Adaptive Asymptotic Shape Synchronization of a Chaotic System with Applications for Image Encryption
Abstract
:1. Introduction
- We introduce, for the first time, an adaptive control method to the field of asymptotic shape synchronization in chaotic systems. The proposed controller and control rule enable two chaotic systems, including homogeneous and heterogeneous systems, with unknown parameters to achieve asymptotic shape synchronization, thus advancing the practical applications of shape synchronization.
- We achieve asymptotic shape synchronization under rigid transformations, including rotation and translation, to align chaotic system trajectories geometrically, which avoids the complex calculations of arc length and curvature, simplifying the synchronization process.
- We propose a novel image encryption algorithm utilizing channel integration, which fuses information across three color channels. This is achieved using pseudo-random sequences generated by two shape-synchronized chaotic systems with different initial conditions, significantly enhancing security and robustness.
2. Adaptive Asymptotic Shape Synchronization
2.1. Preliminaries
2.2. The Proposed Method
3. Simulation of Asymptotic Shape Synchronization
4. The Proposed Image Encryption Method
4.1. The Chaotic Sequences
- Let represent the initial condition of the drive system, and perform iterations, where denotes the pre-iteration count. Discard the first generated values, and retain the subsequent generated signals and .
- The drive signals and are transformed into chaotic sequences and , respectively, using the rigid transformation .
- Four chaotic sequences can be obtained by reshaping the generated sequences. The reshaping procedure is described as follows:
- To reduce the inter-sequence and intra-sequence correlations, the sequences were processed to obtain .
4.2. The Procedure of Encryption and Decryption
4.2.1. Scrambling
- The RGB three-channel data of the input image is reshaped into a two-dimensional format. The first dimension has a size of width × height (), and the second dimension represents the bit depth (h), which is 8.
- The four high bits and four low bits are, respectively, extracted from the three-channel data and recomposed into sequences and . The sizes of both and are .
- Reshape and to to match the length of the chaotic sequence.
- The chaotic sequences and are sorted to obtain their index sequences and .
- Using the reversed to index , the resulting sequence is used to index , obtaining the sequence . Similarly, the sequence can be obtained.
- Perform diffusion operations on the sequences and .
- Reshape the sequences and to .
- Reconstruct the three-channel data by performing the inverse operations of Step 2.
4.2.2. Diffusion
- Convert the chaotic sequence r into the three-dimensional bit sequences , , and . Merge , , and , and reshape them into a bit matrix S with a size of .
- Extract the odd rows in reverse order to form sequence , and extract the even rows in normal order to form sequence .
- Perform an XOR operation between the first row and the last row of the sequence. Then, XOR the result with the corresponding element of sequence, and update the first row of the sequence with the result.
- For the remaining rows of the sequence, the result is obtained by performing an XOR operation between the current row and the previous row, followed by an XOR operation with the corresponding position in the sequence.
- For the sequence, the operation is similar to that of the sequence, but it is performed in reverse order.
5. Experiments
5.1. Simulation Experiments
5.2. Correlation Analysis
5.3. Security Analysis
5.3.1. Cryptographic Key Analysis
5.3.2. Robustness Analysis
5.3.3. Entropy Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Notation | Description | Notation | Description |
The time-varying drive dynamical system | Q | Rotation matrix | |
The time-varying response dynamical system | P | Translating vector | |
A | Parameter matrix | Rigid transformed drive signal | |
B | Parameter matrix | Estimated value of | |
Time-varying non-linear function | Estimated value of | ||
Time-varying non-linear function | Error between the estimated and the real value of | ||
Mapping function | Error between the estimated and the real value of | ||
Mapping function | e | Error between the drive system and the response system | |
Parameter vector | Derivative of e | ||
Parameter vector | V | Lyapunov function candidate | |
u | Control input | Derivative of |
References
- Saadia, D. Integration of cloud computing, big data, artificial intelligence, and internet of things: Review and open research issues. Int. J.-Web-Based Learn. Teach. Technol. IJWLTT 2021, 16, 10–17. [Google Scholar] [CrossRef]
- Hu, J.; He, Y.; Luo, W.; Huang, J.; Wang, J. Enhancing Load Balancing with In-Network Recirculation to Prevent Packet Reordering in Lossless Data Centers. IEEE/ACM Trans. Netw. 2024, 32, 4114–4127. [Google Scholar] [CrossRef]
- Aouedi, O.; Vu, T.H.; Sacco, A.; Nguyen, D.C.; Piamrat, K.; Marchetto, G.; Pham, Q.V. A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions. IEEE Commun. Surv. Tutor. 2024, 1. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Rao, S.; Zhou, X.; Hu, J. A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks. Hoc Netw. 2023, 150, 103284. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Fan, S.; Xiao, Z.; Zhang, J. SiamTFA: Siamese Triple-Stream Feature Aggregation Network for Efficient RGBT Tracking. IEEE Trans. Intell. Transp. Syst. 2024, 1–14. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, C.; Wang, Z.; Zhang, J.; Guo, K.; Xu, H.; Huang, J.; Chen, K. Load Balancing with Multi-Level Signals for Lossless Datacenter Networks. IEEE/ACM Trans. Netw. 2024, 32, 2736–2748. [Google Scholar] [CrossRef]
- Yu, F.; Xu, S.; Lin, Y.; He, T.; Wu, C.; Lin, H. Design and Analysis of a Novel Fractional-Order System with Hidden Dynamics, Hyperchaotic Behavior and Multi-Scroll Attractors. Mathematics 2024, 12, 2227. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, L.; Wang, N.; Bao, H.; Wu, H.; Chen, M. Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption. Nonlinear Dyn. 2023, 111, 20447–20463. [Google Scholar] [CrossRef]
- Wen, H.; Lin, Y. Cryptanalyzing an image cipher using multiple chaos and DNA operations. J. King Saud. Univ.-Comput. Inf. Sci. 2023, 35, 101612. [Google Scholar] [CrossRef]
- Yu, F.; Wu, C.; Xu, S.; Yao, W.; Xu, C.; Cai, S.; Wang, C. Color video encryption transmission in IoT based on memristive hopfield neural network. Signal Image Video Process. 2025, 19, 77. [Google Scholar] [CrossRef]
- Feng, W.; Yang, J.; Zhao, X.; Qin, Z.; Zhang, J.; Zhu, Z.; Wen, H.; Qian, K. A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps. Mathematics 2024, 12, 3917. [Google Scholar] [CrossRef]
- Yu, F.; Xu, S.; Lin, Y.; Gracia, Y.M.; Yao, W.; Cai, S. Dynamic Analysis, Image Encryption Application and FPGA Implementation of a Discrete Memristor-Coupled Neural Network. Int. J. Bifurc. Chaos 2024, 34, 2450068. [Google Scholar] [CrossRef]
- Chai, X.; Gan, Z.; Chen, Y.; Zhang, Y. A visually secure image encryption scheme based on compressive sensing. Signal Process. 2017, 134, 35–51. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, J.; Liu, J.; Wei, D.; Cao, L.; Zhou, R.; Cao, Y.; Ding, X. A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process. 2019, 161, 227–247. [Google Scholar] [CrossRef]
- Chai, X.; Bi, J.; Gan, Z.; Liu, X.; Zhang, Y.; Chen, Y. Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process. 2020, 176, 107684. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Zhang, Y.; Cai, J.; Wang, X.; Zeng, Z. Multidirectional Multidouble-Scroll Hopfield Neural Network with Application to Image Encryption. IEEE Trans. Syst. Man Cybern. Syst. 2024, 55, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Yin, H.; Huang, T.; Yuan, L.; Zheng, S.; Yin, L. Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 2020, 125, 174–184. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Wang, Z.; Wang, Y. A Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 3778–3788. [Google Scholar] [CrossRef]
- Man, Z.; Li, J.; Di, X.; Sheng, Y.; Liu, Z. Double image encryption algorithm based on neural network and chaos. Chaos Solitons Fractals 2021, 152, 111318. [Google Scholar] [CrossRef]
- Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 2024, 171, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Lin, Y.; Yao, W.; Cai, S.; Lin, H.; Li, Y. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT. Neural Netw. 2025, 182, 106904. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Mou, J.; Banerjee, S.; Zhang, Y. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour. IEEE Trans. Cybern. 2023, 53, 5037–5047. [Google Scholar] [CrossRef]
- Yu, F.; Kong, X.; Yao, W.; Zhang, J.; Cai, S.; Lin, H.; Jin, J. Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor. Chaos Solitons Fractals 2024, 179, 114440. [Google Scholar] [CrossRef]
- Fridrich, J. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, L.; Chen, C.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn. 2022, 108, 613–636. [Google Scholar] [CrossRef]
- Deng, W.; Ma, M. Analysis of the dynamical behavior of discrete memristor-coupled scale-free neural networks. Chin. J. Phys. 2024, 91, 966–976. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, W.; Xiao, X.; Yao, W.; Cai, S.; Zhang, J.; Wang, C.; Li, Y. Dynamic analysis and field-programmable gate array implementation of a 5D fractional-order memristive hyperchaotic system with multiple coexisting attractors. Fractal Fract. 2024, 8, 271. [Google Scholar] [CrossRef]
- Wan, Q.; Yang, Q.; Liu, T.; Chen, C.; Shen, K. Single direction, grid and spatial multi-scroll attractors in Hopfield neural network with the variable number memristive self-connected synapses. Chaos Solitons Fractals 2024, 189, 115584. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Deng, Q.; Yang, G. Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions. Chaos Solitons Fractals 2024, 187, 115471. [Google Scholar] [CrossRef]
- Luo, D.; Wang, C.; Deng, Q.; Sun, Y. Dynamics in a memristive neural network with three discrete heterogeneous neurons and its application. Nonlinear Dyn. 2024, 1–14. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Lu, D.; Li, C. A novel memristive synapse-coupled ring neural network with countless attractors and its application. Chaos Solitons Fractals 2024, 184, 115056. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Wang, C. An Image Encryption Algorithm Based on Tabu Search and Hyperchaos. Int. J. Bifurc. Chaos 2024, 34, 2450170. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Deng, Z.; Yang, G. Memristive Tabu Learning Neuron Generated Multi-Wing Attractor with FPGA Implementation and Application in Encryption. IEEE Trans. Circuits Syst. Regul. Pap. 2024, 1–12. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J.; Chen, Y.; Qin, Z.; Zhang, Y.; Ahmad, M.; Woźniak, M. Exploiting robust quadratic polynomial hyperchaotic map and pixel fusion strategy for efficient image encryption. Expert Syst. Appl. 2024, 246, 123190. [Google Scholar] [CrossRef]
- Lin, H.; Deng, X.; Yu, F.; Sun, Y. Grid Multibutterfly Memristive Neural Network with Three Memristive Systems: Modeling, Dynamic Analysis, and Application in Police IoT. IEEE Internet Things J. 2024, 11, 29878–29889. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Hu, G.; Guan, Z.H.; Iu, H.H.C. Constructing Multiscroll Memristive Neural Network with Local Activity Memristor and Application in Image Encryption. IEEE Trans. Cybern. 2024, 54, 4039–4048. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Li, J.; Hao, H.; Xin, Y. High-resolution time-frequency representation for instantaneous frequency identification by adaptive Duffing oscillator. Struct. Control Health Monit. 2020, 27, e2635. [Google Scholar] [CrossRef]
- Wang, M.J.; Gu, L. Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity. Chin. Phys. B 2024, 33, 020504. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Liu, H.; Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.; Wen, H. Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption. Fractal Fract. 2023, 7, 887. [Google Scholar] [CrossRef]
- Wen, H.; Lin, Y. Cryptanalysis of an image encryption algorithm using quantum chaotic map and DNA coding. Expert Syst. Appl. 2024, 237, 121514. [Google Scholar] [CrossRef]
- Liao, Z.; Ouyang, J.; Ma, M. Dual-attribute ring-star neural network. Nonlinear Dyn. 2024. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, C.; Yao, W. Quasi-synchronization of stochastic memristive neural networks subject to deception attacks. Nonlinear Dyn. 2023, 111, 2443–2462. [Google Scholar] [CrossRef]
- Tan, F.; Zhou, L.; Lu, J.; Zhang, H. Fixed-time synchronization in multilayer networks with delay Cohen–Grossberg neural subnets via adaptive quantitative control. Asian J. Control 2024, 26, 446–455. [Google Scholar] [CrossRef]
- Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C. The synchronization of chaotic systems. Phys. Rep. 2002, 366, 1–101. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, H.; Tan, F.; Liu, K. Delay-independent control for synchronization of memristor-based BAM neural networks with parameter perturbation and strong mismatch via finite-time technology. Trans. Inst. Meas. Control 2024, 46, 2035–2047. [Google Scholar] [CrossRef]
- Ma, M.; Lu, Y. Synchronization in scale-free neural networks under electromagnetic radiation. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 033116. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, H.; Tan, F. Unified quantified adaptive control for multiple-time stochastic synchronization of coupled memristive neural networks. Neurocomputing 2024, 577, 127384. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Jin, J. A noise-tolerant fuzzy-type zeroing neural network for robust synchronization of chaotic systems. Concurr. Comput. Pract. Exp. 2024, 36, e8218. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [Google Scholar] [CrossRef] [PubMed]
- Korneev, I.; Semenov, V.; Slepnev, A.; Vadivasova, T. Complete synchronization of chaos in systems with nonlinear inertial coupling. Chaos Solitons Fractals 2021, 142, 110459. [Google Scholar] [CrossRef]
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996, 76, 1804. [Google Scholar] [CrossRef] [PubMed]
- Pikovsky, A.S.; Rosenblum, M.G.; Osipov, G.V.; Kurths, J. Phase synchronization of chaotic oscillators by external driving. Phys. D Nonlinear Phenom. 1997, 104, 219–238. [Google Scholar] [CrossRef]
- Li, G.H. Projective lag synchronization in chaotic systems. Chaos Solitons Fractals 2009, 41, 2630–2634. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Mahmoud, E.E. Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 2012, 67, 1613–1622. [Google Scholar] [CrossRef]
- Yang, S.; Duan, C. Generalized synchronization in chaotic systems. Chaos Solitons Fractals 1998, 9, 1703–1707. [Google Scholar] [CrossRef]
- Xiao, L.; Li, L.; Cao, P.; He, Y. A fixed-time robust controller based on zeroing neural network for generalized projective synchronization of chaotic systems. Chaos Solitons Fractals 2023, 169, 113279. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Chen, H.; Zhang, S. Shape synchronization control for three-dimensional chaotic systems. Chaos Solitons Fractals 2016, 87, 136–145. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.; Huang, Y.; Wang, Y.; Yu, F.; Yu, B. Drive–response asymptotic shape synchronization for a class of two-dimensional chaotic systems and its application in image encryption. Phys. D Nonlinear Phenom. 2024, 463, 134162. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.; Huang, Y.; Wang, Y.; Yu, F.; Yu, B.; Liu, C. Asymptotic shape synchronization in three-dimensional chaotic systems and its application in color image encryption. Chaos Solitons Fractals 2024, 184, 114945. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Hu, X.; Wei, L.; Chen, W.; Chen, Q.; Guo, Y. Color image encryption algorithm based on dynamic chaos and matrix convolution. IEEE Access 2020, 8, 12452–12466. [Google Scholar] [CrossRef]
- Alexan, W.; Elkandoz, M.; Mashaly, M.; Azab, E.; Aboshousha, A. Color image encryption through chaos and kaa map. IEEE Access 2023, 11, 11541–11554. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X. Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 2010, 59, 3320–3327. [Google Scholar] [CrossRef]
- Kalpana, J.; Murali, P. An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik 2015, 126, 5703–5709. [Google Scholar] [CrossRef]
- Gan, Z.H.; Chai, X.L.; Han, D.J.; Chen, Y.R. A chaotic image encryption algorithm based on 3-D bit-plane permutation. Neural Comput. Appl. 2019, 31, 7111–7130. [Google Scholar] [CrossRef]
- Yang, B.; Liao, X. A new color image encryption scheme based on logistic map over the finite field ZN. Multimed. Tools Appl. 2018, 77, 21803–21821. [Google Scholar] [CrossRef]
- Xu, L.; Gou, X.; Li, Z.; Li, J. A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Opt. Lasers Eng. 2017, 91, 41–52. [Google Scholar] [CrossRef]
- Musanna, F.; Kumar, S. A novel fractional order chaos-based image encryption using Fisher Yates algorithm and 3-D cat map. Multimed. Tools Appl. 2019, 78, 14867–14895. [Google Scholar] [CrossRef]
- Amina, S.; Mohamed, F.K. An efficient and secure chaotic cipher algorithm for image content preservation. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 12–32. [Google Scholar] [CrossRef]
- Liu, H.; Kadir, A. Asymmetric color image encryption scheme using 2D discrete-time map. Signal Process. 2015, 113, 104–112. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 2015, 73, 53–61. [Google Scholar] [CrossRef]
Item | Value | Description |
---|---|---|
Initial value of drive system | ||
Initial value of response system | ||
Initial value of control input | ||
Initial value of control input | ||
PD matrix of control input | ||
PD matrix of control input | ||
K | Gain matrix | |
M | PD matrix of control input | |
Rotating vector | ||
P | Translating vector | |
Rotating angle |
Item | Value |
---|---|
P |
Test Image | Channel | Plaintext | Ciphertext | ||||
---|---|---|---|---|---|---|---|
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal | ||
Airplane | R | 0.927454 | 0.937611 | 0.867530 | 0.000542 | −0.001411 | −0.000378 |
G | 0.934138 | 0.931207 | 0.880472 | −0.001302 | 0.001817 | 0.001070 | |
B | 0.911017 | 0.955393 | 0.876408 | 0.001535 | 0.000519 | −0.000639 | |
Mandrill | R | 0.910607 | 0.949044 | 0.906550 | 0.000401 | −0.001153 | 0.000785 |
G | 0.833335 | 0.865863 | 0.780644 | 0.000804 | 0.000163 | −0.000168 | |
B | 0.911457 | 0.924969 | 0.874461 | 0.001830 | −0.001752 | 0.000436 | |
Tree | R | 0.928094 | 0.960024 | 0.913834 | 0.001034 | −0.001613 | 0.001616 |
G | 0.945517 | 0.969847 | 0.928895 | −0.001972 | 0.000240 | 0.001478 | |
B | 0.938797 | 0.960374 | 0.931351 | −0.000557 | 0.001039 | 0.000328 | |
House | R | 0.933042 | 0.972166 | 0.911391 | −0.000199 | −0.001330 | 0.000922 |
G | 0.944152 | 0.980187 | 0.930158 | −0.000948 | 0.001679 | −0.000979 | |
B | 0.973981 | 0.980898 | 0.955339 | −0.001269 | 0.000983 | 0.000383 |
Test Image | Method | Plaintext | Ciphertext | ||
---|---|---|---|---|---|
Ours | Ref. [64] | Ref. [65] | |||
Peppers | Horizontal | 0.969482 | 0.000474 | −0.0010 | −0.00021 |
Vertical | 0.965563 | 0.000934 | 0.0016 | 0.00128 | |
Diagonal | 0.942783 | 0.000346 | 0.0031 | 0.00027 |
Test Image | Plaintext | Ciphertext | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
Airplane | 6.7254 | 6.8253 | 6.2078 | 7.9972 | 7.9969 | 7.9974 |
Mandrill | 7.6058 | 7.3581 | 7.6665 | 7.9966 | 7.9972 | 7.9974 |
Tree | 7.2104 | 7.4136 | 6.9207 | 7.9976 | 7.9968 | 7.9972 |
House | 6.4311 | 6.5389 | 6.2320 | 7.9970 | 7.9970 | 7.9968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Huang, Y.; Yu, F.; Liang, D.; Lin, H. Adaptive Asymptotic Shape Synchronization of a Chaotic System with Applications for Image Encryption. Mathematics 2025, 13, 128. https://doi.org/10.3390/math13010128
Luo Y, Huang Y, Yu F, Liang D, Lin H. Adaptive Asymptotic Shape Synchronization of a Chaotic System with Applications for Image Encryption. Mathematics. 2025; 13(1):128. https://doi.org/10.3390/math13010128
Chicago/Turabian StyleLuo, Yangxin, Yuanyuan Huang, Fei Yu, Diqing Liang, and Hairong Lin. 2025. "Adaptive Asymptotic Shape Synchronization of a Chaotic System with Applications for Image Encryption" Mathematics 13, no. 1: 128. https://doi.org/10.3390/math13010128
APA StyleLuo, Y., Huang, Y., Yu, F., Liang, D., & Lin, H. (2025). Adaptive Asymptotic Shape Synchronization of a Chaotic System with Applications for Image Encryption. Mathematics, 13(1), 128. https://doi.org/10.3390/math13010128