [Google Scholar] [CrossRef] [PubMed]
- Celis, J.E.; Gromov, P. 2D protein electrophoresis: Can it be perfected? Curr. Opin. Biotechnol. 1999, 10, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Wardeh, A.J.; Kay, I.P.; Sabaté, M.; Coen, V.L.; Gijzel, A.L.; Ligthart, J.M.; den Boer, A.; Levendag, P.C.; van Der Giessen, W.J.; Serruys, P.W. β-Particle−emitting radioactive stent implantation: A safety and feasibility study. Circulation 1999, 100, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.E.; Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Prot. 2006, 1, 2650–2660. [Google Scholar] [CrossRef]
- Weeks, I. Chemiluminescence Immunoassay. In Wilson and Wilson’s Comprehensive Analytical Chemistry; Svehla, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 29. [Google Scholar]
- Szkola, A.; Linares, E.M.; Worbs, S.; Dorner, B.G.; Dietrich, R.; Martlbauer, E.; Niessner, R.; Seidel, M. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst 2014, 139, 5885–5892. [Google Scholar] [CrossRef] [PubMed]
- Rongen, H.A.; Hoetelmans, R.M.; Bult, A.; van Bennekom, W.P. Chemiluminescence and immunoassays. J. Pharm. Biomed. Anal. 1994, 12, 433–462. [Google Scholar] [CrossRef] [PubMed]
- Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef] [PubMed]
- Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Goda, T.; Miyahara, Y. Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistors. Biosens. Bioelectron. 2013, 45, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Esfandyarpour, R.; Javanmard, M.; Koochak, Z.; Esfandyarpour, H.; Harris, J.S.; Davis, R.W. Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 2013, 7, 044114. [Google Scholar] [CrossRef]
- Das, J.; Cederquist, K.B.; Zaragoza, A.A.; Lee, P.E.; Sargent, E.H.; Kelley, S.O. An ultrasensitive universal detector based on neutralizer displacement. Nat. Chem. 2012, 4, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Romanov, V.; Davidoff, S.N.; Miles, A.R.; Grainger, D.W.; Gale, B.K.; Brooks, B.D. A critical comparison of protein microarray fabrication technologies. Analyst 2014, 139, 1303–1326. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Hainfeld, J.F.; Furuya, F.R. A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J. Histochem. Cytochem. 1992, 40, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Fendler, J.H.; Roy, D. Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol. J. Phys. Chem. B 2001, 105, 11159–11168. [Google Scholar] [CrossRef]
- Li, T.; Liu, D.J.; Wang, Z.X. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens. Bioelectron. 2009, 24, 3335–3339. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Jin, R.; Nam, J.M.; Thaxton, C.S.; Mirkin, C.A. Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc. 2003, 125, 14676–14677. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Su, M.; Ma, L.; Liu, D.; Wang, Z. Studying chemical-regulation of intracellular kinase activity by peptide microarray-based assay with gold nanoparticle probes. Anal. Methods 2014, 6, 9404–9409. [Google Scholar] [CrossRef]
- Bischoff, R.; Luider, T.M. Methodological advances in the discovery of protein and peptide disease markers. J. Chromatogr. B 2004, 803, 27–40. [Google Scholar] [CrossRef]
- Geng, X.; Wang, F.; Li, Y.G.; Zhu, G.P.; Zhang, W.M. SELDI-TOF MS proteinchip technology for screening of serum markers of HBV-induced hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2007, 26, 505–508. [Google Scholar] [PubMed]
- Kozak, K.R.; Amneus, M.W.; Pusey, S.M.; Su, F. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12343–12348. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.; Ward, M.D.; Gupta, S.K.; Trosset, M.W. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin. Cancer Res. 2005, 11, 1073–1085. [Google Scholar] [PubMed]
- Heintz, D.; Wurtz, V.; High, A.A.; Van Dorsselaer, A.; Reski, R.; Sarnighausen, E. An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades. Electrophoresis 2004, 25, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.-S.; Min, D.-H.; Hsieh, R.W.; Greene, G.L.; Mrksich, M. Label-free detection of protein-protein interactions on biochips. Angew. Chem. Int. Ed. 2005, 44, 5480–5483. [Google Scholar] [CrossRef]
- Laurent, N.; Voglmeir, J.; Wright, A.; Blackburn, J.; Pham, N.T.; Wong, S.C.C.; Gaskell, S.J.; Flitsch, S.L. Enzymatic glycosylation of peptide arrays on gold surfaces. ChemBioChem 2008, 9, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Lomas, L.; Austen, B. Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. Biotechniques 1999, 27, 1258–1261. [Google Scholar] [PubMed]
- Linke, T.; Ross, A.C.; Harrison, E.H. Profiling of rat plasma by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, a novel tool for biomarker discovery in nutrition research. J. Chromatogr. A 2004, 1043, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Nomura, F.; Tomonaga, T.; Sogawa, K.; Ohashi, T.; Nezu, M.; Sunaga, M.; Kondo, N.; Iyo, M.; Shimada, H.; Ochiai, T. Identification of novel and downregulated biomarkers for alcoholism by surface enhanced laser desorption/ionization-mass spectrometry. Proteomics 2004, 4, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Leow, C.K.; Lu, X.; Zhang, X.; Liu, J.S.; Wong, W.H.; Asperger, A.; Deininger, S.; Eastwood Leung, H.C. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics. Proteomics 2004, 4, 3235–3245. [Google Scholar] [CrossRef] [PubMed]
- Giljohann, D.A.; Mirkin, C.A. Tiny tiles, tiny targets. Nat. Biotechnol. 2008, 26, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Venema, L. Applied physics: Weight inside. Nature 2007, 446, 994. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Hegner, M.; Gerber, C.; Guntherodt, H.J.; Lang, H.P. Label free analysis of transcription factors using microcantilever arrays. Biosens. Bioelectron. 2006, 21, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Dhayal, B.; Henne, W.A.; Doomeweerd, D.D.; Reifenberger, R.G.; Low, P.S. Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays. J. Am. Chem. Soc. 2006, 128, 3716–3721. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Datar, R.H.; Hansen, K.M.; Thundat, T.; Cote, R.J.; Majumdar, A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001, 19, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Arntz, Y.; Seelig, J.D.; Lang, H.P.; Zhang, J.; Hunziker, P.; Ramseyer, J.P.; Meyer, E.; Hegner, M.; Gerber, C. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 2003, 14, 86–90. [Google Scholar] [CrossRef]
- Gupta, A.; Akin, D.; Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 2004, 84, 1976–1978. [Google Scholar] [CrossRef]
- Thompson, M.; Cheran, L.-E.; Zhang, M.; Chacko, M.; Huo, H.; Sadeghi, S. Label-free detection of nucleic acid and protein microarrays by scanning Kelvin nanoprobe. Biosens. Bioelectron. 2005, 20, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Boisen, A.; Thundat, T. Design and fabrication of cantilever array sensors. Mater. Today 2009, 12, 32–38. [Google Scholar] [CrossRef]
- Höök, F.; Rodahl, M.; Kasemo, B.; Brzezinski, P. Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding. Proc. Natl. Acad. Sci. USA 1998, 95, 12271–12276. [Google Scholar] [CrossRef] [PubMed]
- Höök, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 1998, 14, 729–734. [Google Scholar] [CrossRef]
- Mori, T.; Toyoda, M.; Ohtsuka, T.; Okahata, Y. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal. Biochem. 2009, 395, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Singleton, V.T. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: Applications of acoustic physics to the analysis of biomolecular interactions. J. Mol. Recognit. 2007, 20, 154–184. [Google Scholar] [CrossRef] [PubMed]
- Ogi, H.; Nagai, H.; Fukunishi, Y.; Yanagida, T.; Hirao, M.; Nishiyama, M. Multichannel wireless-electrodeless quartz-crystal microbalance immunosensor. Anal. Chem. 2010, 82, 3957–3962. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yu, F.; Zare, R.N. Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 2008, 8, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Safsten, P.; Klakamp, S.L.; Drake, A.W.; Karlsson, R.; Myszka, D.G. Screening antibody-antigen interactions in parallel using Biacore A100. Anal. Biochem. 2006, 353, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Yeatman, E.; Ash, E.A. Surface plasmon microscopy. Electron. Lett. 1987, 23, 1091–1092. [Google Scholar] [CrossRef]
- Yeatman, E.; Ash, E.A. Surface Plasmon Scanning Microscopy. SPIE Scanning Microsc. Technol. Appl. 1988, 897, 100–107. [Google Scholar]
- Rothenhausler, B.; Knoll, W. Surface-plasmon microscopy. Nature 1988, 332, 615–617. [Google Scholar] [CrossRef]
- Hickel, W.; Kamp, D.; Knoll, W. Surface-plasmon microscopy. Nature 1989, 339, 186–188. [Google Scholar] [CrossRef]
- Kano, H.; Kawata, S. Grating-coupled surface plasmon for measuring the refractive index of a liquid sample. Jpn. J. Appl. Phys. 1995, 34, 331–335. [Google Scholar] [CrossRef]
- Campbell, C.T.; Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 2007, 28, 2380–2392. [Google Scholar] [CrossRef] [PubMed]
- Nand, A.; Singh, V.; Perez, J.B.; Tyagi, D.; Cheng, Z.; Zhu, J. In situ protein microarrays capable of real-time kinetics analysis based on surface plasmon resonance imaging. Anal. Biochem. 2014, 464, 30–35. [Google Scholar]
- Jensen, T.R.; Malinsky, M.D.; Haynes, C.L.; van Duyne, R.P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556. [Google Scholar] [CrossRef]
- Endo, T.; Kerman, K.; Nagatani, N.; Hiepa, H.M.; Kim, D.K.; Yonezawa, Y.; Nakano, K.; Tamiya, E. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal. Chem. 2006, 78, 6465–6475. [Google Scholar] [CrossRef] [PubMed]
- Raphael, M.P.; Christodoulides, J.A.; Mulvaney, S.P.; Miller, M.M.; Long, J.P.; Byers, J.M. A new methodology for quantitative LSPR biosensing and imaging. Anal. Chem. 2012, 84, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Kajikawa, K. An optical fiber biosensor based on anomalous reflection of gold. Sens. Actuators B Chem. 2003, 89, 126–130. [Google Scholar] [CrossRef]
- Watanabe, S.; Usui, K.; Tomizaki, K.Y.; Kajikawa, K.; Mihara, H. Anomalous reflection of gold applicable for a practical protein-detecting chip platform. Mol. Biosyst. 2005, 1, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Tomizaki, K.Y.; Takahashi, T.; Usui, K.; Kajikawa, K.; Mihara, H. Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Biopolymers 2007, 88, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Manaka, Y.; Kudo, Y.; Yoshimine, H.; Kawasaki, T.; Kajikawa, K.; Okahata, Y. Simultaneous anomalous reflection and quartz-crystal microbalance measurements of protein bindings on a gold surface. Chem. Commun. 2007, 3574–3576. [Google Scholar] [CrossRef]
- Fukuba, S.; Naraoka, R.; Tsuboi, K.; Kajikawa, K. A new imaging method for gold-surface adsorbates based on anomalous reflection. Opt. Commun. 2009, 282, 3386–3391. [Google Scholar] [CrossRef]
- Syahir, A.; Tomizaki, K.-Y.; Kajikawa, K.; Mihara, H. Poly(amidoamine)-dendrimer-modified gold surfaces for anomalous reflection of gold to detect biomolecular interactions. Langmuir 2009, 25, 3667–3674. [Google Scholar] [CrossRef] [PubMed]
- Syahir, A.; Mihara, H.; Kajikawa, K. A new optical label-free biosensing platform based on a metal-insulator-metal structure. Langmuir 2010, 26, 6053–6057. [Google Scholar] [CrossRef] [PubMed]
- Syahir, A.; Kajikawa, K.; Mihara, H. Enhanced refractive index sensitivity for anomalous reflection of gold to improve performance of bio-molecular detection. Sens. Actuat. B. 2014, 190, 357–362. [Google Scholar] [CrossRef]
- Syahir, A.; Kajikawa, K.; Mihara, H. Sensitive detection of small molecule-protein interactions on a metal-insulator-metal label-free biosensing platform. Chem. Asian J. 2012, 7, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syahir, A.; Usui, K.; Tomizaki, K.-y.; Kajikawa, K.; Mihara, H. Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays 2015, 4, 228-244. https://doi.org/10.3390/microarrays4020228
Syahir A, Usui K, Tomizaki K-y, Kajikawa K, Mihara H. Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays. 2015; 4(2):228-244. https://doi.org/10.3390/microarrays4020228
Chicago/Turabian StyleSyahir, Amir, Kenji Usui, Kin-ya Tomizaki, Kotaro Kajikawa, and Hisakazu Mihara. 2015. "Label and Label-Free Detection Techniques for Protein Microarrays" Microarrays 4, no. 2: 228-244. https://doi.org/10.3390/microarrays4020228
APA StyleSyahir, A., Usui, K., Tomizaki, K.-y., Kajikawa, K., & Mihara, H. (2015). Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays, 4(2), 228-244. https://doi.org/10.3390/microarrays4020228