The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study
Abstract
:1. Introduction
2. Model and Methods
2.1. PFC Model
2.2. Kinetic Equation
2.3. Parameters Setting of Simulation
2.4. Applied Stress Calculation Model
3. Results and Analysis of Simulation
3.1. The Initial Equilibrium Process of the Sample A
3.2. Motion Process of Dislocations in the Sample A
3.3. Dynamic Evolution of Dislocations in the Sample B
4. Discussion
5. Conclusions
- The size of the orientation angle affects the complexity of the dislocation reaction. There are three dislocation reaction forms in the evolution of grain boundary dislocations with misorientation angles of and . Dislocation reactions are more complex in systems with larger misorientation angles.
- Grain boundaries can be activated as dislocation sources to emit dislocations. The misorientation angle has a significant effect on the frequency of dislocation emission.
- The frequency of dislocations’ emission is higher when the misorientation angle is larger than when it is small. It can also be said that when the misorientation angle is large, a new source of dislocation is activated. Therefore, it can be speculated in theory that when the grain size is small, the grain boundary misorientation angle can be appropriately increased, which can activate more dislocation sources and increase the toughness of nanomaterials. In addition, Increasing the misorientation increases the dislocation density.
- The bi-crystal releases stress through the motion, proliferation, and annihilation of dislocations. When the orientation angle increases, dislocation proliferation (dissociation) and annihilation become more frequent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimokawa, T.; Kinari, T.; Shintaku, S. Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Phys. Rev. B 2007, 75, 144108. [Google Scholar] [CrossRef]
- Feng, H.; Pang, J.; Fang, Q.; Chen, C.; Wen, P. Enhanced ductility of nanomaterials through cooperative dislocation emission from cracks and grain boundaries. Int. J. Mech. Sci. 2020, 179, 105652. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, C.; Tieu, K.; Pei, L.Q.; Zhao, X.; Cheng, K.Y. Molecular dynamics study on the grain boundary dislocation source in nanocrystalline copper under tensile loading. Mater. Res. Express. 2015, 2, 035009. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Xiong, J.; Wei, D.; Ding, Y.; Zhang, B.; Wu, R.; Zhang, X. Effect of Dislocation Mechanism on Elastoplastic Behavior of Crystals with Heterogeneous Dislocation Distribution. Acta Mech. Solida Sin. 2020, 33, 487–495. [Google Scholar] [CrossRef]
- Sun, B.; Shen, T. Probing the Deformation Mechanisms of Nanocrystalline Silver by In-Situ Tension and Synchrotron X-ray Diffraction. Metals 2020, 10, 1635. [Google Scholar] [CrossRef]
- Zhang, X.; Andrä, H.; Harjo, S.; Gong, W.; Kawasaki, T.; Lutz, A.; Lahres, M. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Mater. Des. 2021, 198, 109339. [Google Scholar] [CrossRef]
- Kumar, K.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.N.; Guo, E.Y.; Kang, H.J.; Liu, Y.; Zou, C.L.; Li, R.G.; Yin, G.M.; Wang, T.M. Influence of Cryorolling on the Precipitation of Cu–Ni–Si Alloys: An In Situ X-ray Diffraction Study. Acta Met. Sin. 2018, 31, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Song, J.; Liu, G.; Liu, Y.; Wang, J.; Zeng, X. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study. Scr. Mater. 2021, 194, 113621. [Google Scholar] [CrossRef]
- Spearot, D.E.; Jacob, K.I.; McDowell, D.L. Nucleation of dislocations from [001] bicrystal interfaces in aluminum. Acta Mater. 2005, 53, 3579–3589. [Google Scholar] [CrossRef]
- Spearot, D.E.; Jacob, K.I.; McDowell, D.L. Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 2007, 23, 143–160. [Google Scholar] [CrossRef]
- Wang, J. Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction. JOM 2015, 67, 1515–1525. [Google Scholar] [CrossRef]
- Singh, D.; Parashar, A. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium. Comput. Mater. Sci. 2018, 143, 126–132. [Google Scholar] [CrossRef]
- Feng, Y.X.; Shang, J.X.; Qin, S.J. Tensile response of (1 1 0) twist grain boundaries in tungsten: A molecular dynamics study. Comput. Mater. Sci. 2019, 159, 265–272. [Google Scholar] [CrossRef]
- Kuhr, B.; Farkas, D.; Robertson, I.M.; Johnson, D.; Was, G. Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries. Met. Mater. Trans. A 2020, 51, 667–683. [Google Scholar] [CrossRef]
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Backofen, R.; Wang, J.; Zhou, Y.; Voigt, A.; Yu, Y.M. Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth. J. Cryst. Growth 2011, 334, 146–152. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Z.; Guo, Y.; Wang, J.; Yu, Y.; Zhou, Y. Atomic scale modeling of vicinal surface growth from melts using the phase-field crystal method. J. Cryst. Growth 2013, 374, 11–17. [Google Scholar] [CrossRef]
- Wu, K.A.; Adland, A.; Karma, A. Phase-field-crystal model for fcc ordering. Phys. Rev. E 2010, 81, 061601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chen, Z.; Yang, T. Simulation of structure and deformation of asymmetrical tilt grain boundaries with small misorientation angles by two-mode phase field crystal method. Rare Metal Mater. Eng. 2014, 43, 610–614. [Google Scholar]
- Wu, L.; Pan, R.; Zhang, W.; Chen, Z.; Wang, H.; Zhang, J. Two-mode phase field crystal study of evolution of grain boundaries and dislocations in hexagonal to square phase transformation. Rare Metal Mater. Eng. 2020, 49, 4103–4111. [Google Scholar] [CrossRef]
- Yun, J.J.; Chen, Z.; Li, S.J. Multistage microstructural evolution caused by deformation in two-mode phase field crystals. Acta Phys. Sin. 2014, 63, 098106. [Google Scholar] [CrossRef]
- Kong, L.Y.; Lum, Y.J.; Deng, Q.Q.; Huang, L.L.; Luo, Z.R.; Gao, Y.J. Phase field crystal simulation of grain boundary annihilation with two-dimensional large orientation Angle. J. Guangxi Acad. Sci. 2017, 33, 8–13. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Z.; Yu, G.G.; Xi, W.; Peng, Y.Y. Phase-field-crystal study on the reaction mechanisms of opposite sign edge dislocations appearing in the deformation processes of asymmetric tilt sub-grain boundary system. Comput. Mater. Sci. 2016, 124, 195–203. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, Y.; Chen, Z. A binary phase field crystal study for liquid phase heteroepitaxial growth. Superlattices Microstruct. 2016, 97, 132–139. [Google Scholar] [CrossRef]
- Tian, X.L.; Zhao, Y.H.; Peng, D.W.; Guo, Q.W.; Guo, Z.; Hou, H. Phase-field crystal simulation of evolution of liquid pools in grain boundary pre-melting regions. Trans. Nonferrous Met. Soc. China 2021, 31, 1175–1188. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Sun, Y.; Tian, J.; Hou, H.; Qi, K.; Tian, X. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary. Superlattices Microstruct. 2019, 129, 163–175. [Google Scholar] [CrossRef]
- Qi, K.W.; Zhao, Y.H.; Guo, H.J.; Tian, X.L.; Hou, H. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Phys. Sin. 2019, 68, 170504. [Google Scholar] [CrossRef]
- Gao, Y.J.; Deng, Q.Q.; Liu, Z.Y.; Huang, Z.J.; Li, Y.X.; Luo, Z.R. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling. J. Mater. Sci. Technol. 2020, 49, 236–250. [Google Scholar] [CrossRef]
- Gao, Y.J.; Huang, L.L.; Deng, Q.Q.; Zhou, W.Q.; Luo, Z.R.; Lin, K. Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Mater. 2016, 117, 238–251. [Google Scholar] [CrossRef]
- Hirouchi, T.; Takaki, T.; Tomita, Y. Development of numerical scheme for phase field crystal deformation simulation. Comput. Mater. Sci. 2009, 44, 1192–1197. [Google Scholar] [CrossRef]
- Kong, L.Y.; Gao, Y.J.; Deng, Q.Q.; Luo, Z.-R.; Lu, Y.J. A Study of Strain-Driven Nucleation and Extension of Deformed Grain: Phase Field Crystal and Continuum Modeling. Materials 2018, 11, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, C.; Zhang, H.; Cao, Q.; Wang, X.; Zhang, D.; Ramamurty, U.; Jiang, J. On the critical thickness for non-localized to localized plastic flow transition in metallic glasses: A molecular dynamics study. Scr. Mater. 2016, 114, 93–97. [Google Scholar] [CrossRef]
- Sundararajan, G.; Tirupataiah, Y. The localization of plastic flow under dynamic indentation conditions: I. Experimental results. Acta Mater. 2006, 54, 565–575. [Google Scholar] [CrossRef]
Sample | Temperature | InitialDensity | Strain Rate | Crystal Orientation Angle | Misorientation Angle | |
---|---|---|---|---|---|---|
A | 8 | |||||
B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, H.; Yan, S.; Zhang, Y.; Tian, X.; Peng, D.; Zhao, Y. The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study. Metals 2022, 12, 712. https://doi.org/10.3390/met12050712
Wang X, Zhang H, Yan S, Zhang Y, Tian X, Peng D, Zhao Y. The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study. Metals. 2022; 12(5):712. https://doi.org/10.3390/met12050712
Chicago/Turabian StyleWang, Xiaona, Haibin Zhang, Shinong Yan, Yongmei Zhang, Xiaolin Tian, Dunwei Peng, and Yuhong Zhao. 2022. "The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study" Metals 12, no. 5: 712. https://doi.org/10.3390/met12050712
APA StyleWang, X., Zhang, H., Yan, S., Zhang, Y., Tian, X., Peng, D., & Zhao, Y. (2022). The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study. Metals, 12(5), 712. https://doi.org/10.3390/met12050712