A High-Repeatability Three-Dimensional Force Tactile Sensing System for Robotic Dexterous Grasping and Object Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Sensor Design and Operational Principle
2.2. Finite Element Modeling
3. Experimental Parameters
3.1. Fabrication Process
3.2. Experimental Set-Up
4. Results and Discussion
5. Application Prospects
5.1. Robotic Dexterous Hand Integration
5.2. Object Hardness Recognition
5.3. Grasping Object Recognition
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Gregorio, D.; Zanella, R.; Palli, G.; Pirozzi, S.; Melchiorri, C. Integration of Robotic Vision and Tactile Sensing for Wire-Terminal Insertion Tasks. IEEE Trans. Autom. Sci. Eng. 2019, 16, 585–598. [Google Scholar] [CrossRef]
- Lathuilière, S.; Massé, B.; Mesejo, P.; Horaud, R. Neural Network Based Reinforcement Learning for Audio–Visual Gaze Control in Human–Robot Interaction. Pattern Recognit. Lett. 2019, 118, 61–71. [Google Scholar] [CrossRef]
- Billard, A.; Kragic, D. Trends and Challenges in Robot Manipulation. Science 2019, 364, eaat8414. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, S.; Wang, L.; Zhu, R. Skin-Inspired Quadruple Tactile Sensors Integrated on a Robot Hand Enable Object Recognition. Sci. Robot. 2020, 5, eabc8134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, H.; Mo, J.; Chen, S.; Xie, Y.; Ma, S.; Chen, R.; Luo, T.; Ling, W.; Qin, L.; et al. Finger-Inspired Rigid-Soft Hybrid Tactile Sensor with Superior Sensitivity at High Frequency. Nat. Commun. 2022, 13, 5076. [Google Scholar] [CrossRef]
- Liu, S.Z.; Guo, W.T.; Chen, H.; Yin, Z.X.; Tang, X.G.; Sun, Q.J. Recent Progress on Flexible Self-Powered Tactile Sensing Platforms for Health Monitoring and Robotics. Small 2024, 20, 2405520. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, S.; Zhang, Z.; Mei, D.; Wang, Y. Progress on Flexible Tactile Sensors in Robotic Applications on Objects Properties Recognition, Manipulation and Human-Machine Interactions. Soft Sci. 2023, 3, 8. [Google Scholar] [CrossRef]
- Qu, J.; Mao, B.; Li, Z.; Xu, Y.; Zhou, K.; Cao, X.; Fan, Q.; Xu, M.; Liang, B.; Liu, H.; et al. Recent Progress in Advanced Tactile Sensing Technologies for Soft Grippers. Adv. Funct. Mater. 2023, 33, 2306249. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, L.; Liu, H. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.T.; Zhao, X.H.; Sun, Q.J.; Tang, Z.; Tang, X.G.; Roy, V.A.L. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. Small 2023, 19, 2300283. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Z.; Zhao, W.; Huang, H.; Wang, S.; Zhang, Q.; Zhong, D.; Lin, W.; Ding, N.; Peng, Z. Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like Architecture. ACS Appl. Mater. Interfaces 2020, 12, 26137–26144. [Google Scholar] [CrossRef]
- Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Chun, S.; Kim, D.W.; Kim, J.; Pang, C. A Transparent, Glue-Free, Skin-Attachable Graphene Pressure Sensor with Micropillars for Skin-Elasticity Measurement. Nanotechnology 2019, 30, 335501. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lü, X.; Zhao, J.; Wang, W.; Meng, X.; Wang, P.; Li, F. Flexible Capacitive Pressure Sensor Based on Microstructured Composite Dielectric Layer for Broad Linear Range Pressure Sensing Applications. Micromachines 2022, 13, 223. [Google Scholar] [CrossRef]
- Niu, H.; Gao, S.; Yue, W.; Li, Y.; Zhou, W.; Liu, H. Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure. Small 2020, 16, 1904774. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhou, Q.; Hu, B.; Zhong, J.; Zhou, J.; Zhou, B. Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range. Adv. Mater. 2021, 33, 2100859. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Heting, W.; Lin, X.; Hainan, Z.; Ya, Y.; Lin, W.Z. Hierarchically Patterned Self-Powered Sensors for Multifunctional Tactile Sensing. Sci. Adv. 2022, 6, eabb9083. [Google Scholar] [CrossRef]
- Guo, W.T.; Lei, Y.; Zhao, X.H.; Li, R.; Lai, Q.T.; Liu, S.Z.; Chen, H.; Fan, J.C.; Xu, Y.; Tang, X.G.; et al. Printed-Scalable Microstructure BaTiO3/Ecoflex Nanocomposite for High-Performance Triboelectric Nanogenerators and Self-Powered Human-Machine Interaction. Nano Energy 2024, 131, 110324. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, J.; Wang, C.; Ren, K.; Wang, Z.L. A Monocharged Electret Nanogenerator-Based Self-Powered Device for Pressure and Tactile Sensor Applications. Adv. Funct. Mater. 2019, 29, 1807618. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-Integrated Wireless Haptic Interfaces for Virtual and Augmented Reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
- Cai, J.-H.; Li, J.; Chen, X.-D.; Wang, M. Multifunctional Polydimethylsiloxane Foam with Multi-Walled Carbon Nanotube and Thermo-Expandable Microsphere for Temperature Sensing, Microwave Shielding and Piezoresistive Sensor. Chem. Eng. J. 2020, 393, 124805. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, N.; Liu, W.; Li, M.; Ma, Y.; Luo, C.; Wang, S.; Rao, J.; Hu, X.; Su, J.; et al. 3D Hybrid Porous Mxene-Sponge Network and Its Application in Piezoresistive Sensor. Nano Energy 2018, 50, 79–87. [Google Scholar] [CrossRef]
- Shi, Y.; Lü, X.; Wang, W.; Meng, X.; Zhao, J.; Wang, P.; Bai, G. Multilayer Flexible Pressure Sensor With High Sensitivity Over Wide Linearity Detection Range (August 2021). IEEE Trans. Instrum. Meas. 2021, 70, 9511809. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos. Sci. Technol. 2017, 139, 64–73. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, Z.; Yang, Z.; Yuan, W.; Song, C.; Pan, J.; Shen, Y. Soft Magnetic Skin for Super-Resolution Tactile Sensing with Force Self-Decoupling. Sci. Robot. 2021, 6, eabc8801. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Bao, W.; Wang, S.; Tao, Y.; Yang, J.; Jiang, L.; Jiang, J.; Li, X.; Xie, X.; Chen, R. Three-Dimensional Interfacial Stress Decoupling Method for Rehabilitation Therapy Robot. IEEE Trans. Ind. Electron. 2017, 64, 3970–3977. [Google Scholar] [CrossRef]
- Song, Y.; Wang, F.; Zhang, Z. Decoupling Research of a Novel Three-Dimensional Force Flexible Tactile Sensor Based on an Improved BP Algorithm. Micromachines 2018, 9, 236. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal Sensors with Decoupled Sensing Mechanisms. Adv. Sci. 2022, 9, 2202470. [Google Scholar] [CrossRef]
- Kong, D.; Yang, G.; Pang, G.; Ye, Z.; Lv, H.; Yu, Z.; Wang, F.; Wang, X.V.; Xu, K.; Yang, H. Bioinspired Co-Design of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Adv. Intell. Syst. 2022, 4, 2200050. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, L.; Lin, W.; Xu, Y.; Xia, X.; Peng, Z.; Sun, Z.; Wang, Z. Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities. Adv. Intell. Syst. 2023, 5, 2200371. [Google Scholar] [CrossRef]
- Park, H.; Park, K.; Mo, S.; Kim, J. Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing. IEEE Trans. Robot. 2021, 37, 1570–1583. [Google Scholar] [CrossRef]
- Choi, H.; Kong, K. A Soft Three-Axis Force Sensor Based on Radially Symmetric Pneumatic Chambers. IEEE Sens. J. 2019, 19, 5229–5238. [Google Scholar] [CrossRef]
- Kaidarova, B.A.; Liu, W.; Swanepoel, L.; Almansouri, A.; Geraldi, N.R.; Duarte, C.M.; Kosel, J. Flexible Hall Sensor Made of Laser-Scribed Graphene. npj Flex. Electron. 2021, 5, 2. [Google Scholar] [CrossRef]
Component | Dimensions | Elastic Modulus | Poisson Ratio |
---|---|---|---|
Cover layer | 5 mm × 5 mm × 0.02 mm | 2.9 GPa | 0.370 |
Supporting layer | Rectangular: 5 mm × 5 mm × 0.15 mm Hollow: Φ2.5 mm × 0.15 mm | 2.0 MPa | 0.480 |
Sensing layer | Φ2.5 mm × 0.1 mm | 2.2 MPa | 0.473 |
Electrode layer | 5 mm × 5 mm × 0.09 mm | 200 GPa | 0.300 |
Object Type | Class |
---|---|
Baseball | 1 |
Cylinder block | 2 |
Rectangular block | 3 |
Rubik’s cube | 4 |
Triangular prism | 5 |
Sponge | 6 |
Table tennis | 7 |
Paper cup | 8 |
Egg | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Lü, X.; Wang, W.; Zhou, X.; Zhu, W. A High-Repeatability Three-Dimensional Force Tactile Sensing System for Robotic Dexterous Grasping and Object Recognition. Micromachines 2024, 15, 1513. https://doi.org/10.3390/mi15121513
Shi Y, Lü X, Wang W, Zhou X, Zhu W. A High-Repeatability Three-Dimensional Force Tactile Sensing System for Robotic Dexterous Grasping and Object Recognition. Micromachines. 2024; 15(12):1513. https://doi.org/10.3390/mi15121513
Chicago/Turabian StyleShi, Yaoguang, Xiaozhou Lü, Wenran Wang, Xiaohui Zhou, and Wensong Zhu. 2024. "A High-Repeatability Three-Dimensional Force Tactile Sensing System for Robotic Dexterous Grasping and Object Recognition" Micromachines 15, no. 12: 1513. https://doi.org/10.3390/mi15121513
APA StyleShi, Y., Lü, X., Wang, W., Zhou, X., & Zhu, W. (2024). A High-Repeatability Three-Dimensional Force Tactile Sensing System for Robotic Dexterous Grasping and Object Recognition. Micromachines, 15(12), 1513. https://doi.org/10.3390/mi15121513