The Interaction Mechanisms of Swimming Biomimetic Fish Aligned in Parallel Using the Immersed Boundary Method
Abstract
:1. Introduction
2. Numerical Methodology
3. Validation of Numerical Method
3.1. Cylinder Wake
3.2. Autonomous Swimming of Biomimetic Fish
4. Results and Discussion
4.1. Initial and Boundary Conditions
4.2. Parametric Investigations
4.2.1. Effect of Fish Spacings
4.2.2. Effect of Oscillation Phases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daneshfaraz, R.; Aminvash, E.; Bagherzadeh, M.; Ghaderi, A.; Kuriqi, A.; Najibi, A.; Ricardo, A.M. Laboratory investigation of hydraulic parameters on inclined drop equipped with fishway elements. Symmetry 2021, 13, 1643. [Google Scholar] [CrossRef]
- Thandiackal, R.; Lauder, G. In-line swimming dynamics revealed by fish interacting with a robotic mechanism. eLife 2023, 12, e81392. [Google Scholar] [CrossRef]
- Müller, U.K.; van den Boogaart, J.G.; van Leeuwen, J.L. Flow patterns of larval fish: Undulatory swimming in the intermediate flow regime. J. Exp. Biol. 2008, 211, 196–205. [Google Scholar] [CrossRef]
- Tytell, E.D. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 2535–2540. [Google Scholar] [CrossRef]
- Liao, J.C. Swimming in needlefish (Belonidae): Anguilliform locomotion with fins. J. Exp. Biol. 2002, 205, 2875–2884. [Google Scholar] [CrossRef] [PubMed]
- Peskin, C.S. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 1972, 10, 252–271. [Google Scholar] [CrossRef]
- Martins, D.M.C.; Albuquerque, D.M.S.; Pereira, J.C.F. On the use of polyhedral unstructured grids with a moving immersed boundary method. Comput. Fluids 2018, 174, 78–88. [Google Scholar] [CrossRef]
- Borazjani, I.; Sotiropoulos, F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 2008, 211, 1541–1558. [Google Scholar] [CrossRef]
- Borazjani, I.; Sotiropoulos, F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 2009, 212, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Borazjani, I.; Sotiropoulos, F. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp. Biol. 2010, 213, 89–107. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, Q.; Pan, G.; Huang, Q.; Sung, H.J. Hydrodynamic benefit of cephalic fins in a self-propelled flexible manta ray. Phys. Fluids 2021, 33, 081906. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, Q.; Pan, G.; Huang, Q.; Sung, H.J. Hydrodynamic benefit of impulsive bursting in a self-propelled flexible plate. Phys. Fluids 2021, 33, 111904. [Google Scholar] [CrossRef]
- Ji, C.; Xing, G.; Zhang, L. Numerical simulation of vortex-induced vibration of flexible riser under inclined flow. J. Harbin Eng. Univ. 2018, 39, 324–331. [Google Scholar]
- Ma, Q.; Ding, L.; Huang, D. A study on the influence of schooling patterns on the energy harvest of double undulatory airfoils. Renew. Energy 2021, 174, 674–687. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, F.B.; Young, J.; Liao, J.C.; Lai, J.C.S. A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary-lattice Boltzmann method. Sci. Rep. 2021, 11, 1691. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yang, Z.; Jiang, H.Z.; Huang, W.X.; Shen, L. A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries. Int. J. Comput. Methods 2018, 15, 1750080. [Google Scholar] [CrossRef]
- Bontoux, P.; Viazzo, S.; Schneider, K.; Ghaffari, S.A. An efficient algorithm for simulation of forced deformable bodies interacting with incompressible flows. Application to fish swimming. In Proceedings of the 11th World Congress on Computational Mechanics, ECCM V, Barcelona, Spain, 20–25 July 2014; pp. 787–798. [Google Scholar]
- Fadlun, E.A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 2000, 161, 35–60. [Google Scholar] [CrossRef]
- Noor, D.Z.; Chern, M.J.; Horng, T.L. An immersed boundary method to solve fluid–solid interaction problems. Comput. Mech. 2009, 44, 447–453. [Google Scholar] [CrossRef]
- Yang, L. Research on Direct Force Immersed Boundary Method and Multigrid Method Based on Non-Uniform Rectangular Grids; Harbin Engineering University: Harbin, China, 2007. [Google Scholar]
- Wu, J.; Shu, C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 2009, 228, 1963–1979. [Google Scholar] [CrossRef]
- Lai, M.C.; Peskin, C.S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 2000, 160, 705–719. [Google Scholar] [CrossRef]
- Su, S.; Lai, M.; Lin, C. An immersed boundary technique for simulating complex flows with rigid boundary. Comput. Fluids 2005, 36, 313–324. [Google Scholar] [CrossRef]
- Cai, S.G.; Ouahsine, A.; Hoarau, Y. Moving immersed boundary method for fluid-solid interaction. Phys. Fluids 2017, 34, 053307. [Google Scholar] [CrossRef]
- Cai, S.G.; Ouahsine, A.; Favier, J.; Hoarau, Y. Moving immersed boundary method. Int. J. Numer. Methods Fluids 2017, 85, 288–323. [Google Scholar] [CrossRef]
- Carling, J.; Williams, T.L.; Bowtell, G. Self-propelled anguilliform swimming: Simultaneous solution of the two-dimensional navier-stokes equations and Newton’s laws of motion. J. Exp. Biol. 1998, 201 Pt 23, 3143–3166. [Google Scholar] [CrossRef]
- Kern, S.; Koumoutsakos, P. Simulations of optimized anguilliform swimming. J. Exp. Biol. 2006, 209, 4841–4857. [Google Scholar] [CrossRef]
- Gazzola, M.; Chatelain, P.; van Rees, W.M.; Koumoutsakos, P. Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 2011, 230, 7093–7114. [Google Scholar] [CrossRef]
- Hooper, M.L.; Scherl, I.; Gharib, M. Bio-inspired compensatory strategies for damage to flapping robotic propulsors. J. R. Soc. Interface 2024, 21, 20240141. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, D.; Padovani, L.; Graziani, G.; Piva, R. The performance of a flapping foil for a self-propelled fishlike body. Sci. Rep. 2021, 11, 22297. [Google Scholar] [CrossRef]
- Paniccia, D.; Padovani, L.; Graziani, G.; Piva, R. Locomotion performance for oscillatory swimming in free mode. Bioinspiration Biomim. 2023, 18, 015004. [Google Scholar] [CrossRef]
- Albuquerque, D.M.S.; Pereira, J.M.C.; Pereira, J.C.F. Calculation of a deformable membrane airfoil in hovering flight. Comput. Model. Eng. Sci. 2011, 72, 337–366. [Google Scholar] [CrossRef]
NO. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Lateral spacing | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 |
0.1302 | 0.685 | 0.321 | 1.136 | |
0.011 | 0.742 | 0.046 | 0.799 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Xu, T.; Zhang, J.; Jiao, Y.; Yu, H. The Interaction Mechanisms of Swimming Biomimetic Fish Aligned in Parallel Using the Immersed Boundary Method. J. Mar. Sci. Eng. 2025, 13, 133. https://doi.org/10.3390/jmse13010133
Cai X, Xu T, Zhang J, Jiao Y, Yu H. The Interaction Mechanisms of Swimming Biomimetic Fish Aligned in Parallel Using the Immersed Boundary Method. Journal of Marine Science and Engineering. 2025; 13(1):133. https://doi.org/10.3390/jmse13010133
Chicago/Turabian StyleCai, Xiaowei, Tonghua Xu, Jun Zhang, Yanmei Jiao, and Haiyang Yu. 2025. "The Interaction Mechanisms of Swimming Biomimetic Fish Aligned in Parallel Using the Immersed Boundary Method" Journal of Marine Science and Engineering 13, no. 1: 133. https://doi.org/10.3390/jmse13010133
APA StyleCai, X., Xu, T., Zhang, J., Jiao, Y., & Yu, H. (2025). The Interaction Mechanisms of Swimming Biomimetic Fish Aligned in Parallel Using the Immersed Boundary Method. Journal of Marine Science and Engineering, 13(1), 133. https://doi.org/10.3390/jmse13010133