Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas (Phascolarctos cinereus) in New South Wales, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Sample Collection
2.3. Serology
2.4. Cryptococcus Species Complex Culture
2.5. Multi-Locus Sequence Typing
2.6. DNA Extraction, NGS, and Bioinformatics
2.7. Statistical Analysis
2.8. Differential Abundance Analysis
3. Results
3.1. Sample Collection
3.2. Detection of Cryptococcus
3.3. Characterisation of the Nasal Mycobiota
3.4. Diversity Analyses
3.5. Taxonomic Analysis
3.6. Differential Abundance Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.A.; Janbon, G.; Idnurm, A.; Bahn, Y.S. Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harb. Perspect. Med. 2014, 4, a019760. [Google Scholar] [CrossRef]
- Maziarz, E.K.; Perfect, J.R. Cryptococcosis. Infect. Dis. Clin. North Am. 2016, 30, 179–206. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Bayat, M.; Hashemi, S.J.; Zia, M.; Pestechian, N. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. J. Res. Med. Sci. 2013, 18, 56–60. [Google Scholar]
- Krockenberger, M.B.; Canfield, P.J.; Malik, R. Cryptococcus neoformans in the koala (Phascolarctos cinereus): Colonization by C-n. var. gattii and investigation of environmental sources. Med. Mycol. 2002, 40, 263–272. [Google Scholar] [CrossRef]
- Schmertmann, L.J.; Stalder, K.; Hudson, D.; Martin, P.; Makara, M.; Meyer, W.; Malik, R.; Krockenberger, M.B. Cryptococcosis in the koala (Phascolarctos cinereus): Pathogenesis and treatment in the context of two atypical cases. Med. Mycol. 2018, 56, 926–936. [Google Scholar] [CrossRef]
- Connolly, J.H.; Krockenberger, M.B.; Malik, R.; Canfield, P.J.; Wigney, D.I.; Muir, D.B. Asymptomatic carriage of Cryptococcus neoformans in the nasal cavity of the koala (Phascolarctos cinereus). Med. Mycol. 1999, 37, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Wigney, D.I.; Muir, D.B.; Gregory, D.J.; Love, D.N. Cryptococcosis in cats—Clinical and mycological assessment of 29 cases and evaluation of treatment using orally-administered fluconazole. J. Med. Vet. Mycol. 1992, 30, 133–144. [Google Scholar] [PubMed]
- Krockenberger, M.B.; Canfield, P.J.; Malik, R. Cryptococcus neoformans var. gattii in the koala (Phascolarctos cinereus): A review of 43 cases of cryptococcosis. Med. Mycol. 2003, 41, 225–234. [Google Scholar] [CrossRef]
- Bermann, C.D.; Braga, C.Q.; Ianiski, L.B.; Botton, S.D.; Pereira, D.I.B. Cryptococcosis in domestic and wild animals: A review. Med. Mycol. 2023, 61, myad016. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.L.; Khine, H.; Abadi, J.; Lindenberg, D.J.; Pirofski, L.; Niang, R.; Casadevall, A. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 2001, 107, e66. [Google Scholar] [CrossRef] [PubMed]
- Krockenberger, M.B.; Canfield, P.J.; Barnes, J.; Vogelnest, L.; Connolly, J.; Ley, C.; Malik, R. Cryptococcus neoformans var. gattii in the koala (Phascolarctos cinereus): Serological evidence for subclinical cryptococcosis. Med. Mycol. 2002, 40, 273–282. [Google Scholar] [CrossRef]
- Krockenberger, M.B.; Marschner, C.; Martin, P.; Reppas, G.; Halliday, C.; Schmertmann, L.J.; Harvey, A.M.; Malik, R. Comparing immunochromatography with latex antigen agglutination testing for the diagnosis of cryptococcosis in cats, dogs and koalas. Med. Mycol. 2020, 58, 39–46. [Google Scholar] [CrossRef]
- Duncan, C.; Stephen, C.; Lester, S.; Bartlett, K.H. Sub-clinical infection and asymptomatic carriage of Cryptococcus gattii in dogs and cats during an outbreak of cryptococcosis. Med. Mycol. 2005, 43, 511–516. [Google Scholar] [CrossRef]
- Oladele, R.O.; Jordan, A.M.; Okaa, J.U.; Driscoll, B.R.; Driscoll, B.R.; Osaigbovo, I.I.; Shettima, S.A.; Shehu, N.Y.; Davies, A.A.; Mohammed, Y.; et al. A multicenter survey of asymptomatic cryptococcal antigenemia among patients with advanced HIV disease in Nigeria. PLoS Glob. Public Health 2023, 3, e0001313. [Google Scholar] [CrossRef]
- Lee, K.E.; Seddon, J.M.; Corley, S.W.; Ellis, W.A.H.; Johnston, S.D.; de Villiers, D.L.; Preece, H.J.; Carrick, F.N. Genetic variation and structuring in the threatened koala populations of Southeast Queensland. Conserv. Genet. 2010, 11, 2091–2103. [Google Scholar] [CrossRef]
- Frere, C.H.; O’Reilly, G.D.; Strickland, K.; Schultz, A.; Hohwieler, K.; Hanger, J.; de Villiers, D.; Cristescu, R.; Powell, D.; Sherwin, W. Evaluating the genetic consequences of population subdivision as it unfolds and how to best mitigate them: A rare story about koalas. Mol. Ecol. 2023, 32, 2174–2185. [Google Scholar] [CrossRef]
- Phillips, S.; Wallis, K.; Lane, A. Quantifying the impacts of bushfire on populations of wild koalas (Phascolarctos cinereus): Insights from the 2019/20 fire season. Ecol. Manag. Restor. 2021, 22, 80–88. [Google Scholar] [CrossRef]
- Robbins, A.; Hanger, J.; Jelocnik, M.; Quigley, B.L.; Timms, P. Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes. Sci. Rep. 2020, 10, 15013. [Google Scholar] [CrossRef] [PubMed]
- Blyton, M.D.J.; Pyne, M.; Young, P.; Chappell, K. Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathog. 2022, 18, e1010513. [Google Scholar] [CrossRef] [PubMed]
- Schmertmann, L.J.; Kan, A.; Mella, V.S.A.; Fernandez, C.M.; Crowther, M.S.; Madani, G.; Malik, R.; Meyer, W.; Krockenberger, M.B. Prevalence of cryptococcal antigenemia and nasal colonization in a free-ranging koala population. Med. Mycol. 2019, 57, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Krockenberger, M.; Stalder, K.; Malik, R.; Canfield, P. Cryptococcosis in Australian wildlife. Microbiol. Aust. 2005, 26, 69–71. [Google Scholar] [CrossRef]
- Ellis, D.H.; Pfeiffer, T.J. Natural habitat of Cryptococcus neoformans var. gattii. J. Clin. Microbiol. 1990, 28, 1642–1644. [Google Scholar] [CrossRef]
- Sorrell, T.C.; Brownlee, A.G.; Ruma, P.; Malik, R.; Pfeiffer, T.J.; Ellis, D.H. Natural environmental sources of Cryptococcus neoformans var gattii. J. Clin. Microbiol. 1996, 34, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Schmertmann, L.J.; Irinyi, L.; Malik, R.; Powell, J.R.; Meyer, W.; Krockenberger, M.B. The mycobiome of Australian tree hollows in relation to the Cryptococcus gattii and C. neoformans species complexes. Ecol. Evol. 2019, 9, 9684–9700. [Google Scholar] [CrossRef]
- Trilles, L.; Wang, B.; Firacative, C.; Lazera, M.D.; Wanke, B.; Meyer, W. Identification of the Major Molecular Types of Cryptococcus neoformans and C-gattii by Hyperbranched Rolling Circle Amplification. PLoS ONE 2014, 9, e94648. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, T.C.; Chen, S.C.A.; Ruma, P.; Meyer, W.; Pfeiffer, T.J.; Ellis, D.H.; Brownlee, A.G. Concordance of clinical and environmental isolates of Cryptococcus neoformans var gattii by random amplification of polymorphic DNA analysis and PCR fingerprinting. J. Clin. Microbiol. 1996, 34, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Kido, N.; Makimura, K.; Kamegaya, C.; Shindo, I.; Shibata, E.; Omiya, T.; Yamamoto, Y. Long-term surveillance and treatment of subclinical cryptococcosis and nasal colonization by Cryptococcus neoformans and C. gattii species complex in captive koalas (Phascolarctos cinereus). Med. Mycol. 2012, 50, 291–298. [Google Scholar] [CrossRef]
- Natalini, J.G.; Singh, S.; Segal, L.N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 2023, 21, 222–235. [Google Scholar] [CrossRef]
- Di Simone, S.K.; Rudloff, I.; Nold-Petry, C.A.; Forster, S.C.; Nold, M.F. Understanding respiratory microbiome-immune system interactions in health and disease. Sci. Transl. Med. 2023, 15, eabq5126. [Google Scholar] [CrossRef]
- Pirolo, M.; Espinosa-Gongora, C.; Bogaert, D.; Guardabassi, L. The porcine respiratory microbiome: Recent insights and future challenges. Anim. Microbiome 2021, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.M.; Capik, S.F.; Kegley, B.; Richeson, J.T.; Powell, J.G.; Zhao, J.C. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet. Res. 2022, 53, 4. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.H.; Croll, D.; Cho, J.H.; Kim, Y.R.; Lee, Y.W. Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses 2015, 58, 167–172. [Google Scholar] [CrossRef]
- Shin, S.H.; Ye, M.K.; Lee, D.W.; Geum, S.Y. Immunopathologic Role of Fungi in Chronic Rhinosinusitis. Int. J. Mol. Sci. 2023, 24, 2366. [Google Scholar] [CrossRef]
- Rick, E.M.; Woolnough, K.F.; Seear, P.J.; Fairs, A.; Satchwell, J.; Richardson, M.; Monteiro, W.R.; Craner, M.; Bourne, M.; Wardlaw, A.J.; et al. The airway fungal microbiome in asthma. Clin. Exp. Allergy 2020, 50, 1325–1341. [Google Scholar] [CrossRef]
- Touati, K.; Nguyen, D.N.L.; Delhaes, L. The Airway Colonization by Opportunistic Filamentous Fungi in Patients with Cystic Fibrosis: Recent Updates. Curr. Fungal Infect. Rep. 2014, 8, 302–311. [Google Scholar] [CrossRef]
- Hoque, M.N.; Rahman, M.S.; Sarkar, M.M.H.; Habib, M.A.; Akter, S.; Banu, T.A.; Goswami, B.; Jahan, I.; Hossain, M.A.; Khan, M.S.; et al. Transcriptome analysis reveals increased abundance and diversity of opportunistic fungal pathogens in nasopharyngeal tract of COVID-19 patients. PLoS ONE 2023, 18, e0278134. [Google Scholar] [CrossRef]
- Kan, A.; Schmertmann, L.J.; McArthur, C.; Mella, V.S.A.; Crowther, M.S.; Miranda, L.; Malik, R.; Meyer, W.; Krockenberger, M.B. A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas (Phascolarctos cinereus) in the Liverpool Plains, New South Wales. Int. J. Environ. Res. Public Health 2022, 19, 4603. [Google Scholar] [CrossRef]
- Lunney, D.; Crowther, M.S.; Wallis, I.; Foley, W.J.; Lemon, J.; Wheeler, R.; Madani, G.; Orscheg, C.; Griffith, J.E.; Krockenberger, M.; et al. Koalas and climate change: A case study on the Liverpool Plains, north-west New South Wales. In Wildlife and Climate Change: Towards Robust Conservation Stategies for Australian Fauna; Lunney, D., Hutchings, P., Eds.; Zoological Society of New South Wales: Sydney, NSW, Australia, 2012. [Google Scholar]
- Madani, G.F.; Ashman, K.R.; Mella, V.S.A.; Whisson, D.A. A review of the ‘noose and flag’ method to capture free-ranging koalas. Aust. Mammal. 2020, 42, 341–348. [Google Scholar] [CrossRef]
- Staib, F. Cryptococcis neoformans und Guizotia abyssinica (syn. G. oleifera)—(Farbreaktion fur Cr neoformans). Z. Hyg. Infekt. 1962, 148, 466–475. [Google Scholar] [CrossRef]
- Shields, A.B.; Ajello, L. Medium for selective isolation of Cryptococcus neoformans. Science 1966, 151, 208–209. [Google Scholar] [CrossRef]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 (vol 37, pg 852, 2019). Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glockner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Irinyi, L.; Serena, C.; Garcia-Hermoso, D.; Arabatzis, M.; Desnos-Ollivier, M.; Vu, D.; Cardinali, G.; Arthur, I.; Normand, A.C.; Giraldo, A.; et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database-the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med. Mycol. 2015, 53, 313–337. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. vegan: Community Ecology Package, R Package Version 2.6-5; CRAN: Vienna, Austria, 2023. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nevado, E.; Alonso-Alegre, E.G.; Martínez, A.J.; Rodríguez-Alvaro, A.; de Merlo, E.M.; García, J.G.; Real, I.G. Atypical presentation of Cryptococcus neoformans in a koala (Phascolarctos cinereus): A magnetic resonance imaging and computed tomography study. J. Zoo Wildl. Med. 2017, 48, 250–254. [Google Scholar] [CrossRef]
- Chen, S.C.A.; Meyer, W.; Sorrell, T.C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 2014, 27, 980–1024. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.D.; Canton, R.; Ponce-Alonso, M.; Garcia-Clemente, M.M.; de la Pedrosa, E.G.G.; Lopez-Campos, J.L.; Maiz, L.; del Campo, R.; Martinez-Garcia, M.A. The Human Mycobiome in Chronic Respiratory Diseases: Current Situation and Future Perspectives. Microorganisms 2022, 10, 810. [Google Scholar] [CrossRef]
- Gangneux, J.P.; Sassi, M.; Lemire, P.; Le Cann, P. Metagenomic Characterization of Indoor Dust Bacterial and Fungal Microbiota in Homes of Asthma and Non-asthma Patients Using Next Generation Sequencing. Front. Microbiol. 2020, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, C.; Shallu, K.; Kshitij, A.; Meis, J.F. Recognizing filamentous basidiomycetes as agents of human disease: A review. Med. Mycol. 2014, 52, 782–797. [Google Scholar] [CrossRef]
- Bond, S.; McMullen, C.; Timsit, E.; Leguillette, R. Topography of the respiratory, oral, and guttural pouch bacterial and fungal microbiotas in horses. J. Vet. Intern. Med. 2023, 37, 349–360. [Google Scholar] [CrossRef]
- Centeno-Martinez, R.E.; Mohan, S.; Davidson, J.L.; Schoonmaker, J.; Ault, A.; Verma, M.S.; Johnson, T.A. The bovine nasal fungal community and associations with bovine respiratory disease. Front. Vet. Sci. 2023, 10, 1165994. [Google Scholar] [CrossRef] [PubMed]
- Fiume, F.; Fiume, G. Use of culture filtrates of Pyrenochaeta lycopersici in tests for selecting tolerant varieties of tomato. J. Plant Pathol. 2003, 85, 131–133. [Google Scholar]
- Verkley, G.J.M.; Gené, J.; Guarro, J.; Pérez-Santonja, J.J.; Rodríguez, A.E.; Colom, M.F.; Alio, J.L.; Ferrer, C. Pyrenochaeta keratinophila sp nov., isolated from an ocular infection in Spain. Rev. Iberoam. Micol. 2010, 27, 22–24. [Google Scholar] [CrossRef]
- Toh, Y.F.; Yew, S.M.; Chan, C.L.; Na, S.L.; Lee, K.W.; Hoh, C.C.; Yee, W.Y.; Ng, K.P.; Kuan, C.S. Genome Anatomy of Pyrenochaeta unguis-hominis UM 256, a Multidrug Resistant Strain Isolated from Skin Scraping. PLoS ONE 2016, 11, e0162095. [Google Scholar] [CrossRef]
- Khan, Z.; Ahmad, S.; Kapila, K.; Ramaswamy, N.V.; Alath, P.; Joseph, L.; Chandy, R. Pyrenochaeta romeroi: A causative agent of phaeohyphomycotic cyst. J. Med. Microbiol. 2011, 60, 842–846. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Z.Y.; Ma, Y.E.; Jiang, W.W.; Hu, Y.F.; Shi, Y.L. Cutaneous phaeohyphomycosis caused by Pyrenochaeta unguis-hominis in a diabetic patient: A case report. Australas. J. Dermatol. 2020, 61, E221–E222. [Google Scholar] [CrossRef]
- Dinh, A.; Levy, B.; Bouchand, F.; Davido, B.; Duran, C.; Cristi, M.; Felter, A.; Salomon, J.; Ammar, N.A. Subcutaneous phaeohyphomycosis due to Pyrenochaeta romeroi mimicking a synovial cyst. Front. Microbiol. 2016, 7, 1405. [Google Scholar] [CrossRef]
- Sáenz-Madrazo, N.; Baeza, A.; Guinea, J.; Martín-Rabadán, P.; Ruiz-Velasco-Santacruz, A.; Urcelay, J.L. First report of Neocucurbitaria unguis-hominis keratitis. J. Fungi 2023, 9, 8. [Google Scholar] [CrossRef]
- Valenzuela-Lopez, N.; Cano-Lira, J.F.; Stchigel, A.M.; Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Guarro, J. Neocucurbitaria keratinophila: An emerging opportunistic fungus causing superficial mycosis in Spain. Med. Mycol. 2019, 57, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; Laven, R.A.; Orbell, G.M.B.; Pandey, S.K. Meningoencephalitis in an adult cow due to Mortierella wolfii. J. Vet. Diagn. Investig. 2006, 18, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, A.; Rodriguez, J.; Prendas, J.; Gamboa, J.L.; Cordero, V. Bovine systemic mycosis caused by Mortierella wolfii. Arch. Med. Vet. 1995, 27, 123–127. [Google Scholar]
- Davies, J.L.; Ngeleka, M.; Wobeser, G.A. Systemic infection with Mortierella wolfii following abortion in a cow. Can. Vet. J. -Rev. Vet. Can. 2010, 51, 1391–1393. [Google Scholar]
- Wada, S.; Ode, H.; Hobo, S.; Niwa, H.; Katayama, Y.; Takatori, K. Mortierella wolfii keratomycosis in a horse. Vet. Ophthalmol. 2011, 14, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.H.; Kwon-Chung, K.J.; Parta, M.; Seyedmousavi, A. Disseminated pulmonary infection due to Mortierella wolfii in a 6-year-old patient with X-linked CGD receiving MUD-HSCT. Med. Mycol. 2022, 60, 35–36. [Google Scholar] [CrossRef]
- Aboutalebian, S.; Mahmoudi, S.; Okhovat, A.; Khodavaisy, S.; Mirhendi, H. Otomycosis Due to the rare fungi Talaromyces purpurogenus, Naganishia albida and Filobasidium magnum. Mycopathologia 2020, 185, 569–575. [Google Scholar] [CrossRef]
- Pan, W.H.; Liao, W.Q.; Hagen, F.; Theelen, B.; Shi, W.M.; Meis, J.F.; Boekhout, T. Meningitis caused by Filobasidium uniguttulatum: Case report and overview of the literature. Mycoses 2012, 55, 105–109. [Google Scholar] [CrossRef]
- Keszthelyi, A.; Ohkusu, M.; Takeo, K.; Pfeiffer, I.; Litter, J.; Kucsera, J. Characterisation of the anticryptococcal effect of the FC-1 toxin produced by Filobasidium capsuligenum. Mycoses 2006, 49, 176–183. [Google Scholar] [CrossRef]
- Keszthelyi, A.; Hamari, Z.; Pfeiffer, I.; Vágvölgyi, C.; Kucsera, J. Comparison of killer toxin-producing and non-producing strains of Filobasidium capsuligenum:: Proposal for two varieties. Microbiol. Res. 2008, 163, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Wurzbacher, C.; Bahram, M.; Coimbra, V.R.M.; Larsson, E.; Tedersoo, L.; Eriksson, J.; Ritter, C.D.; Svantesson, S.; Sanchez-Garcia, M.; et al. Top 50 most wanted fungi. Mycokeys 2016, 29–40. [Google Scholar] [CrossRef]
- Phukhamsakda, C.; Nilsson, R.H.; Bhunjun, C.S.; de Farias, A.R.G.; Sun, Y.R.; Wijesinghe, S.N.; Raza, M.; Bao, D.F.; Lu, L.; Tibpromma, S.; et al. The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Divers. 2022, 114, 327–386. [Google Scholar] [CrossRef]
Sample ID | Culture | CrAg-LFA | NGS | Relative Abundance * |
---|---|---|---|---|
USYD006M | Positive | Negative | Negative | 0 |
USYD014M | Positive | Positive | Positive | 0.05 |
USYD017F | Negative | Positive | Positive | 3.19 |
USYD069M | Negative | Positive | Positive | 0.3 |
USYD076F | Positive | Negative | Positive | 0.12 |
USYD053M | Positive | Negative | NT | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McPherson, A.S.; Haworth, S.L.; Kan, A.; de Miranda, L.M.; Krockenberger, M.B. Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas (Phascolarctos cinereus) in New South Wales, Australia. J. Fungi 2025, 11, 64. https://doi.org/10.3390/jof11010064
McPherson AS, Haworth SL, Kan A, de Miranda LM, Krockenberger MB. Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas (Phascolarctos cinereus) in New South Wales, Australia. Journal of Fungi. 2025; 11(1):64. https://doi.org/10.3390/jof11010064
Chicago/Turabian StyleMcPherson, Andrew S., Sophie L. Haworth, Alex Kan, Luisa Monteiro de Miranda, and Mark B. Krockenberger. 2025. "Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas (Phascolarctos cinereus) in New South Wales, Australia" Journal of Fungi 11, no. 1: 64. https://doi.org/10.3390/jof11010064
APA StyleMcPherson, A. S., Haworth, S. L., Kan, A., de Miranda, L. M., & Krockenberger, M. B. (2025). Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas (Phascolarctos cinereus) in New South Wales, Australia. Journal of Fungi, 11(1), 64. https://doi.org/10.3390/jof11010064