Microwave Dielectric Properties and Defect Behavior of xTiO2-(1-x)SiO2 Glass
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Study of Spectral Properties
3.2. Analysis of Defect Characteristics
3.2.1. EPR
3.2.2. Electric Modulus Analysis
3.2.3. Analysis of AC Conductivity Characteristics
3.3. Microwave Dielectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, L.; Wu, J.; Lamberson, L.; Streltsova, E.; Daly, C.; Zakharian, A.; Borrelli, N.F. Glass for 5G Applications. Appl. Phys. Lett. 2021, 119, 082901. [Google Scholar] [CrossRef]
- Choi, H.; Kang, B. Rediscovery of Glass Materials for Millimeter-Wave Wireless Communications. In Proceedings of the 2022 14th Global Symposium on Millimeter-Waves & Terahertz (GSMM), Seoul, Republic of Korea, 18–20 May 2022; pp. 85–88. [Google Scholar]
- Rodriguez-Cano, R.; Perini, S.E.; Foley, B.M.; Lanagan, M. Broadband Characterization of Silicate Materials for Potential 5G/6G Applications. IEEE Trans. Instrum. Meas. 2023, 72, 6003008. [Google Scholar] [CrossRef]
- Lai, Y.; Pan, K.; Park, S. Thermo-Mechanical Reliability of Glass Substrate and Through Glass Vias (TGV): A Comprehensive Review. Microelectron. Reliab. 2024, 161, 115477. [Google Scholar] [CrossRef]
- Tummala, R.; Deprospo, B.; Dwarakanath, S.; Ravichandran, S.; Nimbalkar, P.; Nedumthakady, N.; Swaminathan, M. Glass Panel Packaging, as the Most Leading-Edge Packaging: Technologies and Applications. In Proceedings of the 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, USA, 10–13 February 2020; pp. 1–5. [Google Scholar]
- Liu, J.; Yang, K.; Zhai, J.; Shen, B.; Wang, H.; Li, F. High Energy Storage Density and Rapid Discharge Speed of Niobosilicate Glasses. Mater. Chem. Phys. 2018, 206, 29–34. [Google Scholar] [CrossRef]
- Lanagan, M.T.; Cai, L.; Lamberson, L.A.; Wu, J.; Streltsova, E.; Smith, N.J. Dielectric Polarizability of Alkali and Alkaline-Earth Modified Silicate Glasses at Microwave Frequency. Appl. Phys. Lett. 2020, 116, 222902. [Google Scholar] [CrossRef]
- Danewalia, S.S.; Singh, K. Intriguing Role of TiO2 in Glass-Ceramics: Bioactive and Magneto-Structural Properties. J. Am. Ceram. Soc. 2018, 101, 2819–2830. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Feng, H.; Wang, X.; Yin, X.; Zhang, Y. Effect of TiO2/SiO2 Molar Ratio on the Structure, Dielectric and Crystallization Properties of SiO2-TiO2-ZrO2-RO-Al2O3 Glasses. J. Non-Cryst. Solids 2022, 576, 121243. [Google Scholar] [CrossRef]
- Weigel, C.; Cherkasova, V.; Holz, M.; Phi, H.B.; Görner Tenorio, C.; Wilbertz, B.; Voßgrag, L.; Fröhlich, T.; Strehle, S. Ultralow Expansion Glass as Material for Advanced Micromechanical Systems. Adv. Eng. Mater. 2023, 25, 2201873. [Google Scholar] [CrossRef]
- Mittal, A.; Baranwal, R.; Kumar, P.; Upadhyay, S. Scaling Behavior of AC Conductivity and Modulus Spectra of K2NiO4-Type Sr2TiO4. Emergent Mater. 2024, 7, 1763–1777. [Google Scholar] [CrossRef]
- Liu, L.; He, C.-C.; Zeng, J.; Peng, Y.-H.; Chen, W.-Y.; Zhao, Y.-J.; Yang, X.-B. Theoretical Study of Oxygen-Vacancy Distribution in In2O3. J. Phys. Chem. C 2021, 125, 7077–7085. [Google Scholar] [CrossRef]
- Nowotny, M.K.; Sheppard, L.R.; Bak, T.; Nowotny, J. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300. [Google Scholar] [CrossRef]
- Plotnichenko, V.G.; Sokolov, V.O.; Dianov, E.M. Hydroxyl Groups in High-Purity Silica Glass. Inorg. Mater. 2000, 36, 404–410. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, X.; Hou, Y.; Zhang, G. Critical Transition of Conductance and Dielectric Relaxation of Synthesized Fused Silica Investigated by Electrical Impedance Spectroscopy. J. Non-Cryst. Solids 2016, 439, 15–20. [Google Scholar] [CrossRef]
- Shelby, J.E. Density of TiO2-Doped Vitreous Silica. Phys. Chem. Glas. 2005, 46, 494–499. [Google Scholar]
- Scannell, G.; Koike, A.; Huang, L. Structure and Thermo-Mechanical Response of TiO2-SiO2 Glasses to Temperature. J. Non-Cryst. Solids 2016, 447, 238–247. [Google Scholar] [CrossRef]
- Saito, K.; Ikushima, A.J. Absorption Edge in Silica Glass. Phys. Rev. B 2000, 62, 8584–8587. [Google Scholar] [CrossRef]
- Smith, D.Y.; Black, C.E.; Homes, C.C.; Shiles, E. Optical Properties of TiO2–SiO2 Glass over a Wide Spectral Range. Phys. Status Solidi 2007, 4, 838–842. [Google Scholar] [CrossRef]
- Yano, K.; Morimoto, Y. Optical Absorption Properties of TiO2-Doped Silica Glass in UV–VUV Region. J. Non-Cryst. Solids 2004, 349, 120–126. [Google Scholar] [CrossRef]
- Richter, S.; Möncke, D.; Zimmermann, F.; Kamitsos, E.I.; Wondraczek, L.; Tünnermann, A.; Nolte, S. Ultrashort Pulse Induced Modifications in ULE—From Nanograting Formation to Laser Darkening. Opt. Mater. Express OME 2015, 5, 1834–1850. [Google Scholar] [CrossRef]
- Bal, R.; Chaudhari, K.; Srinivas, D.; Sivasanker, S.; Ratnasamy, P. Redox and Catalytic Chemistry of Ti in Titanosilicate Molecular Sieves: An EPR Investigation. J. Mol. Catal. A Chem. 2000, 162, 199–207. [Google Scholar] [CrossRef]
- Sushko, P.V.; Mukhopadhyay, S.; Mysovsky, A.S.; Sulimov, V.B.; Taga, A.; Shluger, A.L. Structure and Properties of Defects in Amorphous Silica: New Insights from Embedded Cluster Calculations. J. Phys. Condens. Matter 2005, 17, S2115. [Google Scholar] [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catal. 2019, 9, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Singh, A.; Punia, R.; Dahiya, S.; Singh, L. Structural Properties and Electrical Transport Characteristics of Modified Lithium Borate Glass Ceramics. J. Alloys Compd. 2017, 696, 529–537. [Google Scholar] [CrossRef]
- Majhi, K.; Vaish, R.; Paramesh, G.; Varma, K.B.R. Electrical Transport Characteristics of ZnO–Bi2O3–B2O3 Glasses. Ionics 2013, 19, 99–104. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, K.; Xing, Z.; Zhang, C.; Hu, X.; Guo, P.; Zhang, J.; Li, J. Understanding the Validity of Impedance and Modulus Spectroscopy on Exploring Electrical Heterogeneity in Dielectric Ceramics. J. Appl. Phys. 2019, 125, 084103. [Google Scholar] [CrossRef]
- Almond, D.P.; West, A.R. Impedance and Modulus Spectroscopy of “Real” Dispersive Conductors. Solid State Ion. 1983, 11, 57–64. [Google Scholar] [CrossRef]
- Maass, P.; Petersen, J.; Bunde, A.; Dieterich, W.; Roman, H.E. Non-Debye Relaxation in Structurally Disordered Ionic Conductors: Effect of Coulomb Interaction. Phys. Rev. Lett. 1991, 66, 52–55. [Google Scholar] [CrossRef]
- Sheoran, A.; Sanghi, S.; Rani, S.; Agarwal, A.; Seth, V.P. Impedance Spectroscopy and Dielectric Relaxation in Alkali Tungsten Borate Glasses. J. Alloys Compd. 2009, 475, 804–809. [Google Scholar] [CrossRef]
- Annapurna, T.; Kostrzewa, M.; Reddy, A.S.S.; Ingram, A.; Ashok, J.; Kumar, V.R.; Veeraiah, N. Polaronic Conduction and Dielectric Relaxation Dynamics in V2O5 Added Lead Bismuth Silicate Glass System. J. Non-Cryst. Solids 2020, 528, 119746. [Google Scholar] [CrossRef]
- Martin, S.W. Conductivity Relaxation in Glass: Compositional Contributions to Non-Exponentiality. Appl. Phys. A 1989, 49, 239–247. [Google Scholar] [CrossRef]
- Ngai, K.L. A Review of Critical Experimental Facts in Electrical Relaxation and Ionic Diffusion in Ionically Conducting Glasses and Melts. J. Non-Cryst. Solids 1996, 203, 232–245. [Google Scholar] [CrossRef]
- Kusz, B.; Trzebiatowski, K.; Barczynski, R.J. Ionic Conductivity of Bismuth Silicate and Bismuth Germanate Glasses. Solid State Ion. 2003, 159, 293–299. [Google Scholar] [CrossRef]
- Bendahhou, A.; Marchet, P.; El Barkany, S.; Abou-salama, M. Structural and Impedance Spectroscopic Study of Zn-Substituted Ba5CaTi2Nb8O30 Tetragonal Tungsten Bronze Ceramics. J. Alloys Compd. 2021, 882, 160716. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Dimensionality Dependence of the Conductivity Dispersion in Ionic Materials. Phys. Rev. Lett. 1999, 83, 983–986. [Google Scholar] [CrossRef]
- Lanfredi, S.; Saia, P.S.; Lebullenger, R.; Hernandes, A.C. Electric Conductivity and Relaxation in Fluoride, Fluorophosphate and Phosphate Glasses: Analysis by Impedance Spectroscopy. Solid State Ion. 2002, 146, 329–339. [Google Scholar] [CrossRef]
- Li, F.; Liu, P.; Ruan, P.; Zhang, H.; Guo, B.; Zhao, X. Microwave Dielectric Properties of (1−x) SiO2 − xTiO2 Ceramics. Ceram. Int. 2015, 41, S582–S587. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Y.; Liu, P.; Zhang, W.; Zhu, J. Microwave Dielectric Properties of (1−x) SiO2–xTiO2 Composite Ceramics Derived from Core–Shell Structured Microspheres. Mater. Res. Bull. 2014, 53, 54–57. [Google Scholar] [CrossRef]
- Sebastian, M.T. Dielectric Materials for Wireless Communication; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-056050-2. [Google Scholar]
- Shannon, R.D. Dielectric Polarizabilities of Ions in Oxides and Fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Liu, F.; Lin, X.; Liu, S. Effect of Lattice Defects on Crystal Structure and Microwave Properties of Ba(Ga1/2Ta1/2)O3 Doped Ba(Zn1/3Nb2/3)O3 Ceramics. J. Alloys Compd. 2024, 1002, 175175. [Google Scholar] [CrossRef]
Sample | Q × f (GHz) | τf (ppm/K) | Reference | |
---|---|---|---|---|
S6 | 4.13 | 57,116 | −4.32 | This work |
Silica glass | 3.82 | 75,000 | −8.0 | |
0.84SiO2-0.16TiO2 | 5.91 | 39,680 | −4.53 | [38] |
0.85SiO2-0.15TiO2 | 5.4 | 40,500 | 2.5 | [39] |
Sample | Density (g/cm3) | Molar Volume (Å3) | α (O2−) | ||
---|---|---|---|---|---|
S0 | 2.200 | 45.35 | 3.83 | 5.26 | 2.63 |
S1 | 2.202 | 45.74 | 3.94 | 5.41 | 2.67 |
S2 | 2.203 | 45.99 | 4.00 | 5.50 | 2.70 |
S3 | 2.201 | 46.18 | 4.04 | 5.55 | 2.71 |
S4 | 2.203 | 46.25 | 4.07 | 5.59 | 2.72 |
S5 | 2.208 | 46.27 | 4.10 | 5.63 | 2.74 |
S6 | 2.207 | 46.43 | 4.13 | 5.68 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Gao, S.; Zhu, M.; Shao, Z.; Nie, L.; Wang, H.; Jia, Y.; Fu, B. Microwave Dielectric Properties and Defect Behavior of xTiO2-(1-x)SiO2 Glass. Materials 2025, 18, 320. https://doi.org/10.3390/ma18020320
Zhang C, Gao S, Zhu M, Shao Z, Nie L, Wang H, Jia Y, Fu B. Microwave Dielectric Properties and Defect Behavior of xTiO2-(1-x)SiO2 Glass. Materials. 2025; 18(2):320. https://doi.org/10.3390/ma18020320
Chicago/Turabian StyleZhang, Chenyang, Sijian Gao, Mankang Zhu, Zhufeng Shao, Lanjian Nie, Hui Wang, Yanan Jia, and Bo Fu. 2025. "Microwave Dielectric Properties and Defect Behavior of xTiO2-(1-x)SiO2 Glass" Materials 18, no. 2: 320. https://doi.org/10.3390/ma18020320
APA StyleZhang, C., Gao, S., Zhu, M., Shao, Z., Nie, L., Wang, H., Jia, Y., & Fu, B. (2025). Microwave Dielectric Properties and Defect Behavior of xTiO2-(1-x)SiO2 Glass. Materials, 18(2), 320. https://doi.org/10.3390/ma18020320