Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing
Abstract
:1. Introduction
- (i)
- the introduction of a new 1D multiparametric tent map (MTM) for improving the chaotic behavior and the key space of the existing 1D tent map.
- (ii)
- the suggestion of a simple yet efficient method to equalize the histogram of chaotic sequence values.
- (iii)
- the introduction of novel encryption scheme based on MTM and parallel computing for fast and secure image communication.
- (iv)
- the proposed parallel encryption algorithm offers a good trade-off between security level and efficiency.
- (v)
- demonstrating the performances of the proposed scheme by providing diverse tests and comparisons with similar schemes.
2. Related Work
3. Proposed Multiparametric Dynamical Tent Map
3.1. Tent Map
3.2. Proposed MTM Model
3.3. Bifurcation Diagrams and LE Analysis of MTM
3.4. Time Series and Sensitivity Analysis of MTM Control Parameters
3.5. Histogram Equalization of MTM Chaotic Sequences
Algorithm 1: Chaotic sequence normalization and histogram equalization | |
Inputs: | X Chaotic sequence of length L generated by MTM Lb Lower bound value Ub Upper bound value |
Output: | Y Normalized chaotic sequence with equalized histogram |
1: | L = length (X) // Get the length of X sequence |
2: | [IndX] = argsort (X) // argsort () function [68] returns the indices of the ascending sorted elements of the input X |
3: | |
4: | |
5: | for i = 1 to L; i++ do |
6: | |
7: | end for |
8: | return Y |
4. Proposed Image Cryptosystem Based on MTM and Parallel Computing
4.1. Confusion and Diffusion Key Generation
- (a)
- Use Equation (3) to produce an MTM-based chaotic sequence noted V1 with size where represents the size of the input image and n is the available CPU cores number. In the present process, the six components of KEY_1 are used as MTM control parameters.
- (b)
- Select from V1 a sub-vector noted V_R of size L = N with V_R = V1(1: N). The latter will be useful for generating a key for confusing the pixels along the input image rows. Next, use Algorithm 1 to normalize the distribution of V_R between Lb = 0 and Ub = N. Then, the output vector values, noted VR_1, are rounded to unsigned integers.
- (c)
- Select from V1 a sub-vector noted V_C of size L = M with V_C = V1(N:N + M). The latter will be useful for generating a key that confuses the pixels along the columns of the plain image. Then, use Algorithm 1 to normalize the distribution of VC_1 between Lb = 0 and Ub = M. Next, the output vector values, noted VC_1, are rounded to unsigned integers.
- (d)
- Use Algorithm 1 to equalize the histogram distribution of V1 sequence values where the bounds of this sequence are set to Lb = 0 and Ub = 255. Then, the resulting vector values are rounded to unsigned integers coded on 8 bits (uint8), which enables to create D1 vector.
4.2. Diffusion Phase
4.3. Confusion Process
5. Simulation Results with Discussions
5.1. Sensitivity Analysis of the Secret Keys
5.2. Space of Our Scheme’s Secret Keys
5.3. Histogram Analysis
5.4. Correlation Analysis
5.5. Robustness against Differential Attack
5.6. Noise and Data Loss Robustness Analysis
5.7. Randomness Analysis Test
5.8. Robustness to Classical Attacks
- (i).
- Known plaintext: the hacker disposes of an encrypted string with its plaintext version.
- (ii).
- Cipher text only: the hacker only has a string of encrypted text.
- (iii).
- Chosen plaintext: the hacker is able to access to the encryption process for restricted period. He/she can then randomly use a plaintext to create its ciphered form.
- (iv).
- Chosen cipher text: the hacker can access to the decryption system for a limited period. He/she can then select a random string of cipher text and construct its plaintext format.
- (i).
- Define a security KEY to encrypt the first image in a dataset.
- (ii).
- Choose one (or more) parameter(s) of the KEY, and then increment the selected parameter by a small constant value (e.g., ) to generate a new security key (KEY*) that is used to encrypt the next image in the dataset, and so on. This strategy creates dynamic security keys, which prevents conventional attacks. For more information regarding this strategy, the reader is referred to [14,85].
5.9. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, P.C.; Mukherjee, I.; Paul, G.; Chatterji, B.N. Digital Image Steganography: A Literature Survey. Inf. Sci. 2022, 609, 1451–1488. [Google Scholar] [CrossRef]
- Liao, X.; Yin, J.; Chen, M.; Qin, Z. Adaptive Payload Distribution in Multiple Images Steganography Based on Image Texture Features. IEEE Trans. Dependable Secur. Comput. 2022, 19, 897–911. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-Transform-Based Chaotic System for Image Encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, X. Fractal Sorting Matrix and Its Application on Chaotic Image Encryption. Inf. Sci. 2021, 547, 1154–1169. [Google Scholar] [CrossRef]
- Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Efficient Methods for Signal Processing Using Charlier Moments and Artificial Bee Colony Algorithm. Circuits Syst. Signal Process. 2021, 41, 166–195. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Ahmad, M.; Abd El-Latif, A.A. Biomedical Multimedia Encryption by Fractional-Order Meixner Polynomials Map and Quaternion Fractional-Order Meixner Moments. IEEE Access 2022, 10, 102599–102617. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Berretti, S.; Wan, S. Medical Image Encryption by Content-Aware DNA Computing for Secure Healthcare. IEEE Trans. Ind. Inform. 2023, 19, 2089–2098. [Google Scholar] [CrossRef]
- Naim, M.; Pacha, A.A.; Serief, C. A Novel Satellite Image Encryption Algorithm Based on Hyperchaotic Systems and Josephus Problem. Adv. Space Res. 2021, 67, 2077–2103. [Google Scholar] [CrossRef]
- Song, X.-H.; Wang, H.-Q.; Venegas-Andraca, S.E.; Abd El-Latif, A.A. Quantum Video Encryption Based on Qubit-Planes Controlled-XOR Operations and Improved Logistic Map. Phys. Stat. Mech. Its Appl. 2020, 537, 122660. [Google Scholar] [CrossRef]
- Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer of Text Files between Embedded IoT Devices. Symmetry 2019, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.B.; Kumar, D.; Gaffar, A.; Mishra, D.C. Triple Color Image Encryption Based on 2D Multiple Parameter Fractional Discrete Fourier Transform and 3D Arnold Transform. Opt. Lasers Eng. 2020, 133, 106139. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Jiang, D. A Novel Triple-Image Encryption and Hiding Algorithm Based on Chaos, Compressive Sensing and 3D DCT. Inf. Sci. 2021, 574, 505–527. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Ahmad, M.; El-Latif, A.A.A. Color Stereo Image Encryption and Local Zero-Watermarking Schemes Using Octonion Hahn Moments and Modified Henon Map. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8927–8954. [Google Scholar] [CrossRef]
- Wen, H.; Wu, J.; Ma, L.; Liu, Z.; Lin, Y.; Zhou, L.; Jian, H.; Lin, W.; Liu, L.; Zheng, T.; et al. Secure Optical Image Communication Using Double Random Transformation and Memristive Chaos. IEEE Photonics J. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Chen, C.; He, X.; Qiu, K. Physical-Enhanced Secure Strategy for OFDMA-PON Using Chaos and Deoxyribonucleic Acid Encoding. J. Light. Technol. 2018, 36, 1706–1712. [Google Scholar] [CrossRef]
- Hayat, U.; Azam, N.A. A Novel Image Encryption Scheme Based on an Elliptic Curve. Signal Process. 2019, 155, 391–402. [Google Scholar] [CrossRef]
- Chen, L.; Yin, H.; Yuan, L.; Machado, J.A.T.; Wu, R.; Alam, Z. Double Color Image Encryption Based on Fractional Order Discrete Improved Henon Map and Rubik’s Cube Transform. Signal Process. Image Commun. 2021, 97, 116363. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; Iliyasu, A.M.; Alanezi, A.; Abd El-latif, A.A. Optical Image Encryption Based on Quantum Walks. Opt. Lasers Eng. 2021, 138, 106403. [Google Scholar] [CrossRef]
- Nestor, T.; De Dieu, N.J.; Jacques, K.; Yves, E.J.; Iliyasu, A.M.; Abd El-Latif, A.A. A Multidimensional Hyperjerk Oscillator: Dynamics Analysis, Analogue and Embedded Systems Implementation, and Its Application as a Cryptosystem. Sensors 2019, 20, 83. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Guillén-Fernández, O.; Benkouider, K.; Mohamed, M.A.; Mamat, M.; Ibrahim, M.A.H. A New 4-D Multi-Stable Hyperchaotic System with No Balance Point: Bifurcation Analysis, Circuit Simulation, FPGA Realization and Image Cryptosystem. IEEE Access 2021, 9, 144555–144573. [Google Scholar] [CrossRef]
- Benkouider, K.; Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Bermudez-Marquez, C.F.; Sulaiman, I.M.; Awwal, A.M.; Kumam, P. A New 5-D Multistable Hyperchaotic System with Three Positive Lyapunov Exponents: Bifurcation Analysis, Circuit Design, FPGA Realization and Image Encryption. IEEE Access 2022, 10, 90111–90132. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A Fast and Efficient Multiple Images Encryption Based on Single-Channel Encryption and Chaotic System. Nonlinear Dyn. 2022, 108, 613–636. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, L.; Chen, C.L.P. A New 1D Chaotic System for Image Encryption. Signal Process. 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Dhall, S.; Pal, S.K.; Sharma, K. Cryptanalysis of Image Encryption Scheme Based on a New 1D Chaotic System. Signal Process. 2018, 146, 22–32. [Google Scholar] [CrossRef]
- Pak, C.; An, K.; Jang, P.; Kim, J.; Kim, S. A Novel Bit-Level Color Image Encryption Using Improved 1D Chaotic Map. Multimed. Tools Appl. 2019, 78, 12027–12042. [Google Scholar] [CrossRef]
- Midoun, M.A.; Wang, X.; Talhaoui, M.Z. A Sensitive Dynamic Mutual Encryption System Based on a New 1D Chaotic Map. Opt. Lasers Eng. 2021, 139, 106485. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J. A Cluster of 1D Quadratic Chaotic Map and Its Applications in Image Encryption. Math. Comput. Simul. 2023, 204, 89–114. [Google Scholar] [CrossRef]
- Wang, X.; Feng, L.; Zhao, H. Fast Image Encryption Algorithm Based on Parallel Computing System. Inf. Sci. 2019, 486, 340–358. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, D.; Li, M.; Xiang, Y.; Li, X. A Visually Secure Image Encryption Scheme Based on Parallel Compressive Sensing. Signal Process. 2019, 155, 218–232. [Google Scholar] [CrossRef]
- Yavuz, E. A New Parallel Processing Architecture for Accelerating Image Encryption Based on Chaos. J. Inf. Secur. Appl. 2021, 63, 103056. [Google Scholar] [CrossRef]
- Song, W.; Fu, C.; Zheng, Y.; Tie, M.; Liu, J.; Chen, J. A Parallel Image Encryption Algorithm Using Intra Bitplane Scrambling. Math. Comput. Simul. 2023, 204, 71–88. [Google Scholar] [CrossRef]
- Li, S.; Mishra, S. Optimizing Power Consumption in Multicore Smartphones. J. Parallel Distrib. Comput. 2016, 95, 124–137. [Google Scholar] [CrossRef]
- Salami, B.; Noori, H.; Naghibzadeh, M. Fairness-Aware Energy Efficient Scheduling on Heterogeneous Multi-Core Processors. IEEE Trans. Comput. 2021, 70, 72–82. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Motahhir, S.; Jamil, O.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.; et al. Efficient Biomedical Signal Security Algorithm for Smart Internet of Medical Things (IoMTs) Applications. Electronics 2022, 11, 3867. [Google Scholar] [CrossRef]
- Liansheng, S.; Cong, D.; Xiao, Z.; Ailing, T.; Anand, A. Double-Image Encryption Based on Interference and Logistic Map under the Framework of Double Random Phase Encoding. Opt. Lasers Eng. 2019, 122, 113–122. [Google Scholar] [CrossRef]
- Zhang, G.; Ding, W.; Li, L. Image Encryption Algorithm Based on Tent Delay-Sine Cascade with Logistic Map. Symmetry 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xiao, D.; Liu, C. Three-Level Quantum Image Encryption Based on Arnold Transform and Logistic Map. Quantum Inf. Process. 2021, 20, 23. [Google Scholar] [CrossRef]
- Zareai, D.; Balafar, M.; Feizi Derakhshi, M.R. A New Grayscale Image Encryption Algorithm Composed of Logistic Mapping, Arnold Cat, and Image Blocking. Multimed. Tools Appl. 2021, 80, 18317–18344. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, P. A New Medical Image Encryption Algorithm Based on the 1D Logistic Map Associated with Pseudo-Random Numbers. Multimed. Tools Appl. 2021, 80, 1–27. [Google Scholar] [CrossRef]
- Arif, J.; Khan, M.A.; Ghaleb, B.; Ahmad, J.; Munir, A.; Rashid, U.; Al-Dubai, A.Y. A Novel Chaotic Permutation-Substitution Image Encryption Scheme Based on Logistic Map and Random Substitution. IEEE Access 2022, 10, 12966–12982. [Google Scholar] [CrossRef]
- Sangavi, V.; Thangavel, P. An Exotic Multi-Dimensional Conceptualization for Medical Image Encryption Exerting Rossler System and Sine Map. J. Inf. Secur. Appl. 2020, 55, 102626. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Liu, Z.; Zhu, H. A Chaotic Image Encryption Algorithm Based on Coupled Piecewise Sine Map and Sensitive Diffusion Structure. Nonlinear Dyn. 2021, 104, 4615–4633. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Liao, X.; Wu, J. Cryptanalysis and Enhancement of an Image Encryption Scheme Based on a 1-D Coupled Sine Map. Nonlinear Dyn. 2020, 100, 2917–2931. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Wang, C.; Zhou, S.; Xia, Z.; Li, Q. Color Image Encryption Based on 2D Enhanced Hyperchaotic Logistic-Sine Map and Two-Way Josephus Traversing. Digit. Signal Process. 2022, 132, 103818. [Google Scholar] [CrossRef]
- Shao, S.; Li, J.; Shao, P.; Xu, G. Chaotic Image Encryption Using Piecewise-Logistic-Sine Map. IEEE Access 2023, 1. [Google Scholar] [CrossRef]
- Shakiba, A. A Novel Randomized One-Dimensional Chaotic Chebyshev Mapping for Chosen Plaintext Attack Secure Image Encryption with a Novel Chaotic Breadth First Traversal. Multimed. Tools Appl. 2019, 78, 34773–34799. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; Iliyasu, A.M.; Abd El-Latif, A.A. A Multi-Image Cryptosystem Using Quantum Walks and Chebyshev Map. Complexity 2021, 2021, e9424469. [Google Scholar] [CrossRef]
- Khan, M.; Alanazi, A.S.; Khan, L.S.; Hussain, I. An Efficient Image Encryption Scheme Based on Fractal Tromino and Chebyshev Polynomial. Complex Intell. Syst. 2021, 7, 2751–2764. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, D.; Wang, Q.; Guo, M.; Huang, L.; Li, W.; Cai, S. High-Quality Visually Secure Image Cryptosystem Using Improved Chebyshev Map and 2D Compressive Sensing Model. Chaos Solitons Fractals 2022, 163, 112584. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, K.K.; Shukla, P.K. Session Key Based Novel Lightweight Image Encryption Algorithm Using a Hybrid of Chebyshev Chaotic Map and Crossover. Multimed. Tools Appl. 2021, 80, 33843–33863. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Z.; Yu, H. A Symmetric Image Encryption Algorithm Based on a Coupled Logistic–Bernoulli Map and Cellular Automata Diffusion Strategy. Entropy 2019, 21, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Li, H.; Khan, S.; Deng, L.; Du, X.; Guizani, M.; Tian, Z. IEPSBP: A Cost-Efficient Image Encryption Algorithm Based on Parallel Chaotic System for Green IoT. IEEE Trans. Green Commun. Netw. 2022, 6, 89–106. [Google Scholar] [CrossRef]
- Yang, C.; Pan, P.; Ding, Q. Image Encryption Scheme Based on Mixed Chaotic Bernoulli Measurement Matrix Block Compressive Sensing. Entropy 2022, 24, 273. [Google Scholar] [CrossRef] [PubMed]
- Alexan, W.; Elkandoz, M.; Mashaly, M.; Azab, E.; Aboshousha, A. Color Image Encryption Through Chaos and KAA Map. IEEE Access 2023, 11, 11541–11554. [Google Scholar] [CrossRef]
- Yoosefian Dezfuli Nezhad, S.; Safdarian, N.; Hoseini Zadeh, S.A. New Method for Fingerprint Images Encryption Using DNA Sequence and Chaotic Tent Map. Optik 2020, 224, 165661. [Google Scholar] [CrossRef]
- Li, C.; Luo, G.; Qin, K.; Li, C. An Image Encryption Scheme Based on Chaotic Tent Map. Nonlinear Dyn. 2017, 87, 127–133. [Google Scholar] [CrossRef]
- Naskar, P.K.; Bhattacharyya, S.; Nandy, D.; Chaudhuri, A. A Robust Image Encryption Scheme Using Chaotic Tent Map and Cellular Automata. Nonlinear Dyn. 2020, 100, 2877–2898. [Google Scholar] [CrossRef]
- Muñoz-Guillermo, M. Image Encryption Using Q-Deformed Logistic Map. Inf. Sci. 2021, 552, 352–364. [Google Scholar] [CrossRef]
- Daoui, A.; Karmouni, H.; El ogri, O.; Sayyouri, M.; Qjidaa, H. Robust Image Encryption and Zero-Watermarking Scheme Using SCA and Modified Logistic Map. Expert Syst. Appl. 2022, 190, 116193. [Google Scholar] [CrossRef]
- Han, C. An Image Encryption Algorithm Based on Modified Logistic Chaotic Map. Optik 2019, 181, 779–785. [Google Scholar] [CrossRef]
- Belazi, A.; Kharbech, S.; Aslam, M.N.; Talha, M.; Xiang, W.; Iliyasu, A.M.; El-Latif, A.A.A. Improved Sine-Tangent Chaotic Map with Application in Medical Images Encryption. J. Inf. Secur. Appl. 2022, 66, 103131. [Google Scholar] [CrossRef]
- Nagaraj, N. The Unreasonable Effectiveness of the Chaotic Tent Map in Engineering Applications. Chaos Theory Appl. 2022, 4, 197–204. [Google Scholar] [CrossRef]
- Mondal, B.; Singh, S.; Kumar, P. A Secure Image Encryption Scheme Based on Cellular Automata and Chaotic Skew Tent Map. J. Inf. Secur. Appl. 2019, 45, 117–130. [Google Scholar] [CrossRef]
- Ramasamy, P.; Ranganathan, V.; Kadry, S.; Damaševičius, R.; Blažauskas, T. An Image Encryption Scheme Based on Block Scrambling, Modified Zigzag Transformation and Key Generation Using Enhanced Logistic—Tent Map. Entropy 2019, 21, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneha, P.S.; Sankar, S.; Kumar, A.S. A Chaotic Colour Image Encryption Scheme Combining Walsh–Hadamard Transform and Arnold–Tent Maps. J. Ambient Intell. Humaniz. Comput. 2020, 11, 1289–1308. [Google Scholar] [CrossRef]
- Kanso, A. Self-Shrinking Chaotic Stream Ciphers. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 822–836. [Google Scholar] [CrossRef]
- Numpy. Argsort—NumPy v1.24 Manual. Available online: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort (accessed on 16 March 2023).
- Parah, S.A.; Loan, N.A.; Shah, A.A.; Sheikh, J.A.; Bhat, G.M. A New Secure and Robust Watermarking Technique Based on Logistic Map and Modification of DC Coefficient. Nonlinear Dyn. 2018, 93, 1933–1951. [Google Scholar] [CrossRef]
- Ma, B.; Chang, L.; Wang, C.; Li, J.; Wang, X.; Shi, Y.-Q. Robust Image Watermarking Using Invariant Accurate Polar Harmonic Fourier Moments and Chaotic Mapping. Signal Process. 2020, 172, 107544. [Google Scholar] [CrossRef]
- Belazi, A.; El-Latif, A.A.A. A Simple yet Efficient S-Box Method Based on Chaotic Sine Map. Optik 2017, 130, 1438–1444. [Google Scholar] [CrossRef]
- Dalcin, L.; Fang, Y.-L.L. Mpi4py: Status Update After 12 Years of Development. Comput. Sci. Eng. 2021, 23, 47–54. [Google Scholar] [CrossRef]
- Shift Array Circularly-MATLAB Circshift. Available online: https://www.mathworks.com/help/matlab/ref/circshift.html (accessed on 4 March 2022).
- Dataset of Standard 512x512 Grayscale Test Images. Available online: https://ccia.ugr.es/cvg/CG/base.htm (accessed on 22 January 2023).
- 3.0T GE Discovery 750W MRI Scanner Images | Magnetic Resonance Research Facility. Available online: https://medicine.uiowa.edu/mri/30t-ge-discovery-750w-mri-scanner-images (accessed on 11 March 2022).
- Alvarez, G.; Li, S. Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Rostami, M.J.; Shahba, A.; Saryazdi, S.; Nezamabadi-pour, H. A Novel Parallel Image Encryption with Chaotic Windows Based on Logistic Map. Comput. Electr. Eng. 2017, 62, 384–400. [Google Scholar] [CrossRef]
- Abbas, A.M.; Alharbi, A.A.; Ibrahim, S. A Novel Parallelizable Chaotic Image Encryption Scheme Based on Elliptic Curves. IEEE Access 2021, 9, 54978–54991. [Google Scholar] [CrossRef]
- Luo, Y.; Ouyang, X.; Liu, J.; Cao, L. An Image Encryption Method Based on Elliptic Curve Elgamal Encryption and Chaotic Systems. IEEE Access 2019, 7, 38507–38522. [Google Scholar] [CrossRef]
- CVG-UGR-Image Database. Available online: https://ccia.ugr.es/cvg/dbimagenes/ (accessed on 14 February 2023).
- NIH Clinical Center Releases Dataset of 32,000 CT Images. Available online: https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images (accessed on 19 August 2021).
- Mansouri, A.; Wang, X. A Novel One-Dimensional Sine Powered Chaotic Map and Its Application in a New Image Encryption Scheme. Inf. Sci. 2020, 520, 46–62. [Google Scholar] [CrossRef]
- Wu, Y. NPCR and UACI Randomness Tests for Image Encryption. Cyber J. J. Sel. Areas Telecommun. 2011, 1, 31–38. [Google Scholar]
- Mahmoodi Khaniabadi, S.; Javadpour, A.; Gheisari, M.; Zhang, W.; Liu, Y.; Sangaiah, A.K. An Intelligent Sustainable Efficient Transmission Internet Protocol to Switch between User Datagram Protocol and Transmission Control Protocol in IoT Computing. Expert Syst. 2022, e13129. [Google Scholar] [CrossRef]
- Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Maaroufi, M.; Alami, B. New Robust Method for Image Copyright Protection Using Histogram Features and Sine Cosine Algorithm. Expert Syst. Appl. 2021, 177, 114978. [Google Scholar] [CrossRef]
Image Encryption Schemes | Used 1D Chaotic Map | Number of Control Parameters | Range of Control Parameters | Chaotic Value Distribution |
---|---|---|---|---|
[36,37,38,39,40,41] | Logistic map | 1 | Limited | Not uniform |
[42,43,44,45,46] | Sine map | 1 | Limited | Not uniform |
[47,48,49,50,51] | Chebychev map | 1 | Infinite | Not uniform |
[52,53,54,55] | Bernoulli map | 1 | Limited | Not uniform |
[56,57,58] | Tent map | 1 | Limited | Not uniform |
[28] | Quadratic map | 3 | Limited | Not uniform |
[59] | q-deformed logistic map | 2 | Limited | Not uniform |
[60] | Modified logistic map | 2 | Limited | Not uniform |
[26,61,62] | Improved 1D maps | 1 | Limited | Not uniform |
Proposed scheme | Multiparametric dynamical tent map (MTM) | 6 | Infinite | Uniform after histogram equalization |
MRI 1 | Ciphered MRI 1 | MRI 2 | Ciphered MRI 2 | MRI 3 | Ciphered MRI 3 | |
---|---|---|---|---|---|---|
Horizontal | 0.9613 | 0.0062 | 0.9156 | 0.0051 | 0.0039 | |
Vertical | 0.9150 | 0.0082 | 0.9653 | −0.0016 | −0.0005 | |
Diagonal | 0.9482 | −0.0072 | 0.9611 | 0.0082 | −0.0019 |
Averaged CC (in Absolute Values) Values Along: | Average Entropy (E) | Average Encryption & Decryption Runtime (in Sec.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Horizontal Direction | Vertical Direction | Diagonal Direction | |||||||||
Image Group | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | |
Encryption Algorithms | Proposed | 0.0019 | 0.0024 | 0.0036 | 0.0028 | 0.0033 | 0.0020 | 7.9998 | 7.9997 | 0.4507 | 1.3533 |
Ref. [29] | 0.0018 | 0.0022 | 0.0041 | 0.0030 | 0.0032 | 0.0022 | 7.9993 | 7.9996 | 0.4602 | 1.3812 | |
Ref. [32] | 0.0086 | 0.0074 | 0.0030 | 0.0036 | 0.0032 | 0.0069 | 7.9992 | 7.9993 | 0.4706 | 1.4136 | |
Ref. [77] | 0.0066 | 0.0036 | 0.0041 | 0.0040 | 0.0037 | 0.0028 | 7.9926 | 7.9931 | 0.3803 | 1.1406 | |
Ref. [31] | 0.0082 | 0.0072 | 0.0072 | 0.0060 | 0.0101 | 0.0088 | 7.9979 | 7.9968 | 0.5103 | 1.5306 | |
Ref. [78] | 0.0065 | 0.0061 | 0.0069 | 0.0054 | 0.0062 | 0.0069 | 7.9993 | 7.9992 | 0.6302 | 1.8936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoui, A.; Yamni, M.; Chelloug, S.A.; Wani, M.A.; El-Latif, A.A.A. Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing. Mathematics 2023, 11, 1589. https://doi.org/10.3390/math11071589
Daoui A, Yamni M, Chelloug SA, Wani MA, El-Latif AAA. Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing. Mathematics. 2023; 11(7):1589. https://doi.org/10.3390/math11071589
Chicago/Turabian StyleDaoui, Achraf, Mohamed Yamni, Samia Allaoua Chelloug, Mudasir Ahmad Wani, and Ahmed A. Abd El-Latif. 2023. "Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing" Mathematics 11, no. 7: 1589. https://doi.org/10.3390/math11071589
APA StyleDaoui, A., Yamni, M., Chelloug, S. A., Wani, M. A., & El-Latif, A. A. A. (2023). Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing. Mathematics, 11(7), 1589. https://doi.org/10.3390/math11071589