Estimation of Compressive Strength of Basalt Fiber-Reinforced Kaolin Clay Mixture Using Extreme Learning Machine
Abstract
:1. Introduction
2. Experimental Studies
3. Extreme Learning Machine
4. ELM-Based Estimation of Compressive Strength
5. Conclusions
- The qu values predicted by the ELM showed a high degree of agreement with the experimental results, highlighting the effectiveness of ELM in assessing compressive strength performance.
- A 5-fold cross-validation technique was applied, and the RMSE value for ELM was calculated as 0.000174, further validating the robustness of the ELM model compared to other AI techniques.
- The ELM technique used in this study has not been previously applied for predicting the compressive strength of BF-reinforced clay in the literature, making this approach novel in this context.
- The ELM model demonstrated excellent stability across various conditions (e.g., changes in BF ratio and water content), indicating its reliability in predicting qu values under different scenarios.
- In these future studies, the clay type and properties will differ, and preparing a large number of mixtures with varying fiber ratios, lengths, and water contents will provide more data.
- As the input data increase in ELM analyses, the accuracy of the predictions will also improve, which is highly significant.
- A potential limitation of this study is the use of only one type of clay (kaolin) and BF with a length of 24 mm. Future research could explore the application of ELM to other soil types and examine the performance of reinforcement techniques using fibers of different types and lengths.
- Future work may also consider investigating the effect of environmental factors, such as temperature and humidity, on the compressive strength of fiber-reinforced soils to enhance the robustness of the model in real-world conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Qin, X.; Huang, X.; Kaewunruen, S. Engineering, Mechanical and Dynamic Properties of Basalt Fiber Reinforced Concrete. Materials 2023, 16, 623. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil. Geotext. Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Diambra, A.; Ibraim, E.; Wood, D.M.; Russell, A.R. Fibre Reinforced Sands: Experiments and Modeling. Geotext. Geomembr. 2010, 28, 238–250. [Google Scholar] [CrossRef]
- Zaimoglu, A.S. Freezing–Thawing Behavior of Fine-Grained Soils Reinforced with Polypropylene Fibers. Cold Reg. Sci. Technol. 2010, 60, 63–65. [Google Scholar] [CrossRef]
- Pradhan, P.K.; Kar, R.K.; Naik, A. Effect of Random Inclusion of Polypropylene Fibers on Strength Characteristics of Cohesive Soil. Geotech. Geol. Eng. 2012, 30, 15–25. [Google Scholar] [CrossRef]
- Roustaei, M.; Eslami, A.; Ghazavi, M. Effects of Freeze-thaw Cycles on a Fiber Reinforced Fine Grained Soil in Relation to Geotechnical Parameters. Cold Reg. Sci. Technol. 2015, 120, 127–137. [Google Scholar] [CrossRef]
- Amini, P.F.; Noorzad, R. Energy-Based Evaluation of Liquefaction of Fiber-Reinforced Sand Using Cyclic Triaxial Testing. Soil Dyn. Earthq. Eng. 2018, 104, 45–53. [Google Scholar] [CrossRef]
- Estabragh, A.R.; Bordbar, A.T.; Javadi, A.A. Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers. Geotech. Geol. Eng. 2011, 29, 899–908. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Sedaghatnezhad, H.; Changizi, F. Engineering Properties of Soils Reinforced by Recycled Polyester Fiber. J. Mech. Civ. Eng. 2016, 13, 1–7. [Google Scholar]
- Cui, H.; Jin, Z.; Bao, X.; Tang, W.; Dong, B. Effect of Carbon Fiber and Nanosilica on Shear Properties of Silty Soil and The Mechanisms. Constr. Build. Mater. 2018, 189, 286–295. [Google Scholar] [CrossRef]
- Bao, X.; Huang, Y.; Jin, Z.; Xiao, X.; Tang, W.; Cui, H.; Chen, X. Experimental Investigation on Mechanical Properties of Clay Soil Reinforced with Carbon Fiber. Constr. Build. Mater. 2021, 280, 100474. [Google Scholar] [CrossRef]
- Valipour, M.; Shourijeh, P.T.; Mohammadinia, A. Application of Recycled Tire Polymer Fibers and Glass Fibers for Clay Reinforcement. Transp Geotech. 2021, 27, 100474. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Valenza, A. Glass–basalt/Epoxy Hybrid Composites for Marine Applications. Mater. Des. 2011, 32, 2091–2099. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, J. Structure Characteristics and Mechanical Properties of Fiber Reinforced Concrete. Adv. Mater. Res. 2011, 168, 1556–1560. [Google Scholar] [CrossRef]
- Militky, J.; Kovacic, V. Ultimate Mechanical Properties of Basalt Filaments. Text. Res. J. 1996, 66, 225–229. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A Green Material from Rock: Basalt Fiber—A Review. J. Text. Inst. 2015, 107, 923–937. [Google Scholar] [CrossRef]
- Elshafie, S.; Whittleston, G.S. A Review of the Effect of Basalt Fibre Lengths and Proportions on the Mechanical Properties of Concrete. Int. J. Res. Eng. Technol. 2015, 4, 458–465. [Google Scholar]
- Bheel, N. Basalt Fibre-Reinforced Concrete: Review of Fresh and Mechanical Properties. J. Build. Pathol. Rehabil. 2021, 6, 12. [Google Scholar] [CrossRef]
- Gisymol, P.G.; Ramya, K. A Study on The Effect of Basalt Fiber in Organic Soil. IOSR J. Mech. Civ. Eng. 2014, 14, 13–17. [Google Scholar]
- Gao, L.; Hu, G.; Xu, N.; Fu, J.; Xiang, C.; Yang, C. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil. Adv. Mater. Sci. Eng. 2015, 2015, 561293. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, D.; Liu, W.; Yang, Y.; Yang, H. Use of Basalt Fiber-Reinforced Tailings for Improving The Stability of Tailings Dam. Materials 2019, 12, 1306. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, Z.; Chen, H.; Shao, L.; Zhou, X.; Wang, S. Triaxial Shear Behavior of Basalt Fiber-Reinforced Loess Based on Digital Image Technology. KSCE J. Civ. Eng. 2021, 25, 3714–3726. [Google Scholar] [CrossRef]
- Gürocak, Z.; Topçuoğlu, Y.A. Bazalt Fiber Kullanımının Düşük Plastisiteli Kilin Serbest Basınç Dayanımı Üzerindeki Etkisi. Gümüşhane Üniversitesi Fen Bilim. Derg. 2023, 13, 688–701. [Google Scholar] [CrossRef]
- Aslan Topçuoğlu, Y.; Gürocak, Z. Sodyum Bentonit Kilini Güçlendirmede Maksimum Dayanım Için Optimum Bazalt Fiber Oranının Belirlenmesi. Dicle Univ. J. Eng. Dicle Üniversitesi Mühendislik Derg. 2023, 14, 479. [Google Scholar]
- Sun, S.; Liu, H.; Shi, C.; Xu, L.; Sui, Y. Mechanical Properties of Basalt Fiber Reinforced Cemented Silty Sand: Laboratory Tests, Statistical Analysis and Microscopic Mechanism. Appl. Sci. 2023, 13, 3493. [Google Scholar] [CrossRef]
- Chou, J.S.; Yang, K.H.; Lin, J.Y. Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and Metaensemble Methods. J. Comput. Civ. Eng. 2016, 30, 04016036. [Google Scholar] [CrossRef]
- Garg, A.; Bordoloi, S.; Mondal, S.; Ni, J.J.; Sreedeep, S. Investigation of Mechanical Factor of Soil Reinforced with Four Types of Fibers: An Integrated Experimental and Extreme Learning Machine Approach. J. Nat. Fibers 2020, 17, 650–664. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ANN-Based Techniques in Predicting Cohesion of Sandy-Soil Combined with Fiber. Geomech. Eng. 2020, 20, 191–205. [Google Scholar]
- Tiwari, N.; Satyam, N. Coupling Effect of Pond Ash and Polypropylene Fiber on Strength and Durability of Expansive Soil Subgrades: An Integrated Experimental and Machine Learning Approach. J. Rock Mech. Geotech. Eng. 2021, 13, 1101–1112. [Google Scholar] [CrossRef]
- Mazhar, S.; GuhaRay, A. Stabilization of Expansive Clay by Fibre-Reinforced Alkali-Activated Binder: An Experimental Investigation and Prediction Modelling. Int. J. Geotech. Eng. 2021, 15, 977–993. [Google Scholar] [CrossRef]
- Ndepete, C.P.; Sert, S.; Beycioğlu, A.; Katanalp, B.Y.; Eren, E.; Bağrıaçık, B.; Topolinski, S. Exploring the Effect of Basalt Fibers On Maximum Deviator Stress and Failure Deformation of Silty Soils Using ANN, SVM and FL Supported by Experimental Data. Adv. Eng. Softw. 2022, 172, 103211. [Google Scholar] [CrossRef]
- Sungur, A.; Keskin, N. Prediction of The Shear Strength of Glass Fiber-Reinforced Clay Soil by Adaptive Neuro-Fuzzy Inference System (ANFIS). El-Cezeri 2022, 9, 1255–1264. [Google Scholar]
- Gul, N.; Mir, B.A. Parametric Study of Glass Fiber Reinforced Fine-grained Soil with Emphasis on Microstructural Analysis. Int. J. Geotech. Eng. 2022, 16, 716–728. [Google Scholar] [CrossRef]
- Yazıcı, M.F.; Sungur, A.; Keskin, S.N. Modeling of Shear Strength of Basalt Fiber Reinforced Clay (BFRC) Soil Using Artificial Neural Network (ANN). In Proceedings of the International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Baku, Azerbaijan, 20–22 May 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 73–81. [Google Scholar]
- Alisha, S.S.; Nagaraju, T.V.; Murty, P.S.R.; Sarma, V.V.S.; Sireesha, M. Strength and Stiffness Prediction Models of Expansive Clays Blended with Sawdust Ash. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2023; Volume 1273, p. 012018. [Google Scholar]
- Houcine, B.; Mohamed, R.; Samir, K.; Sarra, B. Artificial intelligence for the prediction of the physical and mechanical properties of a compressed earth reinforced by fibers. J. Eng. Exact Sci. 2023, 9, 15910-01e. [Google Scholar] [CrossRef]
- Kannan, G.; Sujatha, E.R. Prediction of Strength Parameters of Fibre Reinforced Soil Using Machine Learning Algorithms. In Proceedings of the Indian Geotechnical Conference, Maharashtra, India, 19–21 December 2024; Springer Nature: Singapore, 2023; pp. 43–54. [Google Scholar]
- Sert, S.; Arslan, E.; Ocakbaşı, P.; Ekinci, E.; Garip, Z.; Özocak, A.; Bol, E.; Ndepete, C.P. Stabilization of Expansive Clays with Basalt Fibers and Prediction of Strength by Machine Learning. Arab. J. Sci. Eng. 2024, 49, 13651–13670. [Google Scholar] [CrossRef]
- Aslan Topçuoğlu, Y.; Duranay, Z.B.; Gürocak, Z. Evaluation of the Changes in the Strength of Clay Reinforced with Basalt Fiber Using Artificial Neural Network Model. Appl. Sci. 2024, 14, 10362. [Google Scholar] [CrossRef]
- Arslan, E.; Ekinci, E.; Garip, Z.; Küçük, F.; Sert, S. A Sustainable Solution for Soil Improvement: A Decision Tree Model Combined with Metaheuristic Optimizations for Fiber Reinforced Clays. Environ. Dev. Sustain. 2024, 1–27. [Google Scholar] [CrossRef]
- Khawaja, L.; Asif, U.; Onyelowe, K.; Al Asmari, A.F.; Khan, D.; Javed, M.F.; Alabduljabbar, H. Development of Machine Learning Models for Forecasting the Strength of Resilient Modulus of Subgrade Soil: Genetic and Artificial Neural Network Approaches. Sci. Rep. 2024, 14, 18244. [Google Scholar] [CrossRef]
- Li, L.; Gao, Y.; Dong, X.; Han, Y. Artificial Neural Network Model for Predicting Mechanical Strengths of Economical Ultra-High-Performance Concrete Containing Coarse Aggregates: Development and Parametric Analysis. Materials 2024, 17, 3908. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, Y.A.; Gürocak, Z. The Effect of Basalt Fiber Reinforcement at Different Ratios on the Unconfined Compressive Strength of Kaolin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2024, 13, 169–175. [Google Scholar]
- ASTM D2166M-16; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2016.
- Guldemir, H.; Sengur, A. Online Modulation Recognition of Analog Communication Signals Using Neural Network. Expert Syst. Appl. 2007, 33, 206–214. [Google Scholar] [CrossRef]
- Lazaridis, P.C.; Thomoglou, A.K. Rapid shear capacity prediction of TRM-strengthened unreinforced masonry walls through interpretable machine learning deployed in a web app. J. Build. Eng. 2024, 98, 110912. [Google Scholar] [CrossRef]
- Duranay, Z.B.; Guldemir, H. Extreme learning machine based selected harmonic elimination for single phase inverters. Measurement 2019, 131, 300–308. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Guldemir, N.H.; Alkan, A. Classification of Optical Coherence Tomography Images Via Deep Learning. Firat Univ. J. Eng. Sci. 2021, 33, 607–615. [Google Scholar]
Feature | Value |
---|---|
Length of fiber (mm) | 24 |
Diameter of monofilament Çapı (µm) | 15 ± 1.5 |
Humidity, Max (%) | 2 |
Modulus of elasticity (GPa) | 90 |
Tensile strength (MPa) | 3000 |
Thermal conductivity (W/mK) | 0.031–0.038 |
Elongation at break (%) | 3.5 |
Density (g/cm3) | 2.63 |
W Ratio (%) | Sample | K Ratio (%) | BF Ratio (%) | Average qu (kPa) |
---|---|---|---|---|
20 | K | 100 | 0 | 102.40 |
K + 1% BF | 99 | 1 | 523.83 | |
K + 2% BF | 98 | 2 | 685.31 | |
K + 3% BF | 97 | 3 | 445.06 | |
25 | K | 100 | 0 | 294.08 |
K + 1% BF | 99 | 1 | 807.40 | |
K + 2% BF | 98 | 2 | 720.76 | |
K + 3% BF | 97 | 3 | 705.00 | |
30 | K | 100 | 0 | 96.07 |
K + 1% BF | 99 | 1 | 580.53 | |
K + 2% BF | 98 | 2 | 630.23 | |
K + 3% BF | 97 | 3 | 557.22 | |
35 | K | 100 | 0 | 47.09 |
K + 1% BF | 99 | 1 | 51.89 | |
K + 2% BF | 98 | 2 | 64.85 | |
K + 3% BF | 97 | 3 | 47.95 |
Sample | Inputs | Experimental Output |
ELM Output | ||
---|---|---|---|---|---|
Water Ratio | Clay Ratio | BF Ratio | |||
1 | 20 | 100 | 0 | 102.40 | 102.54 |
2 | 20 | 99 | 1 | 523.83 | 523.97 |
3 | 20 | 98 | 2 | 685.31 | 685.85 |
4 | 20 | 97 | 3 | 445.06 | 444.92 |
5 | 25 | 100 | 0 | 294.08 | 294.32 |
6 | 25 | 99 | 1 | 807.40 | 807.43 |
7 | 25 | 98 | 2 | 720.76 | 720.53 |
8 | 25 | 97 | 3 | 705.00 | 705.01 |
9 | 30 | 100 | 0 | 96.07 | 95.95 |
10 | 30 | 99 | 1 | 580.53 | 580.82 |
11 | 30 | 98 | 2 | 630.23 | 630.37 |
12 | 30 | 97 | 3 | 557.22 | 556.43 |
13 | 35 | 100 | 0 | 47.09 | 47.62 |
14 | 35 | 99 | 1 | 51.89 | 51.85 |
15 | 35 | 98 | 2 | 64.85 | 64.83 |
16 | 35 | 97 | 3 | 47.95 | 47.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duranay, Z.B.; Aslan Topçuoğlu, Y.; Gürocak, Z. Estimation of Compressive Strength of Basalt Fiber-Reinforced Kaolin Clay Mixture Using Extreme Learning Machine. Materials 2025, 18, 245. https://doi.org/10.3390/ma18020245
Duranay ZB, Aslan Topçuoğlu Y, Gürocak Z. Estimation of Compressive Strength of Basalt Fiber-Reinforced Kaolin Clay Mixture Using Extreme Learning Machine. Materials. 2025; 18(2):245. https://doi.org/10.3390/ma18020245
Chicago/Turabian StyleDuranay, Zeynep Bala, Yasemin Aslan Topçuoğlu, and Zülfü Gürocak. 2025. "Estimation of Compressive Strength of Basalt Fiber-Reinforced Kaolin Clay Mixture Using Extreme Learning Machine" Materials 18, no. 2: 245. https://doi.org/10.3390/ma18020245
APA StyleDuranay, Z. B., Aslan Topçuoğlu, Y., & Gürocak, Z. (2025). Estimation of Compressive Strength of Basalt Fiber-Reinforced Kaolin Clay Mixture Using Extreme Learning Machine. Materials, 18(2), 245. https://doi.org/10.3390/ma18020245