On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids
Abstract
:1. Introduction
2. Problem Formulation and Coordinate System
3. Computational Scheme
4. Physical Interpretation and Analysis
4.1. Assessment of Velocity Distribution
4.2. Assessment of Temperature Distribution
4.3. Assessment of Concentration Distribution
4.4. Assessment of local Nusselt Number
5. Conclusions
- Increase in Brownian motion parameter enhances the flow temperature field, however the same goes for a declination of concentration field.
- Rise in thermophrases parameter improves the fluid temperature as well as concentration field.
- Larger values of Lewis number corresponds to the high concentration profile.
- Casson fluid parameter is found to be a reducing factor for fluid movement; therefore, admitting the higher quantity of Casson fluid parameter causes a reduction in fluid velocity.
- Increment in magnetic parameter and angle of inclination are reducing factors for the motion of fluid; however, the opposite performance in terms of heat transfer rate via Nusselt number is noted for the two parameters.
- The higher amount of Marangoni number condenses the active connectivity, which leads to improve the velocity profile.
- Temperature distribution rises up for the larger values of heat source sink.
- Increase in the Marangoni and Prandtl numbers show high increment on average Nusselt number, which leads to the conclusion that less heat exchange happens near the disk, while small values of fractional and physical parameters , , , , , , , , and manifest the high heat exchange rate near the boundary of the disk.
Author Contributions
Funding
Conflicts of Interest
References
- Hayat, T.; Aziz, A.; Muhammad, T.; Ahmad, B. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. J. Mag. Mag. Mater. 2016, 408, 99–106. [Google Scholar] [CrossRef]
- Hayat, T.; Mumtaz, M.; Shafiq, A.; Alsaedi, A. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Appl. Math. Mech. 2017, 38, 271–288. [Google Scholar] [CrossRef]
- Hayat, T.; Shafiq, A.; Alsaedi, A.; Awais, M. MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer. Comput. Fluids 2013, 86, 103–108. [Google Scholar] [CrossRef]
- Hayat, T.; Shafiq, A.; Nawaz, M.; Alsaedi, A. MHD axisymmetric flow of third grade fluid between porous disks with heat transfer. Appl. Math. Mech. 2012, 33, 749–764. [Google Scholar] [CrossRef]
- Shafiq, A.; Hammouch, Z.; Sindhu, T.N. Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating. Int. J. Mech. Sci. 2017, 133, 759–766. [Google Scholar] [CrossRef]
- Shateyi, S.; Makinde, D. Numerical analysis of MHD stagnation point flow towards a radially stretching convectively heated disk. In Proceedings of the International Conference on Mechanics, Fluids, Heat, Elasticity and Electromagnetic Fields (MFHEEF 2013), Venice, Italy, 28–30 September 2013; pp. 1–8. [Google Scholar]
- Hayat, T.; Shafiq, A.; Alsaedi, A. MHD axisymmetric flow of third grade fluid by a stretching cylinder. Alex. Eng. J. 2015, 54, 205–212. [Google Scholar] [CrossRef]
- Shafiq, A.; Nawaz, M.; Hayat, T.; Alsaedi, A. Magnetohydrodynamic axisymmetric flow of a third-grade fluid between two porous disks. Braz. J. Chem. Eng. 2013, 30, 599–609. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Shafiq, A.; Durur, H. Influence of Chemical Reaction on Marangoni Convective Flow of Nanoliquid in the Presence of Lorentz Forces and Thermal Radiation: A Numerical Investigation. J. Adv. Nanotechnol. 2019, 1, 32–49. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Shafiq, A. Marangoni Effect in Second Grade Forced Convective Flow of Water Based Nanofluid. J. Adv. Nanotechnol. 2019, 1, 50–61. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Shehzad, S.A. Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Phys. E Low-Dim. Syst. Nanostrut. 2017, 94, 25–30. [Google Scholar] [CrossRef]
- Kumar, G.; Gireesha, K.; Prasannakumara, B.J.; Makinde, O.D. Impact of Chemical Reaction on Marangoni Boundary Layer Flow of a Casson Nano Liquid in the Presence of Uniform Heat Source Sink. Diffus. Found. 2017, 11, 22–32. [Google Scholar] [CrossRef]
- Din, M.; Usman, S.T.; Afaq, M.; Hamid, K.; Wang, W. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 2017, 34, 2330–2343. [Google Scholar]
- Sheikholeslami, M.; Ganji, D.D. Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer. Int. J. Hydrogen Energy 2017, 42, 2748–2755. [Google Scholar] [CrossRef]
- Hayat, T.; Shaheen, U.; Shafiq, A.; Alsaedi, A.; Asghar, S. Marangoni mixed convection flow with Joule heating and nonlinear radiation. AIP Adv. 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Besthapu, P.P.; Haq, R.U.; Bandari, S.; Al-Mdallal, Q.M. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput. Appl. 2019, 31, 207–217. [Google Scholar] [CrossRef]
- Lakshmi, K.B.; Kumar, K.A.; Reddy, J.V.; Sugunamma, V. Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet. J. Nanofluids 2019, 8, 73–83. [Google Scholar] [CrossRef]
- Casson, N. A flow equation for Pigment-Oil suspensions of the printing ink type. In Rheology Of Disperse Systems; Mill, C.C., Ed.; Pergamon Press: Oxford/London, UK, 1959. [Google Scholar]
- Eldabe, N.T.M.; Saddeck, G.; El-Sayed, A.F. Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mech. Mech. Eng. 2001, 5, 237–251. [Google Scholar]
- Charm, S.E.; Kurland, G. Viscometry of human blood for shear rates of 0–100,000 sec−1. Nature 1965, 206, 617. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.; Hayat, T.; Alsaedi, A. Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer. Chin. Phys. B 2013, 22, 1–6. [Google Scholar] [CrossRef]
- Kumar, G.; Gireesha, K.; Prasannakumara, B.J.; Ramesh, B.C.; Makinde, O.D. Phenomenon of radiation and viscous dissipation on Casson nanoliquid flow past a moving melting surface. Diffus. Found. 2017, 11, 33–42. [Google Scholar] [CrossRef]
- Vijaya, N.; Krishna, H.; Kalyani, K.; Reddy, G.V.R. Soret and radiation effects on an unsteady flow of a Casson fluid through porous vertical channel with expansion and contraction. Front. Heat Mass Trans. 2018, 1–11. [Google Scholar] [CrossRef]
- Hayat, T.; Ashraf, M.B.; Shehzad, S.A.; Alsaedi, A. Mixed Convection Flow of Casson Nanofluid over a Stretching Sheet with Convectively Heated Chemical Reaction and Heat Source/Sink. J. Appl. Fluid Mech. 2015, 8, 803–813. [Google Scholar] [CrossRef]
- Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.; Jafari, B. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Ther. Eng. 2018, 12, 176–187. [Google Scholar] [CrossRef]
- Goodarzi, M.; Tlili, I.; Tian, Z.; Safaei, M. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int. J. Numer. Meth. Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- Afridi, M.I.; Tlili, I.; Goodarzi, M.; Osman, M.; Khan, N.A. Irreversibility analysis of Hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry 2019, 11, 663. [Google Scholar] [CrossRef]
- Tlili, I.; Khan, W.A.; Ramadan, K. MHD flow of nanofluid across horizontal circular cylinder: Steady forced convection. J. Nanofluids 2019, 8, 179–186. [Google Scholar] [CrossRef]
- Tlili, I.; Khan, W.A.; Ramadan, K. Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation. J. Nanofluids 2018, 7, 879–890. [Google Scholar] [CrossRef]
- Tlili, I.; Khan, W.A.; Khan, I. Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium with radiation and chemical reaction. Res. Phys. 2018, 8, 213–222. [Google Scholar] [CrossRef]
- Tlili, I.; Hamadneh, N.N.; Khan, W.A. Thermodynamic analysis of MHD heat and mass transfer of nanofluids past a static wedge with Navier slip and convective boundary conditions. Arab. J. Sci. Eng. 2018, 1–13. [Google Scholar] [CrossRef]
- Tlili, I.; Hamadneh, N.N.; Khan, W.A.; Atawneh, S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects. J. Therm. Anal. Calorim. 2018, 132, 1899–1912. [Google Scholar] [CrossRef]
- Khan, W.A.; Rashad, A.M.; Abdou, M.M.M.; Tlili, I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur. J. Mech. B Fluids 2019, 75, 133–142. [Google Scholar] [CrossRef]
- Khalid, A.; Khan, I.; Khan, A.; Shafie, S.; Tlili, I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud. Therm. Eng. 2018, 12, 374–380. [Google Scholar] [CrossRef]
- Hayat, T.; Farooq, M.; Alsaedi, A. Thermally stratified stagnation point flow of Casson fluid with slip conditions. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 724–748. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Wong, K.V.; Leon, O.D. Applications of Nanofluids: Current and Future. Adv. Mech. Eng. 2010. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Asad, S.; Alsaedi, A. Flow of Casson fluid with nanoparticles. Appl. Math. Mech. 2016, 37, 459–470. [Google Scholar] [CrossRef]
- Naseem, A.; Shafiq, A.; Zhao, L.; Farooq, M.U. Analytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo-Christov model. Res. Phys. 2018, 9, 961–969. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Khalique, C.M.; Zhang, T. Magneto-hydrodynamic Darcy-Forchheimer nanofluid flow over nonlinear stretching sheet. Phys. Scr. 2019, 94, 105221. [Google Scholar] [CrossRef]
- Rashid, M.; Hayat, T.; Alsaedi, A. Entropy generation in Darcy–Forchheimer flow of nanofluid with five nanoarticles due to stretching cylinder. Appl. Nanosci. 2019, 1–11. [Google Scholar] [CrossRef]
- Naseem, F.; Shafiq, A.; Zhao, L.; Naseem, A. MHD biconvective flow of Powell Eyring nanofluid over stretched surface. AIP Adv. 2017, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rasool, G.; Zhang, T.; Shafiq, A. Second grade nanofluidic flow past a convectively heated vertical Riga plate. Phys. Scr. 2019, 94, 125212. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T. Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon 2019, 5, e01479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasool, G.; Zhang, T. Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE 2019, 14, e0221302. [Google Scholar] [CrossRef] [PubMed]
- Rasool, G.; Shafiq, A.; Tlili, I. Marangoni convective nano-fluid flow over an electromagnetic actuator in the presence of first order chemical reaction. Heat Transf. Asian Res. 2019. accepted. [Google Scholar]
- Rasool, G.; Shafiq, A.; Durur, H. Darcy-Forchheimer Relation in Magnetohydrodynamic Jeffrey Nanofluid Flow over Stretching Surface; Discrete and Continuous Dynamical Systems-Series S; American Institute of Mathematical Sciences, 2019; Available online: https://www.researchgate.net/publication/336373931_Darcy-Forchheimer_relation_in_Magnetohydrodynamic_Jeffrey_nanofluid_flow_over_stretching_surface (accessed on 10 October 2019).
- Rasool, G.; Shafiq, A.; Khalique, C.M. Marangoni Forced Convective Casson Type Nanofluid Flow in the Presence of Lorentz Force Generated by Riga Plate; Discrete and Continuous Dynamical Systems-Series S; American Institute of Mathematical Sciences, 2019; Available online: https://www.researchgate.net/publication/336373925_Marangoni_forced_convective_Casson_type_nanofluid_flow_in_the_presence_of_Lorentz_force_generated_by_Riga_plate (accessed on 10 October 2019).
Pr | |||||||
---|---|---|---|---|---|---|---|
1.00000 | |||||||
0.3 | 0.99797 | ||||||
0.6 | 0.99772 | ||||||
0.99966 | |||||||
0.3 | 0.99690 | ||||||
0.5 | 0.99588 | ||||||
0.99657 | |||||||
0.99797 | |||||||
0.99966 | |||||||
0.99962 | |||||||
0.99797 | |||||||
0.99549 | |||||||
0.99755 | |||||||
0.99797 | |||||||
0.99857 | |||||||
0.99829 | |||||||
0.4 | 0.99979 | ||||||
0.8 | 1.00009 | ||||||
0.99829 | |||||||
1.4 | 0.99883 | ||||||
1.8 | 0.99923 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, A.; Zari, I.; Rasool, G.; Tlili, I.; Khan, T.S. On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids. Mathematics 2019, 7, 1087. https://doi.org/10.3390/math7111087
Shafiq A, Zari I, Rasool G, Tlili I, Khan TS. On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids. Mathematics. 2019; 7(11):1087. https://doi.org/10.3390/math7111087
Chicago/Turabian StyleShafiq, Anum, Islam Zari, Ghulam Rasool, Iskander Tlili, and Tahir Saeed Khan. 2019. "On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids" Mathematics 7, no. 11: 1087. https://doi.org/10.3390/math7111087
APA StyleShafiq, A., Zari, I., Rasool, G., Tlili, I., & Khan, T. S. (2019). On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids. Mathematics, 7(11), 1087. https://doi.org/10.3390/math7111087