Insulin-Resistant Male LEW.1WR1 Rats Do Not Develop β-Cell Mass Expansion in Response to a Moderate Sucrose Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Fasting Blood Glucose Testing
2.3. Insulin Tolerance Tests (ITTs)
2.4. Urine Metabolomics
2.5. Pancreas Histology
2.6. Insulin ELISA
2.7. qPCR
2.8. Statistical Analysis
3. Results
3.1. LEW.1WR1 Rats Had Significantly Increased Body Mass by 7 Weeks Old
3.2. LEW.1WR1 and Wistar Furth Rats Did Not Become Hyperglycemic
3.3. LEW.1WR1 Rats Were Insulin Resistant at 7 Weeks Old, Which Worsened by 15 Weeks Old
3.4. Analysis of Urinary Energy Marker Metabolites
3.5. No Rat Groups Had β-Cell Mass Expansion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, B.; Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 2012, 56, 704–713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arshad, T.; Golabi, P.; Henry, L.; Younossi, Z.M. Epidemiology of Non-alcoholic Fatty Liver Disease in North America. Curr. Pharm. Des. 2020, 26, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Bessone, F.; Razori, M.V.; Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol. Life Sci. 2019, 76, 99–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, D.D.; Corkey, B.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J. Endocr Soc. 2019, 3, 1727–1747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shanik, M.H.; Xu, Y.; Skrha, J.; Dankner, R.; Zick, Y.; Roth, J. Insulin Resistance and Hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care 2008, 31 (Suppl. 2), S262–S268. [Google Scholar] [CrossRef]
- Freeman, A.M.; Acevedo, L.A.; Pennings, N. Insulin Resistance; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-Cell Deficit and Increased β-Cell Apoptosis in Humans with Type 2 Diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef]
- Christensen, A.A.; Gannon, M. The Beta Cell in Type 2 Diabetes. Curr. Diab. Rep. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Son, J.; Accili, D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp. Mol. Med. 2023, 55, 1652–1658. [Google Scholar] [CrossRef]
- Mordes, J.P.; Guberski, D.L.; Leif, J.H.; Woda, B.A.; Flanagan, J.F.; Greiner, D.L.; Kislauskis, E.H.; Tirabassi, R.S. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes 2005, 54, 2727–2733. [Google Scholar] [CrossRef] [PubMed]
- Mordes, J.P.; Bortell, R.; Blankenhorn, E.P.; Rossini, A.A.; Greiner, D.L. Rat models of type 1 diabetes: Genetics, environment, and autoimmunity. ILAR J. 2004, 45, 278–291. [Google Scholar] [CrossRef]
- Cort, L.; Habib, M.; Eberwine, R.A.; Hessner, M.J.; Mordes, J.P.; Blankenhorn, E.P. Diubiquitin (Ubd) Is a Susceptibility Gene for Virus-Triggered Autoimmune Diabetes in Rats. Genes Immun. 2014, 15, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Blankenhorn, E.P.; Cort, L.; Greiner, D.L.; Guberski, D.L.; Mordes, J.P. Virus-induced autoimmune diabetes in the LEW.1WR1 rat requires Iddm14 and a genetic locus proximal to the major histocompatibility complex. Diabetes 2009, 58, 2930–2938. [Google Scholar] [CrossRef] [PubMed]
- Eberwine, R.A.; Cort, L.; Habib, M.; Mordes, J.P.; Blankenhorn, E.P. Autoantigen-induced focusing of Vβ13+ T cells precedes onset of autoimmune diabetes in the LEW.1WR1 rat. Diabetes 2014, 63, 596–604. [Google Scholar] [CrossRef]
- Wilkerson-Vidal, Q.C.; Wimalarathne, M.; Collins, G.; Wolfsberger, J.G.; Clopp, A.; Mercado, L.; Fowler, E.; Gibson, H.; McConnell, V.; Martin, S.; et al. Young Adult Male LEW.1WR1 Rats Have Reduced Beta Cell Area and Develop Glucose Intolerance. Mol. Cell Endocrinol. 2023, 562, 1–8. [Google Scholar] [CrossRef]
- Herman, M.A.; Birnbaum, M.J. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021, 33, 2329–2354. [Google Scholar] [CrossRef]
- Tyburski, J.B.; Patterson, A.D.; Krausz, K.W.; Slavík, J.; Fornace, A.J., Jr.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat. Res. 2008, 170, 1–14. [Google Scholar] [CrossRef]
- Slupsky, C.; Cheypesh, A.; Chao, D.; Fu, H.; Rankin, K.; Marrie, T.; Lacy, P. Streptococcus pneumoniae and Staphylococcus aureus Pneumonia Induce Distinct Metabolic Responses. J. Proteome Res. 2009, 8, 3029–3036. [Google Scholar] [CrossRef]
- Wahren, J.; Felig, P.; Cerasi, E.; Luft, R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Investig. 1972, 51, 1870–1878. [Google Scholar] [CrossRef]
- Xiang, H.; Chen, H.; Liu, Y.; Dodd, D.; Pao, A. Role of insulin resistance and the gut microbiome on urine oxalate excretion in ob/ob mice. Physiol. Rep. 2022, 10, e15357. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Furuse, M. The impact of taurine- and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: Antidepressant versus anxiolytic-like effects. Amino Acids 2010, 39, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, K.M.; Kemps, E.; White, M.J.; Bartlett, S.E. The Impact of Free Sugar on Human Health-A Narrative Review. Nutrients 2023, 15, 889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolfsberger, J.G.; Hunt, E.C.; Bobba, S.S.; Love-Rutledge, S.T.; Vogler, B. Metabolite quantification: A fluorescence-based method for urine sample normalization prior to 1H-NMR analysis. Metabolomics 2022, 18, 80. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, A.K.; Baan, M.; Davis, D.B. Pancreatic β-cell proliferation in obesity. Adv. Nutr. 2014, 5, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Correa, E.; González-Pérez, I.; Clavel-Pérez, P.I.; Contreras-Vargas, Y.; Carvajal, K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice? Nutr. Diabetes 2020, 10, 24. [Google Scholar] [CrossRef]
- Kohn, D.F.; Barthold, S.W. Biology and Diseases of Rats. Lab. Anim. Med. 1984, 1, 91–122. [Google Scholar] [CrossRef] [PubMed Central]
- Jones, H.B.; Nugent, D.; Jenkins, R. Variation in characteristics of islets of Langerhans in insulin-resistant, diabetic and non-diabetic-rat strains. Int. J. Exp. Pathol. 2010, 91, 288–301. [Google Scholar] [CrossRef]
- Paschen, M.; Moede, T.; Valladolid-Acebes, I.; Leibiger, B.; Moruzzi, N.; Jacob, S.; García-Prieto, C.F.; Brismar, K.; Leibiger, I.B.; Berggren, P.O. Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass. FASEB J. 2019, 33, 204–218. [Google Scholar] [CrossRef]
- Tersey, S.A.; Levasseur, E.M.; Syed, F.; Farb, T.B.; Orr, K.S.; Nelson, J.B.; Shaw, J.L.; Bokvist, K.; Mather, K.J.; Mirmira, R.G. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice. FASEB J. 2018, 32, 6150–6158. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson-Vidal, Q.C.; Wimalarathne, M.M.; Hunt, E.C.; Mercado, L.; David, M.A.; Apperson, C.R.; Smiley, A.; Love-Rutledge, S.T.; Vogler, B.W.G. Male LEW.1WR1 Rats Develop Metabolic Dysfunction, Steatohepatitis, and Liver Damage. Endocrines 2024, 5, 166–185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkerson-Vidal, Q.C.; David, M.A.; Wolfsberger, J.G.; Wimalarathne, M.M.; Fowler, E.; Diaz, J.R.; Fink, A.; Sterkel, E.S.; Ross, I.; Vogler, B.; et al. Insulin-Resistant Male LEW.1WR1 Rats Do Not Develop β-Cell Mass Expansion in Response to a Moderate Sucrose Diet. J. Mol. Pathol. 2024, 5, 276-291. https://doi.org/10.3390/jmp5030020
Wilkerson-Vidal QC, David MA, Wolfsberger JG, Wimalarathne MM, Fowler E, Diaz JR, Fink A, Sterkel ES, Ross I, Vogler B, et al. Insulin-Resistant Male LEW.1WR1 Rats Do Not Develop β-Cell Mass Expansion in Response to a Moderate Sucrose Diet. Journal of Molecular Pathology. 2024; 5(3):276-291. https://doi.org/10.3390/jmp5030020
Chicago/Turabian StyleWilkerson-Vidal, Quiana C., Moses A. David, James Gerard Wolfsberger, Madushika M. Wimalarathne, Evann Fowler, John R. Diaz, Alexis Fink, Elijah S. Sterkel, Ian Ross, Bernhard Vogler, and et al. 2024. "Insulin-Resistant Male LEW.1WR1 Rats Do Not Develop β-Cell Mass Expansion in Response to a Moderate Sucrose Diet" Journal of Molecular Pathology 5, no. 3: 276-291. https://doi.org/10.3390/jmp5030020