Mud-Based Construction Material: Promising Properties of French Gravel Wash Mud Mixed with Byproducts, Seashells and Fly Ash as a Binder
Abstract
:1. Introduction
2. Materials and Techniques
2.1. Materials
2.1.1. Gravel Wash Mud
2.1.2. Fibers
2.1.3. Fly Ash
2.1.4. Crepidula Fornicata Shells
2.1.5. Mix Design
2.2. Experimental Techniques
3. Results and Discussion
3.1. Physical and Chemical Properties of GWM
3.2. Characterization of GWM-FA-CR
3.2.1. Compressive Strength of GWM-FA-CR
3.2.2. Analyses of GWM-FA-CR Sample Using XRD
3.2.3. Analyses of GWM and GWM-FA-CR Sample by DSC
3.2.4. Raman Spectroscopy Analyses
3.2.5. Thermal Conductivity of GMW-FA-CR
3.2.6. Moisture Sorption Isotherm of GMW-FA-CR
3.2.7. Specific Heat Capacity of GWM-FA-CR
3.2.8. Thermal Insulating Wall with GWM-FA-CR
4. Conclusions
- The use of GWM, CR and FA can greatly contribute to the Sustainable Development Goals (SDGs) and to reducing carbon emissions.
- The formation of tobermorite and Al-tobermorite leads to high mechanical performance properties of the GWM specimen.
- The increase in compressive strength compared to usual cob materials results in a reduction in the cob wall thickness, and therefore a gain in the quantities of materials used in cob construction.
- The use of FA and CR provides two advantages:
- (1)
- The high silica and calcium contents originating from FA and CR, respectively, react with clays and lead to the formation of tobermorite and Al-tobermorite as a result of a pozzolanic reaction, and thus lead to a reduction in porosity and enhanced strength.
- (2)
- The thermal conductivity of the GMW-FA-CR is reduced and the specific heat capacity is enhanced compared to those of the usual cob construction materials used in Normandy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaquin, P. History of Earth Building Techniques. In Modern Earth Buildings, Materials, Engineering, Constructions and Applications; Woodhead Publishing Series in Energy; Woodhead Pub Ltd.: Oxford, UK, 2012; pp. 307–323. [Google Scholar]
- Houben, H.; Guillaud, H. Earth Construction; Intermediate Technology Publications: London, UK, 1989. [Google Scholar]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Engineering properties of unfired clay masonry bricks. Eng. Geol. 2009, 107, 130–139. [Google Scholar] [CrossRef]
- Daoudi, L.; Rocha, F.; Costa, C.; Arrebei, N.; Fagel, N. Characterization of rammed-earth materials from the XVIth century Badii Palace in Marrakech, Morocco to ensure authentic and reliable restoration. Gearchaeology 2018, 33, 529–541. [Google Scholar] [CrossRef]
- Schroeder, H. Sustainable Building with Earth; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–576. [Google Scholar]
- Allinson, D.; Hall, M. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Adeguna, O.B.; Adedeji, Y.M.D. Review of economic and environmental benefits of earthen materials for housing in Africa. Front. Archit. Res. 2017, 6, 519–528. [Google Scholar] [CrossRef]
- Abanda, F.; Nkeng, G.; Tah, J.; Ohandja, E.; Manjia, M. Embodied energy and CO2 analyses of mud-brick and cement- block houses. AIMS Energy 2014, 2, 18–40. [Google Scholar]
- Alausa, S.; Adekoya, B.; Aderibigbe, J.; Nwaokocha, C. Thermal characteristics of laterite-mud and concrete-block for walls in building construction in Nigeria. Int. J. Eng. Appl. Sci. 2013, 4, 8269. [Google Scholar]
- Sharma, V.; Marwaha, B.M.; Vinayak, H.K. Enhancing durability of adobe by natural reinforcement for propagating sustainable mud housing. Int. J. Sustain. Built Environ. 2016, 5, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Thapa, V.B.; Waldmann, D.; Wagner, J.-F.; Lecomte, A. Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder. Appl. Clay Sci. 2018, 161, 110–118. [Google Scholar] [CrossRef]
- Thapa, V.B.; Waldmann, D.; Simon, C. Gravel wash mud, a quarry waste material as supplementary cementitious material (SCM). Cem. Concr. Res. 2019, 124, 105833. [Google Scholar] [CrossRef] [Green Version]
- UNPG, 2019. Translated from French (L’industrie Française des Granulats. Edition 2019—French Aggregates Industry. 2019). Available online: http://www.unpg.fr/wp-content/uploads/stat-unpg-chiffres-2017-web.pdf (accessed on 25 September 2021).
- Rakhimova, N.R.; Rakhimov, R.Z. Literature Review of Advances in Materials Used in Development of Alkali-Activated Mortars, Concretes, and Composites. J. Mater. Civil. Eng. 2019, 31, 03119002. [Google Scholar] [CrossRef]
- Zami, M.S.; Lee, A. Contemporary Earth Construction in Urban Housing—Stabilised or Unstabilised? School of the Built Environment, University of Salford: Salford, UK, 2008. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2002; p. 621. [Google Scholar]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Gallipoli, D.; Bruno, A.W.; Perlot, C.; Mendes, J. A geotechnical perspective of raw earth building. Acta. Geotechnica. 2017, 12, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.M.; Stegemann, J.A. From Waste Management to Component Management in the Construction Industry. Sustainability 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Villamizara, M.C.N.; Araquea, V.S.; Reyesa, C.A.R.; Silva, R.S. Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks. Constr. Build. Mater. 2012, 36, 276–286. [Google Scholar] [CrossRef]
- Limaa, S.A.; Varumb, H.; Salesa, A.; Netoc, V.F. Analysis of the mechanical properties of compressed earth block masonry usingthe sugarcane bagasse ash. Constr. Build. Mater. 2012, 35, 829–837. [Google Scholar] [CrossRef]
- Thomas, J.I.; Namitha, J.J.; Mathew, R.; Reji, R. Mud Bricks Using Oyster Shells. In National Conference on Structural Engineering and Construction Management SECON 2019: Proceedings of SECON’19, Angamaly, India, 15–16 May 2019; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 205–211. [Google Scholar]
- Cabrera, J.; Rojas, M.F. Mechanism of hydration of the metakaolin-lime-water system. Cement. Concr. Res. 2001, 31, 177–182. [Google Scholar] [CrossRef]
- Gameiro, A.L.; Silva, A.S.; Veiga, R.D.M.; Velosa, A. Lime-metakaolin hydration products: A microscopy analysis. Mater. Technol. 2012, 46, 145–148. [Google Scholar]
- Gameiro, A.L.; Silva, A.S.; Veiga, R.D.M.; Velosa, A. Hydration products of lime-metakaolin pastes at ambient temperature with ageing. Thermochim. Acta. 2012, 535, 36–41. [Google Scholar] [CrossRef]
- Bouasria, M.; El Mendili, Y.; Benzaama, M.H.; Pralong, V.; Bardeau, J.F.; Hennequart, F. Valorisation of stranded Laminaria digitata seaweed as an insulating earth material. Constr. Build. Mater. 2021, 308, 125068. [Google Scholar] [CrossRef]
- Vichan, S.; Rachan, R.; Horpibulsuk, S. Strength and microstructure developmentin Bangkok clay stabilized with calcium carbide residue and biomass ash. Sci. Asia. 2013, 39, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Horpibulsuk, S.; Phetchuay, C.; Chinkulkijniwat, A. Soil stabilization by calciumcarbide residue and fly ash. J. Mater. Civil Eng. 2012, 24, 184–194. [Google Scholar] [CrossRef]
- Siddiqua, S.; Barreto, P.N.M. Chemical stabilization of rammed earth using calcium carbide residue and fly ash. Constr. Build. Mater. 2018, 169, 364–371. [Google Scholar] [CrossRef]
- Zierold, K.M.; Sears, C.G.; Hagemeyer, A.N. Protocol for measuring indoor exposure to coal fly ash and heavy metals. and neurobehavioural symptoms in children aged 6 to 14 years old. BMJ Open 2020, 10, e038960. [Google Scholar] [CrossRef]
- Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A. Influence ofwet-dry cycles on compressive strength of calcium Carbide residue-fly ash stabilized clay. J. Mater. Civil Eng. 2014, 26, 633–643. [Google Scholar] [CrossRef]
- Lekshmi, M.S.; Vishnudas, S.; Nair, D.G. An investigation on the potential of mud as sustainable building material in the context of Kerala. Int. J. Energy Technol. Policy 2017, 13, 107–122. [Google Scholar] [CrossRef]
- Goodhew, S.; Boutouil, M.; Streiff, F.; Le Guern, M.; Carfrae, J.; Fox, M. Improving the thermal performance of earthen walls to satisfy current building regulations. Energy Build. 2021, 240, 110873. [Google Scholar] [CrossRef]
- Bouasria, M.; Khadraoui, F.; Benzaama, M.H.; Chateigner, D.; Gascoin, S.; Pralong, V.; Orberger, B.; Babouri, L.; El Mendili, Y. Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells. J. Build. Eng. 2021, 33, 101587. [Google Scholar] [CrossRef]
- Yalcin, S.; Chateigner, D.; Le Pluart, L.; Gascoin, S.; Eve, S. Investigation of structural and mechanical properties of BioCaCO3-LDPE composites. Mat. Int. 2019, 1, 29–43. [Google Scholar] [CrossRef]
- Phung, T.A.; Le Guern, M.; Boutouil, M.; Louahlia, H. Hygrothermal Behaviour of Cob Material. In Proceedings of the International Symposium on Earthen Structures 2018, IISc, Bangalore, India, 22–24 August 2018. [Google Scholar]
- El Mendili, Y.; Vaitkus, A.; Merkys, A.; Gražulis, S.; Chateigner, D.; Mathevet, F.; Gascoin, S.; Petit, S.; Bardeau, J.-F.; Zanatta, M.; et al. Raman Open Database: First interconnected Raman–X-ray diffraction open-access resource for material identification. J. Appl. Cryst. 2019, 52, 618–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caglioti, G.; Paoletti, A.; Ricci, F.P. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 1958, 3, 223–228. [Google Scholar] [CrossRef]
- Grazulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic. Acids. Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R.; Schultz, A.S.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phy. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- AFNOR. NF EN ISO 12572—Performance Hygrothermique des Matériaux et Produits pour le Bâtiment—Détermination des Propriétés de Transmission de la Vapeur d’eau; NF EN ISO 12572; AFNOR: Paris, France, 2001. [Google Scholar]
- Plastiques—Analyse calorimétrique différentielle (DSC)—Partie 4: Détermination de la capacité thermique massique, NF EN ISO 11357-4. 2014. Available online: https://sagaweb.afnor.org/ (accessed on 25 September 2021).
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barton, C.D.; Karathanasis, A.D. Clay Minerals. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 187–192. [Google Scholar]
- Mookherjee, M.; Mainprice, D.; Maheshwari, K.; Heinonen, O.; Patel, D.; Hariharan, A. Pressure induced elastic softening in framework aluminosilicate-albite (NaAlSi3O8). Sci. Rep. 2016, 6, 34815. [Google Scholar] [CrossRef] [Green Version]
- Andrade, F.A.; Al-Qureshi, H.A.; Hotza, D. Measuring the plasticity of clays: A review. Appl. Clay Sci. 2011, 51, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Biagioni, C.; Merlino, S.; Bonaccorsi, E. The tobermorite supergroup: A new nomenclature. Mineral. Mag. 2015, 79, 485–495. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, D.M.; Roy, R. Al-substituted tobermorite -shows cation exchange. Cem. Concr. Res. 1982, 6, 773–780. [Google Scholar] [CrossRef]
- Faucon, P.; Petit, J.C.; Charpentier, T.; Jacquinot, J.F.; Adenot, F. Silicon Substitution for Aluminum in Calcium Silicate Hydrates. J. Am. Ceram. Soc. 1999, 82, 1307–1312. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, R.; Roy, D.M.; Fyfe, C.A.; Kennedy, G.J.; Bothner-By, A.A.; Dadok, J.; Chesnick, A.S. 27Al and29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites. J. Mater. Sci. 1985, 20, 4209–4214. [Google Scholar] [CrossRef]
- Paradiso, P.; Santos, R.L.; Horta, R.B.; Lopes, J.N.C.; Ferreira, P.J.; Colaço, R. Formation of nanocrystalline tobermorite in calcium silicate binders with low C/S ratio. Acta Mater. 2018, 152, 7–15. [Google Scholar] [CrossRef]
- Luo, F.; Wei, C.; Xue, B.; Wang, S.; Jiang, Y. Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3. Res. Chem. Intermed. 2013, 39, 693–705. [Google Scholar] [CrossRef]
- Bernstein, S.; Fehr, K.T. The formation of 1.13 nm tobermorite under hydrothermal conditions: 1. the influence of quartz grain size within the system CaO-SiO2-D2O. Prog. Cryst. Growth Charact. Mater. 2012, 58, 84–91. [Google Scholar] [CrossRef]
- Michel, M.; Georgin, J.F.; Ambroise, J. Improving the mechanical performance of high-grade slag cement by the addition of Portland cement and sulfoaluminate cement. Constr. Build. Mater. 2012, 37, 291–300. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; van Deventer, J.S.J. Dryinginduced changes in the structure of alkali-activated pastes. J. Mater. Sci. 2013, 48, 3566–3577. [Google Scholar] [CrossRef]
- Ma, B.; Liu, X.; Tan, H.; Zhang, T.; Mei, J.; Qi, H.; Jiang, W.; Zou, F. Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material. Constr. Build. Mater. 2018, 175, 726–734. [Google Scholar] [CrossRef]
- Alastair, M.; Andrew, H.; Pascaline, P.; Mark, E.; Pete, W. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl. Clay Sci. 2018, 166, 250–261. [Google Scholar]
- Stolboushkin, A.Y.; Ivanov, A.I.; Syromyasov, V.A.; Fomina, O.A. A study on sintering of ceramic bricks made from waste coal. IOP Conf. Ser. Earth Environ. Sci. 2016, 45, 012018. [Google Scholar] [CrossRef] [Green Version]
- Elkhalifah, A.E.I.; Maitra, S.; Bustam, M.A.; Murugesan, T. Thermogravimetric analysis of different molar mass ammonium cations intercalated different cationic forms of montmorillonite. J. Therm. Anal. Calorim. 2012, 110, 765–771. [Google Scholar] [CrossRef]
- Laskou, M.; Margomenou-Leonidopoulou, G.; Balek, V. Thermal characterization of bauxite samples. J. Therm. Anal. Calorim. 2006, 84, 141–146. [Google Scholar] [CrossRef]
- Dollimore, D.; Tong, P.; Alexander, K.S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim. Acta 1996, 13, 282–283. [Google Scholar] [CrossRef]
- Barba, A.; Beltrán, V.; Feliu, C.; García, J.; Ginés, F.; Sánchez, E.; Sanz, V. Raw Materials for Fabrication of Supports to Clay Ceramics; AICE/ITC: Castellón, Spain, 1997. [Google Scholar]
- Carty, W.; Senapati, U. Porcelain-raw materials, processing, phase evolution and mechanical strength. J. Am. Ceram. Soc. 1998, 81, 3–20. [Google Scholar] [CrossRef]
- El Mendili, Y.; Chateigner, D.; Orberger, B.; Gascoin, S.; Bardeau, J.-F.; Petit, S.; Duée, C.; Le Guen, M.; Pilliere, H. Combined XRF, XRD, SEM-EDS and Raman analyses on serpentinized harzburgite (Nickel laterite mine, New Caledonia): Implications for exploration and geometallurgy. ACS Earth. Space. Chem. 2019, 3, 2237–2249. [Google Scholar] [CrossRef] [Green Version]
- Ait Chaou, A.; Abdelouas, A.; El Mendili, Y.; Bouakkaz, R.; Utsunomiya, S.; Martin, C.; Bourbon, X. Vapor hydration of a simulated borosilicate nuclear waste glass in unsaturated conditions at 50 °C and 90 °C. RSC Adv. 2015, 5, 64538–64549. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The Solubilities of Calcite, Aragonite, and Vaterite in CO2-H2O Solutions between 0 and 90 °C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochim. Cosmochim. Acta. 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- Bouasria, M.; Babouri, L.; Khadraoui, F.; Chateigner, D.; Gascoin, S.; Pralong, V.; Benzaama, M.H.; Orberger, B.; El Mendili, Y. Insight into the partial replacement of cement by ferronickel slags from New Caledonia. Eur. J. Environ. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Garbev, K.; Stemmermann, P.; Black, L.; Breen, C.; Yarwood, J.; Gasharova, B. Structural features of C-S-H(I) and its carbonation in air-A Raman spectroscopic study. Part I: Fresh phases. J. Am. Ceram. Soc. 2007, 90, 900–907. [Google Scholar] [CrossRef]
- Grangeon, S.; Claret, F.; Roosz, C.; Sato, T.; Gaboreau, S.; Linard, Y. Structure of nanocrystalline calcium silicate hydrates: Insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J. Appl. Crystallogr. 2016, 49, 771–783. [Google Scholar] [CrossRef]
- Liao, W.; Li, W.; Fang, Z.; Lu, C.; Xu, Z. Effect of Different Aluminum Substitution Rates on the Structure of Tobermorite. Materials 2019, 12, 3765. [Google Scholar] [CrossRef] [Green Version]
- Minke, G. Earth Construction Handbook; WIT Press: Boston, MA, USA, 2000. [Google Scholar]
- Phung, T.-A.; Le Guern, M.; Boutouil, M.; Louahlia, H. Mechanical and thermal performance of cob materials. Acad. J. Civ. Eng. 2017, 35, 166–172. [Google Scholar] [CrossRef]
- IUPAC: International Union of Pure and Applied Chemistry. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Van Oss, C.; Giese, R. The hydrophilicity and hydrophobicity of clay minerals. Clays. Clay. Miner. 1995, 43, 474–477. [Google Scholar] [CrossRef]
- Volhard, F. Light Earth Building: A Handbook for Building with Wood and Earth; Birkhäuser: Basel, Switzerland, 2016. [Google Scholar]
Diameter (mm) | Length (cm) | Density (Kg·m−3) | Initial Water Content (%) | Tensile Strength (MPa) |
---|---|---|---|---|
1–4 | 10–58 | 1910 ± 5 | 10.7 | 23.9 ± 3.5 |
Component | SiO2 | CaO | Fe2O3 | Al2O3 | K2O | MgO | TiO2 | SO3 | Na2O | MnO2 | P2O5 | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | 53.3 | 5.1 | 8.5 | 23.6 | 3.0 | 3.0 | 1.0 | 1.1 | 0.6 | 0.5 | 0.2 | 0.1 |
Phases | COD Reference | V (%) | Lattice Type + Space Group | Lattice Parameters (Å) | ⟨D⟩ (nm) | ⟨ε2⟩1/2 |
---|---|---|---|---|---|---|
Calcite CaCO3 | 1547347 | 10.5 (3) | Trigonal R-3c:H | a = 4991 c = 17,101 | 77 (5) | 1 × 10−4 |
Quartz SiO2 | 1526860 | 2.7 (2) | Trigonal P3221 | a = 4919 c = 5408 | 362 (20) | 1 × 10−4 |
Corundum Al2O3 | 1000017 | 1.1 (2) | Trigonal R-3c:H | a = 4704 c = 13,653 | 135 (5) | 1 × 10−4 |
Calcium oxide CaO | 1000044 | 2.9 (2) | Cubic Fm-3m | a = 4807 | 138 (5) | 1 × 10−4 |
Gehlenite Ca2Al2SiO7 | 1000048 | 14.7 (4) | Tetragonal P-421m | a = 7714 c = 5062 | 66 (2) | 2 × 10−4 |
Portlandite Ca(OH)2 | 1001768 | 16.9 (3) | Trigonal R-3c:H | a = 3595 c = 4914 | 55 (2) | 6 × 10−4 |
Larnite Ca2SiO4 | 9012789 | 51.2 (2) | Monoclinic P121/n1 | a = 5436 b = 6769 c = 9356 β = 94,172 | 97 (2) | 6 × 10−4 |
Mix | GWM | FA | CR | Fiber | Water |
---|---|---|---|---|---|
Mass (%) | 50 | 25 | 5 | 2 | 18 |
Element | % |
---|---|
SiO2 | 61.3 |
Al2O3 | 9.8 |
Fe2O3 | 10.2 |
CaO | 10.1 |
MgO | 2.9 |
Na2O | 0.1 |
K2O | 1.8 |
SO3 | <0.1 |
P2O5 | <0.1 |
Cl− | 0.11 |
Physical and Hygrothermal Properties | - |
Specific surface (in cm2·g−1) | 4120 |
Absolute density (in kg·m−3) | 925 |
Thermal conductivity (in W·m−1·K−1) | 0.935 ± 0.01 |
Water vapor permeability (in kg·m−1·s−1·Pa−1) | 2.4 × 10−11 |
Phases | COD Reference | V (%) | Lattice Type + Space Group | Lattice Parameters (Å) | ⟨D⟩ (nm) | ⟨ε2⟩1/2 |
---|---|---|---|---|---|---|
Calcite CaCO3 | 1547347 | 30.8 (3) | Trigonal R-3c:H | a = 4987 c = 17,056 | 392 (20) | 8 × 10−4 |
Quartz SiO2 | 1526860 | 14.3 (2) | Trigonal P3221 | a = 4915 c = 5407 | 219 (10) | 4 × 10−4 |
Albite NaAlSiO3O8 | 1556999 | 2.3 (2) | Triclinic P1 | a = 8166 b = 12845 c = 7188 α = 94,240 β = 116,590 γ = 87,715 | 30 (5) | 6 × 10−3 |
Kaolinite Al2Si2O5(OH)4 | 1011045 | 12.8 (2) | Monoclinic Cc:b1 | a = 5246 b = 8886 c = 14,672 β = 100,565 | 26 (5) | 6 × 10−4 |
Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 2300190 | 16.1 (4) | Monoclinic C2/m:b1 | a = 5171 b = 8942 c = 10,229 β = 100,683 (1) | 70 (5) | 2 × 10−4 |
Goethite α-FeO(OH) | 2211652 | 2.4 (3) | Orthorhombic Pbnm:cab | a = 4579 b = 9945 c = 2998 | 21 (1) | 6 × 10−4 |
Montmorillonite (Na,Ca)0.3 (Al,Mg)2Si4O10(OH)2 | 1100106 | 14.8 (2) | Monoclinic C2/c:b1 | a = 5451 b = 9067 c = 10,255 β = 100,780 | 125 (4) | 6 ×10−4 |
Muscovite KAl2(AlSi3O10)(F,OH)2 | 1100011 | 6.7 (4) | Monoclinic C2/c:b1 | a = 5183 b = 9006 c = 20,186 β = 95,702 | 89 (5) | 2 × 10−3 |
Sample | Compressive Strength (Mpa) |
---|---|
GWM-FA-CR | 5.38 ± 0.23 |
Standard cob | 2.03 ± 0.02 |
Cob materials from the literature [33] | 1.42–1.52 |
Phases | COD Reference | V (%) | Lattice Type + Space Group | Lattice Parameters (Å) | ⟨D⟩ (nm) | ⟨ε2⟩1/2 |
---|---|---|---|---|---|---|
Calcite CaCO3 | 1547347 | 26.3 (5) | Trigonal R-3c:H | a = 4984 c = 17,047 | 308 (20) | 8 × 10−4 |
Quartz SiO2 | 1526860 | 22.3 (3) | Trigonal P3221 | a = 4913 c = 5404 | 690 (10) | 5 × 10−4 |
Montmorillonite (Na,Ca)0.3 (Al,Mg)2Si4O10(OH)2 | 1100106 | 6.4 (2) | Monoclinic C2/c:b1 | a = 5441 b = 9003 c = 10,250 β = 100,323 | 66 (4) | 6 × 10−4 |
Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 2300190 | 7.1 (3) | Monoclinic C2/m:b1 | a = 5183 b = 8986 c = 10,171 β = 100,50 | 66 (5) | 1 × 10−4 |
Tobermorite Ca5Si6O16(OH)2·4H2O | 9005498 | 19.5 (3) | Monoclinic Cm:c2 | a = 6806 b = 7402 c = 22,390 γ = 124,345 | 58 (1) | 5 × 10−4 |
Al-tobermorite Al0.5Ca4.9H10.7O22Si5.5 | 1527001 | 15.6 (3) | Monoclinic Cm:c2 | a = 6770 b = 7359 c = 22,227 γ = 123,770 | 43 (4) | 6 × 10−2 |
Goethite α-FeO(OH) | 2211652 | 2.6 (3) | Orthorhombic Pbnm:cab | a = 4588 b = 10,093 c = 2984 | 19 (1) | 6 × 10−4 |
Sample | Density (kg·m−3) | Thermal Conductivity (W·m−1·K−1) |
---|---|---|
GMW-FA-CR | 1910 ± 5 | 0.35 ± 0.03 |
Standard cob | 1843 ± 5 | 0.58 ± 0.02 |
Cob materials from the literature [33,36,70,71,72] | 1200–2000 | 0.47–0.93 |
Sample | Standard Cob | GMW-FA-CR |
---|---|---|
Porosity | 61% | 42% |
Sample | Compressive Strength (MPa) | Thermal Conductivity (W·m−1·K−1) |
---|---|---|
GMW-FA-CR + 25% reed fiber | 0.140 ± 0.01 | 0.112 ± 0.005 |
Standard cob insulating wall [26] | 0.079 ± 0.01 | 0.157 ± 0.005 |
Chemical Analyses (in Weight.%) | Mineralogy |
---|---|
SiO2: from 41 to 78% | Quartz: from 10 to 25% |
Al2O3: from 6 to 15% | Kaolinite: from 8 to 20% |
Fe2O3: from 5 to 12.5% CaO: from 3 to 16% | Calcite: from 23 to 35% Illite: from 11 to 19% |
MgO: from 0.6 to 3.6% | Smectites: from 10 to 28% |
Na2O < 0.2% | Feldspaths: from 0 to 5% |
K2O: from 1 to 2.1% | Plagioclases: from 0 to 1% |
SO3 < 0.1 | Iron oxy-hydroxides: from 1 to 6% |
P2O5 < 0.1 | Micas: from 2 to 9% |
Cl− < 0.2% | Swelling clays: from 9 to 18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mendili, Y.; Bouasria, M.; Benzaama, M.-H.; Khadraoui, F.; Le Guern, M.; Chateigner, D.; Gascoin, S.; Bardeau, J.-F. Mud-Based Construction Material: Promising Properties of French Gravel Wash Mud Mixed with Byproducts, Seashells and Fly Ash as a Binder. Materials 2021, 14, 6216. https://doi.org/10.3390/ma14206216
El Mendili Y, Bouasria M, Benzaama M-H, Khadraoui F, Le Guern M, Chateigner D, Gascoin S, Bardeau J-F. Mud-Based Construction Material: Promising Properties of French Gravel Wash Mud Mixed with Byproducts, Seashells and Fly Ash as a Binder. Materials. 2021; 14(20):6216. https://doi.org/10.3390/ma14206216
Chicago/Turabian StyleEl Mendili, Yassine, Manal Bouasria, Mohammed-Hichem Benzaama, Fouzia Khadraoui, Malo Le Guern, Daniel Chateigner, Stéphanie Gascoin, and Jean-François Bardeau. 2021. "Mud-Based Construction Material: Promising Properties of French Gravel Wash Mud Mixed with Byproducts, Seashells and Fly Ash as a Binder" Materials 14, no. 20: 6216. https://doi.org/10.3390/ma14206216
APA StyleEl Mendili, Y., Bouasria, M., Benzaama, M.-H., Khadraoui, F., Le Guern, M., Chateigner, D., Gascoin, S., & Bardeau, J.-F. (2021). Mud-Based Construction Material: Promising Properties of French Gravel Wash Mud Mixed with Byproducts, Seashells and Fly Ash as a Binder. Materials, 14(20), 6216. https://doi.org/10.3390/ma14206216