Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Literature Review
2.2. Research Hypotheses
3. Research Design
3.1. Research Methodology
3.1.1. Difference-in-Differences Model (DID)
3.1.2. Moderated Effects Model
3.1.3. K-Means Cluster Analysis
3.1.4. Double Machine Learning (DML)
3.2. Variable Selection and Measurement
3.2.1. Explanatory Variable
3.2.2. Dependent Variable
- Economic Prosperity: Economic resilience allows urban economies to operate efficiently and adapt effectively to external shocks, thereby ensuring sustained economic growth through optimal resource allocation, industrial advancement, and structural adaptations [38]. This dimension is represented by five indicators: economic strength, economic vitality, industrial structure, investment efficiency, and green development.
- Social Welfare: Social resilience is centered on human well-being, ensuring that urban residents can live harmoniously, participate in collective activities, and access educational and cultural resources, highlighting the level of quality of urban services and social infrastructure [56]. This dimension is represented by five indicators: fiscal capacity, employment pressure, social security, education level, and public services. Furthermore, resources and facilities should be measured by their accessibility [57], and consequently, per capita values or ratios are employed for these indicators.
- Environmental quality: A robust ecosystem is the foundation for urban resilience against natural catastrophes and environmental pollution. A city’s ecological resilience is reflected in its urban environment and protection measures [58]. This dimension is represented by five indicators: ecological load, green services, greening level, pollution control, and environmental management.
Dimension | Meaning of Indicators | Indicators (Unit) | Weights | Attribute | Indicator-Related Studies |
---|---|---|---|---|---|
Economic Prosperity | Economic Strength | GDP per capita (CNY) | 5.193 | + | (1) Economic development, income level (Han et al.) [59]; (2) Productivity and standard of living, industrial structure, financial resources of the population, openness of the economic system, productivity, level of technological innovation (Shi et al.) [60]; (3) Resistance and recovery ability, adaptation and regulation ability, innovation and transformation ability (Li et al.) [61]; (4) Growth rate of GDP (Feng et al.) [62] |
Economic Vitality | Urban residents’ disposable income (CNY) | 8.193 | + | ||
Industrial Structure | Tertiary industry output in GDP (%) | 4.511 | + | ||
Investment Efficiency | Fixed asset investment (% of GDP) | 18.043 | − | ||
Green development | Energy consumption per unit of GDP (ton) | 0.161 | − | ||
Social Welfare | Fiscal capacity | Government financial self-sufficiency rate (%) | 8.992 | + | (1) Education development, health care level (Han et al.) [59]; (2) Employment situation, transport construction, social capacity to provide education, health care and cultural services (Shi et al.) [60]; (3) Education, employment, health, and infrastructure (Xiong et al.) [63]. (4) Aging rate, proportion of the population with tertiary education or higher, employment in the tertiary sector, number of higher education institutions, research and development personnel, and the count of registered unemployed individuals in urban areas (Xu et al.) [64]. |
Employment pressure | Urban registered unemployment rate (%) | 3.649 | − | ||
Social security | Number of health beds per 104 inhabitants (unit) | 1.37 | + | ||
Education level | Number of full-time university teachers per 104 inhabitants (unit) | 25.773 | + | ||
Public Services | Social security expenditure per capita (CNY) | 3.732 | + | ||
Clean Environment | Ecological load | Sulphur dioxide emissions per unit of GDP (ton) | 0.251 | − | (1) Environmentally friendly (Han et al) [59]; (2) Greening emission reduction measures, emission levels, pollution control levels (Shi et al.) [60]; (3) Resistance and resilience (Shi et al.) [65]; (4) Resistance, recovery, adaptability (Ning et al.) [40]; |
Green Services | Green park area per capita (HA) | 3.182 | + | ||
Greening Level | Green cover of urban built-up areas (%) | 4.12 | + | ||
Pollution Protection | Centralized treatment rate of wastewater treatment plants (%) | 8.558 | + | ||
Environmental Governance | Harmless treatment rate of domestic rubbish (%) | 4.272 | + |
3.2.3. Control Variables
3.2.4. Mechanism Variables
4. Empirical Analysis and Discussion
4.1. Dynamic Evolution Analysis of the Socio-Ecological Resilience of Resource-Based Cities
4.2. Local Effect
4.2.1. Analysis of DID Results
4.2.2. Robustness Test
Parallel Trend Test
Placebo Test
Exclusion of Other Policies
Test of the Propensity Score Matching Method (PSM-DID)
Dual Machine Learning (DML)
4.3. Spatial Effect
4.3.1. Spatial Correlation Test
Global Moran’s I Analysis
Local Moran’s I Analysis
4.3.2. Spatial Difference-in-Differences (SDID) Model Test and Regression Results
SDID Model Test
SDID Model Results
5. Further Discussion: Impact Mechanisms and Heterogeneity Analysis
5.1. Mechanism Impact Analysis
5.2. Heterogeneity Analysis
5.2.1. Resource-Based Urban Heterogeneity
5.2.2. Socio-Ecological Resilience Heterogeneity
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Nie, X.; Wang, H. Cur se to Blessing: The Carbon Emissions Trading System and Resource-Based Cities’ Carbon Mitigation. Energy Policy 2023, 183, 113796. [Google Scholar] [CrossRef]
- Liu, E.; Wang, Y.; Chen, W.; Chen, W.; Ning, S. Evaluating the Transformation of China’s Resource-Based Cities: An Integrated Sequential Weight and TOPSIS Approach. Socio-Econ. Plan. Sci. 2021, 77, 101022. [Google Scholar] [CrossRef]
- Circular of the State Council on the Issuance of the National Sustainable Development Plan for Resource-Based Cities (2013–2020). Available online: https://www.gov.cn/zhengce/content/2013-12/02/content_4549.htm?isappinstalled=0 (accessed on 10 January 2025).
- Development and Reform Commission on the Third Batch of National Low-Carbon Cities Pilot Work_epartmental Government Affairs_China.gov.cn. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201008/t20100810_964674.html (accessed on 10 January 2025).
- Zeng, S.; Jin, G.; Tan, K.; Liu, X. Can Low-Carbon City Construction Reduce Carbon Intensity? mpirical Evidence from Low-Carbon City Pilot Policy in China. J. Environ. Manag. 2023, 332, 117363. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiao, S.; Zhang, Q.; Sun, M. How Can Low-Carbon City Construction Enhance Urban Economic Resilience? A Mechanism Analysis Based on Industrial Agglomeration and Technological Innovation Effects. J. Knowl. Econ. 2024, 1–23. [Google Scholar] [CrossRef]
- Yip, C.M. On the Labor Market Consequences of Environmental Taxes. J. Environ. Econ. Manag. 2018, 89, 136–152. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, X.; Li, C.; Guo, J. Sustainable Transition of Mining Cities in China: Literature Review and Policy Analysis. Resour. Policy 2021, 74, 101867. [Google Scholar] [CrossRef]
- Li, B.; Dewan, H. Efficiency Differences among China’s Resource-Based Cities and Their Determinants. Resour. Policy 2017, 51, 31–38. [Google Scholar] [CrossRef]
- Brown, K. Global Environmental Change I: A Social Turn for Resilience? Prog. Hum. Geogr. 2014, 38, 107–117. [Google Scholar] [CrossRef]
- Farley, J.; Voinov, A. Economics, Socio-Ecological Resilience and Ecosystem Services. J. Environ. Manag. 2016, 183, 389–398. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Doyen, L.; Bene, C.; Borgomeo, E.; Brooks, K.; Chu, L.; Cumming, G.S.; Dixon, J.; Dovers, S.; Garrick, D.; et al. Realizing Resilience for Decision-Making. Nat. Sustain. 2019, 2, 907–913. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Boumans, R.; Fath, B.D.; Othoniel, B.; Liu, W.; Harari, J. Prototype of Social-Ecological System’s Resilience Analysis Using a Dynamic Index. Ecol. Indic. 2022, 141, 109113. [Google Scholar] [CrossRef]
- Talubo, J.P.; Malenab, R.A.; Morse, S.; Saroj, D. Practitioners’ Participatory Development of Indicators for Island Community Resilience to Disasters. Sustainability 2022, 14, 4102. [Google Scholar] [CrossRef]
- Afriyanie, D.; Julian, M.M.; Riqqi, A.; Akbar, R.; Suroso, D.S.A.; Kustiwan, I. Re-Framing Urban Green Spaces Planning for Flood Protection through Socio-Ecological Resilience in Bandung City, Indonesia. Cities 2020, 101, 102710. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Wang, P.; Wang, B.; Yang, T. Evolution of County Socio-Ecological Systems in Nature Reserves in Western China Over the Past 30 Years. Nat. Resour. Res. 2023, 32, 1809–1822. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Z.; Han, F.; Yu, J.; Ma, X.; Han, J. Assessment of Tourism Socio-Ecological System Resilience in Arid Areas: A Case Study of Xinjiang, China. Ecol. Indic. 2024, 159, 111748. [Google Scholar] [CrossRef]
- Luo, S.; Qiao, D.; Han, X.; Song, B.; Wan, Z.; Li, H. Does a Logging Ban Policy Increase Socio-Ecological Resilience? A Case Study of Key State-Owned Forest Areas in Northeast China. Sustainability 2024, 16, 8368. [Google Scholar] [CrossRef]
- Renaud, F.G.; Birkmann, J.; Damm, M.; Gallopin, G.C. Understanding Multiple Thresholds of Coupled Social-Ecological Systems Exposed to Natural Hazards as External Shocks. Nat. Hazards 2010, 55, 749–763. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, J.; Yang, L.; Chen, L. Booster or Inhibitor: Diagnosing Effects of Low-Carbon Pilot City Policies on Urban Resilience from the Perspectives of Heterogeneity, Mechanisms and Spillover. J. Clean. Prod. 2024, 474, 143587. [Google Scholar] [CrossRef]
- Hukkalainen, M.; Virtanen, M.; Paiho, S.; Airaksinen, M. Energy Planning of Low Carbon Urban Areas—Examples from Finland. Sust. Cities Soc. 2017, 35, 715–728. [Google Scholar] [CrossRef]
- Mundaca, L.; Busch, H.; Schwer, S. “Successful” Low-Carbon Energy Transitions at the Community Level? An Energy Justice Perspective. Appl. Energy 2018, 218, 292–303. [Google Scholar] [CrossRef]
- Qu, F.; Xu, L.; He, C. Leverage Effect or Crowding out Effect? Evidence from Low-Carbon City Pilot and Energy Technology Innovation in China. Sustain. Cities Soc. 2023, 91, 104423. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Hossain, M.R. Does China’s Low-Carbon City Pilot Intervention Limit Electricity Consumption? An Analysis of Industrial Energy Efficiency Using Time-Varying DID Model. Energy Econ. 2023, 121, 106636. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Wang, D.; Han, W. Low-Carbon City Pilot Policy and Enterprise Low-Carbon Innovation—A Quasi-Natural Experiment from China. Econ. Anal. Policy 2024, 83, 204–222. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Xu, J.; Fang, S.; Li, Q.; Gong, W.; Wang, C.; Zhang, R. Evaluation for the Effect of Low-Carbon City Pilot Policy: Evidence from Industry in China. Environ. Sci. Pollut. Res. 2024, 31, 8863–8882. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L.; Wang, W.; Deng, Z.; Zhang, X. The Impact of Low-Carbon City Pilot Policies on Air Quality: Quasi-Natural Experimental Evidence from China. Atmosphere 2022, 13, 1355. [Google Scholar] [CrossRef]
- Yin, J.; Guo, J. Ecological Effect Assessment of Low-Carbon City Construction in China. Int. J. Environ. Res. Public Health 2022, 19, 14467. [Google Scholar] [CrossRef]
- Fu, L.; Zhao, H.; Ma, F.; Chen, J. Estimating Heterogeneous Effects of China’s Low-Carbon Pilot City Policy on Urban Employment. J. Clean. Prod. 2024, 434, 139882. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H. Does Low-Carbon Pilot City Policy Induce Low-Carbon Choices in Residents? Living: Holistic and Single Dual Perspective. J. Environ. Manag. 2022, 324, 116353. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, M.; Wang, S.; Wang, L. The Impacts of Low-Carbon City Pilot Policies on Natural Population Growth: Empirical Evidence from China’s Prefecture-Level Cities. Front. Public Health 2023, 11, 1214070. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.; Ren, X. Green Development and Economic Resilience: Evidence from Chinese Resource-Based Cities. Front. Eng. Manag. 2024, 11, 194–206. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, P.; Lo, K.; Li, J.; Liu, S. Conceptualizing and Measuring Economic Resilience of Resource-Based Cities: Case Study of Northeast China. Chin. Geogr. Sci. 2017, 27, 471–481. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Geng, X.; Wang, T.; Wang, K.; Liu, S. Increasing Green Infrastructure-Based Ecological Resilience in Urban Systems: A Perspective from Locating Ecological and Disturbance Sources in a Resource-Based City. Sust. Cities Soc. 2020, 61, 102354. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H. Industrial Structure, Environmental Pressure and Ecological Resilience of Resource-Based Cities-Based on Panel Data of 24 Prefecture-Level Cities in China. Front. Environ. Sci. 2022, 10, 885976. [Google Scholar] [CrossRef]
- He, M.; Xiao, W.; Zhao, L.; Xu, Y. Spatiotemporal Evolution Pattern and Heterogeneity of Resource-Based City Resilience in China. Struct. Chang. Econ. Dyn. 2024, 71, 417–429. [Google Scholar] [CrossRef]
- Tan, J.; Hu, X.; Hassink, R.; Ni, J. Industrial Structure or Agency: What Affects Regional Economic Resilience? Evidence from Resource-Based Cities in China. Cities 2020, 106, 102906. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhou, X.; Chen, W. Are Shrinking Populations Stifling Urban Resilience? Evidence from 111 Resource-Based Cities in China. Cities 2023, 141, 104458. [Google Scholar] [CrossRef]
- Ning, X.; Zhao, J.; An, Y. Urbanization and Urban Ecological Resilience in Resource-Based Cities: Coupling Coordination and Its Key Factors. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Wang, S. The Impact of Land-Use Carbon Efficiency on Ecological Resilience-The Moderating Role of Heterogeneous Environmental Regulations. Sustainability 2024, 16, 9842. [Google Scholar] [CrossRef]
- Lu, M.; Tan, Z.; Yuan, C.; Dong, Y.; Dong, W. Resilience Measurements and Dynamics of Resource-Based Cities in Heilongjiang Province, China. Land 2023, 12, 302. [Google Scholar] [CrossRef]
- Feng, S.; Gao, B.; Tan, Y.; Xiao, K.; Zhai, Y. Resource-Based Transformation and Urban Resilience Promotion: Evidence from Firms’ Carbon Emissions Reductions in China. J. Clean. Prod. 2024, 468, 143118. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Li, H.; Yang, C. Analyzing the Impact of Low-Carbon City Pilot Policy on Enterprises’ Labor Demand: Evidence from China. Energy Econ. 2023, 124, 106676. [Google Scholar] [CrossRef]
- Li, S.; Zheng, X.; Liao, J.; Niu, J. Low-Carbon City Pilot Policy and Corporate Environmental Performance: Evidence from a Quasi-Natural Experiment. Int. Rev. Econ. Financ. 2024, 89, 1248–1266. [Google Scholar] [CrossRef]
- Ellis, H.; Zolotas, X. Economic-Growth and Declining Social-Welfare. J. Econ. Hist. 1985, 45, 770–772. [Google Scholar] [CrossRef]
- Zou, C.; Huang, Y.; Wu, S.; Hu, S. Does “Low-Carbon City” Accelerate Urban Innovation? Evidence from China. Sustain. Cities Soc. 2022, 83, 103954. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, N.; Wang, X. Can the Green Finance Pilot Policy Promote the Low-Carbon Transformation of the Economy? Int. Rev. Econ. Financ. 2024, 93, 1074–1086. [Google Scholar] [CrossRef]
- Ma, J.; Hu, Q.; Shen, W.; Wei, X. Does the Low-Carbon City Pilot Policy Promote Green Technology Innovation? Based on Green Patent Data of Chinese A-Share Listed Companies. Int. J. Environ. Res. Public Health 2021, 18, 3695. [Google Scholar] [CrossRef]
- Gu, R.; Li, C.; Li, D.; Yang, Y.; Gu, S. The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration. Int. J. Environ. Res. Public Health 2022, 19, 7997. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Hossain, M.R. How Effective Has the Low-Carbon City Pilot Policy Been as an Environmental Intervention in Curbing Pollution? Evidence from Chinese Industrial Enterprises. Energy Econ. 2023, 118, 106523. [Google Scholar] [CrossRef]
- Wang, D.; Chen, S. The Effect of Pilot Climate-Resilient City Policies on Urban Climate Resilience: Evidence from Quasi-Natural Experiments. Cities 2024, 153, 105316. [Google Scholar] [CrossRef]
- Shao, S.; Cheng, S.; Jia, R. Can Low Carbon Policies Achieve Collaborative Governance of Air Pollution? Evidence from China’s Carbon Emissions Trading Scheme Pilot Policy. Environ. Impact Assess. Rev. 2023, 103, 107286. [Google Scholar] [CrossRef]
- Cui, H.; Cao, Y. Energy Rights Trading Policy, Spatial Spillovers, and Energy Utilization Performance: Evidence from Chinese Cities. Energy Policy 2024, 192, 114234. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Huang, Z. Low-Carbon Economic Resilience: The Inequality Embodied in Inter-Regional Trade. Cities 2024, 144, 104646. [Google Scholar] [CrossRef]
- Parkhill, K.A.; Shirani, F.; Butler, C.; Henwood, K.L.; Groves, C.; Pidgeon, N.F. “We Are a Community [but] That Takes a Certain Amount of Energy”: Exploring Shared Visions, Social Action, and Resilience in Place-Based Community-Led Energy Initiatives. Environ. Sci. Policy 2015, 53, 60–69. [Google Scholar] [CrossRef]
- Weitzel, E.C.; Glaesmer, H.; Hinz, A.; Zeynalova, S.; Henger, S.; Engel, C.; Loeffler, M.; Reyes, N.; Wirkner, K.; Witte, A.V.; et al. What Builds Resilience? Sociodemographic and Social Correlates in the Population-Based LIFE-Adult-Study. Int. J. Environ. Res. Public Health 2022, 19, 9601. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, Z.; Zhang, S. Multi-Criteria Assessment of the Resilience of Ecological Function Areas in China with a Focus on Ecological Restoration. Ecol. Indic. 2020, 119, 106862. [Google Scholar] [CrossRef]
- Han, H.; Gu, R.; Yang, Y. Impacts of Low-Carbon City Pilot Policy on Ecological Well-Being Performance across Chinese Cities: A Spatial Difference-in-Difference Analysis. Sustain. Cities Soc. 2025, 118, 105864. [Google Scholar] [CrossRef]
- Shi, C.; Guo, N.; Gao, X.; Wu, F. How Carbon Emission Reduction Is Going to Affect Urban Resilience. J. Clean. Prod. 2022, 372, 133737. [Google Scholar] [CrossRef]
- Li, G.; Liu, M. Spatiotemporal Evolution and Influencing Factors of Economic Resilience: Evidence from Resource-Based Cities in China. Sustainability 2022, 14, 10434. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, C.; Peng, D. Does Regional Integration Improve Economic Resilience? Evidence from Urban Agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Xiong, B.; Sui, Q. Does Carbon Emissions Trading Policy Improve Inclusive Green Resilience in Cities? Evidence from China. Sustainability 2023, 15, 12989. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Wang, M.; Yang, Y.; Wang, Y. The Coupling Coordination Degree of Economic, Social and Ecological Resilience of Urban Agglomerations in China. Int. J. Environ. Res. Public Health 2023, 20, 413. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, X.; Wu, H.; Li, Z. Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China. Land 2022, 11, 921. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, W.; Shi, X.; Dai, L. Climate Policy and Low-Carbon Innovation: Evidence from Low-Carbon City Pilots in China. Energy Econ. 2022, 112, 106129. [Google Scholar] [CrossRef]
Variable | Variable Name | Symbol | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|---|
Explanatory variable | Socio-ecological resilience | SESR | 2280 | 0.262 | 0.064 | 0.096 | 0.498 |
Core explanatory variables | Low-carbon pilot policies | LCCP | 2280 | 0.182 | 0.386 | 1.000 | 0.000 |
Control variable | Science expenditures | Pes | 2280 | 0.009 | 0.010 | 0.001 | 0.207 |
Average wage | Awa | 2280 | 10.50 | 0.701 | 7.079 | 13.72 | |
Green Support | Gsu | 2280 | 0.006 | 0.004 | 0.001 | 0.022 | |
Population density | Pud | 2280 | 7.933 | 0.900 | 3.296 | 9.532 | |
Road density | Rap | 2280 | 2.594 | 0.538 | 0.691 | 4.096 | |
Urbanization rate | Urb | 2280 | 3.841 | 0.366 | 2.190 | 4.575 | |
Mediator variable | Green finance | GF | 2280 | 0.277 | 0.104 | 0.525 | 0.504 |
Industrial transformation | IS | 2280 | 0.281 | 0.250 | −0.687 | 2.699 | |
Carbon emission efficiency | CE | 2280 | 0.332 | 0.132 | 0.006 | 1.071 |
Benchmark Regression | Social Resilience | Economic Resilience | Ecological Resilience | ||||
---|---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | Model (7) | |
LCCP | 0.042 *** (12.68) | 0.027 *** (9.94) | 0.006 *** (4.72) | 0.007 *** (5.24) | 0.004 ** (2.20) | 0.006 ** (2.70) | 0.026 *** (6.38) |
Controls | No | YES | NO | YES | YES | YES | YES |
City | No | No | YES | YES | YES | YES | YES |
Year | No | No | YES | YES | YES | YES | YES |
_cons | 0.255 *** (178.2) | −0.081 *** (−7.43) | 0.261 *** (1076.9) | 0.196 *** (8.33) | 0.168 *** (5.64) | 0.108 ** (2.57) | 0.653 *** (8.18) |
N | 2280 | 2280 | 2280 | 2280 | 2280 | 2280 | 2280 |
Adj. R2 | 0.0655 | 0.4252 | 0.9055 | 0.9075 | 0.8098 | 0.9355 | 0.7912 |
Exclusion of Other Policies | PSM-DID | DML | |||
---|---|---|---|---|---|
Model (8) | Model (9) | Model (10) | Model (11) | Model (12) | |
LCCP | 0.009 * (1.96) | 0.008 * (1.75) | 0.008 * (1.73) | 0.009 * (1.79) | 0.009 ** (0.004) |
KAPC | 0.005 (1.17) | ||||
GFRI | 0.013 (1.31) | ||||
NEDP | 0.002 (0.41) | ||||
Constant | 0.189 *** (4.22) | 0.194 *** (4.29) | 0.193 *** (4.27) | 0.154 *** (2.80) | 0.001 ** (0.001) |
Controls | YES | YES | YES | YES | YES |
City | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES |
Observations | 2280 | 2280 | 2280 | 1089 | 2280 |
R-squared | 0.914 | 0.913 | 0.913 | 0.919 | 0.916 |
Year | Global Moran’s I | z-Value | Year | Global Moran’s I | z-Value |
---|---|---|---|---|---|
2003 | 0.174 *** | 3.282 | 2013 | 0.303 *** | 5.677 |
2004 | 0.206 *** | 3.862 | 2014 | 0.261 *** | 4.918 |
2005 | 0.131 ** | 2.520 | 2015 | 0.224 *** | 4.257 |
2006 | 0.210 *** | 3.958 | 2016 | 0.185 *** | 3.532 |
2007 | 0.149 *** | 2.837 | 2017 | 0.201 *** | 3.837 |
2008 | 0.252 *** | 4.694 | 2018 | 0.222 *** | 4.196 |
2009 | 0.276 *** | 5.129 | 2019 | 0.228 *** | 4.282 |
2010 | 0.235 *** | 4.411 | 2020 | 0.230 *** | 4.326 |
2011 | 0.281 *** | 5.235 | 2021 | 0.252 *** | 4.722 |
2012 | 0.285 *** | 5.312 | 2022 | 0.262 *** | 4.905 |
Test | Value | Test | Value |
---|---|---|---|
LM-Spatial Lag | 29.774 *** | LR-Spatial lag | 75.980 *** |
Robust LM-Spatial Lag | 69.229 *** | LR-Spatial Error | 74.3100 *** |
LM-Spatial Error | 173.871 *** | Wald-Spatial lag | 77.080 *** |
Robust LM-Spatial Error | 213.325 *** | Wald-Spatial Error | 75.4800 *** |
Hausman | 558.090 *** |
SESR | Social Resilience | Economic Resilience | Ecological Resilience | |
---|---|---|---|---|
Model (13) | Model (14) | Model (15) | Model (16) | |
LCCP | 0.004 *** (2.88) | 0.002 (1.64) | 0.003 ** (1.98) | 0.015 *** (2.60) |
W × LCCP | 0.011 *** (3.76) | 0.012 *** (3.78) | 0.006 ** (2.05) | 0.011 (0.94) |
SR_Direct | 0.004 *** (3.21) | 0.003 * (1.82) | 0.003 ** (2.33) | 0.015 *** (2.81) |
SR_Indirect | 0.016 *** (4.86) | 0.012 *** (3.78) | 0.007 ** (2.25) | 0.012 (0.96) |
SR_Total | 0.016 *** (4.86) | 0.015 *** (4.33) | 0.010 *** (2.88) | 0.027 ** (2.09) |
LR_Direct | 0.012 *** (2.83) | 0.014 (1.50) | 0.024 (0.12) | 0.035 *** (2.66) |
LR_Indirect | 0.030 *** (3.39) | 0.070 *** (2.93) | 0.160 (0.18) | 0.014 (0.60) |
LR_Total | 0.042 *** (4.59) | 0.084 *** (3.30) | 0.184 (0.20) | 0.049 ** (2.09) |
Controls | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Observations | 2160 | 2160 | 2160 | 2160 |
R-squared | 0.931 | 0.887 | 0.975 | 0.800 |
code | 114 | 114 | 114 | 114 |
GF | IS | CE | |
---|---|---|---|
LR_Direct | 0.009 ** (2.20) | −0.030 ** (−2.07) | 0.007 (0.82) |
LR_Indirect | 0.063 *** (3.42) | 0.038 (1.41) | 0.088 *** (3.77) |
Controls | YES | YES | YES |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 2280 | 2280 | 2280 |
R-squared | 0.105 | 0.001 | 0.003 |
SESR | SESR | SESR | |
---|---|---|---|
Direct | |||
LCCP | 0.009 ** (2.20) | 0.006 *** (3.68) | 0.006 *** (3.57) |
GF | 0.019 * (1.93) | ||
IS | 0.005 ** (2.02) | ||
CE | 0.007 * (1.82) | ||
Indirect | |||
LCCP | 0.063 *** (3.42) | 0.022 *** (6.06) | 0.023 *** (6.33) |
Controls | YES | YES | YES |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 2280 | 2280 | 2280 |
R-squared | 0.105 | 0.001 | 0.003 |
Growing City | Mature Cities | Declining Cities | Regenerative City | |
---|---|---|---|---|
LCCP | −0.002 (−0.17) | 0.006 *** (2.88) | 0.018 *** (6.21) | −0.007 (−1.29) |
Constant | 0.121 (1.31) | 0.257 *** (9.20) | 0.329 *** (4.27) | −0.099 (−1.47) |
Controls | YES | YES | YES | YES |
City | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Observations | 280 | 1240 | 460 | 300 |
R-squared | 0.913 | 0.923 | 0.890 | 0.941 |
Classification | Ecological Resilience | Economic Resilience | Social Resilience | City Name | |||
---|---|---|---|---|---|---|---|
Mean | Grade | Mean | Grade | Mean | Grade | ||
Category1 | 13.8 | H | 14.66 | H | 5.53 | M | Chizhou, Nanping, Huaibei, Guangyuan and 16 other cities |
Category2 | 11.15 | M | 12.94 | M | 0.31 | L | Baoji, Puer, Sanming, Shaoguan, Weinan and 20 other cities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wang, Z.; Zhang, Y.; Wang, W. Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities. Land 2025, 14, 147. https://doi.org/10.3390/land14010147
Peng Y, Wang Z, Zhang Y, Wang W. Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities. Land. 2025; 14(1):147. https://doi.org/10.3390/land14010147
Chicago/Turabian StylePeng, Yanran, Zhong Wang, Yunhui Zhang, and Wei Wang. 2025. "Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities" Land 14, no. 1: 147. https://doi.org/10.3390/land14010147
APA StylePeng, Y., Wang, Z., Zhang, Y., & Wang, W. (2025). Facilitating or Hindering? The Impact of Low-Carbon Pilot Policies on Socio-Ecological Resilience in Resource-Based Cities. Land, 14(1), 147. https://doi.org/10.3390/land14010147