Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review
Abstract
:1. Introduction
2. Review of Polyp Detection and Segmentation in VCE
2.1. Polyp Detection in Capsule Endoscopy Videos
2.2. Polyp Localization or Segmentation within a VCE Frame
- Localization
- Hybrid: Jia [60] used K-means clustering and localizing region-based active contour segmentation. The results shown in this paper seems to be from colonoscopy imagery and not VCE.
- Accurate boundaries, segmentation
- Active contours: Meziou et al. [61] used alpha divergence based active contours segmentation, though their approach is a general segmentation, and not for polyps in particular (see also [62]). Prasath et al. [30] used an active contours without edges method for identifying mucosal surface in conjunction with shape from shading technique (see also [65]). Eskandari et al. [63] used a region based active contour model to segment the polyp region from a given image that contain a polyp (see also [64]).
2.3. Holistic Systems
3. Discussion and Outlook
- Recent excitement generated by deep learning is a very promising direction where massively trained neural network based classifiers can be used to better differentiate polyp frames from normal frames. However, deep learning networks in general require a huge amount of training data, in particular labeled data of positive (polyp frame) and negative (normal frame) samples. One possible remedy for an imbalanced data problem is to use data augmentation, therein one can increase the polyp frames by artificial perturbation (rotation, reflection, ...) (see e.g., [54], for an attempt to create a higher number of polyp frames for training). There have been some works in the last two years on endoscopy image analysis with deep learning [71,72,73]. Other approaches include using deep sparse feature selection (see, e.g., [74]).
- Similar to the Arizona State University (ASU)-Mayo Clinic polyp database for colonoscopy polyp detection benchmarking, VCE polyp detection requires a well-defined database with multiple expert gastroenterologists marked polyp regions. This will make the benchmarking and testing of different methodologies for automatic polyp detection and segmentation standardized.
Acknowledgments
Conflicts of Interest
References
- Iddan, G.; Meron, G.; Glukhovsky, A.; Swain, F. Wireless capsule endoscopy. Nature 2000, 405, 417. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liao, Z.; McAlindon, M. Handbook of Capsule Endoscopy; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Iakovidis, D.K.; Maroulis, D.E.; Karkanis, S.A.; Brokos, A. A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, Washington, DC, USA, 23–24 June 2005; pp. 575–580.
- Iakovidis, D.K.; Maroulis, D.E.; Karkanis, S.A. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput. Biol. Med. 2006, 36, 1084–1103. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jaffer, N. A novel segmentation and navigation method for polyps detection using mathematical morphology and active contour models. In Proceedings of the 6th IEEE International Conference on Cognitive Informatics, Lake Tahoe, CA, USA, 6–8 August 2007; pp. 357–363.
- Hwang, S.; Oh, J.; Tavanapong, W.; Wong, J.; De Groen, P.C. Polyp detection in colonoscopy video using elliptical shape feature. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 2, pp. 465–468.
- Park, S.Y.; Sargent, D.; Spofford, I.; Vosburgh, K.G.; A-Rahim, Y. A colon video analysis framework for polyp detection. IEEE Trans. Biomed. Eng. 2012, 59, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Sánchez, J.; Vilarino, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012, 45, 3166–3182. [Google Scholar] [CrossRef]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Gr. 2015, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, N.; Gurudu, S.R.; Liang, J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 2016, 35, 630–644. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.C.; Ting, W.C.; Chen, Y.F.; Pu, Q.; Jiang, X. Colorectal polyps detection using texture features and support vector machine. In Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry; Springer: Berlin/Heidelberg, Germany, 2008; pp. 62–72. [Google Scholar]
- Alexandre, L.A.; Nobre, N.; Casteleiro, J. Color and position versus texture features for endoscopic polyp detection. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 2, pp. 38–42.
- Alexandre, L.A.; Casteleiro, J.; Nobre, N. Polyp detection in endoscopic video using SVMs. In Knowledge Discovery in Databases: PKDD 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 358–365. [Google Scholar]
- Ameling, S.; Wirth, S.; Paulus, D. Methods for Polyp Detection in colonoscopy Video: A Review; Technical Report 14; University of Koblenz–Landau: Koblenz Landau, Germany, 2008. [Google Scholar]
- Yoshida, H.; Näppi, J. Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 2001, 20, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Gokturk, S.B.; Tomasi, C.; Acar, B.; Beaulieu, C.F.; Paik, D.S.; Jeffrey, R.B., Jr.; Yee, J.; Napel, S. A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging 2001, 20, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Paik, D.S.; Beaulieu, C.F.; Rubin, G.D.; Acar, B.; Jeffrey, R.B., Jr.; Yee, J.; Dey, J.; Napel, S. Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Trans. Med. Imaging 2004, 23, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Konukoglu, E.; Acar, B.; Paik, D.S.; Beaulieu, C.F.; Rosenberg, J.; Napel, S. Polyp enhancing level set evolution of colon wall: Method and pilot study. IEEE Trans. Med. Imaging 2007, 26, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, C.; Van Ravesteijn, V.F.; Vos, F.M.; Van Vliet, L.J. Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow. IEEE Trans. Med. Imaging 2010, 29, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Ruano, J.; Martinez, F.; Gomez, M.; Romero, E. Shape estimation of gastrointestinal polyps using motion information. In Proceedings of the IX International Seminar on Medical Information Processing and Analysis, Mexico City, Mexico, 11–14 November 2013.
- Liedlgruber, M.; Uhl, A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: A review. IEEE Rev. Biomed. Eng. 2011, 4, 73–88. [Google Scholar] [CrossRef] [PubMed]
- El Khatib, A.; Werghi, N.; Al-Ahmad, H. Automatic polyp detection: A comparative study. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 2669–2672.
- Prasath, V.B.S.; Delhibabu, R. Automatic contrast enhancement for wireless capsule endoscopy videos with spectral optimal contrast-tone mapping. In Computational Intelligence in Data Mining; Jain, L., Behera, H.S., Mandal, J.K., Mohapatra, D.P., Eds.; Springer: Odisha, India, 2015; Volume 1, pp. 243–250. [Google Scholar]
- Prasath, V.B.S. On fuzzification of color spaces for medical decision support in video capsule endoscopy. In Proceedings of the 26th Modern Artificial Intelligence and Cognitive Science Conference, Greensboro, NC, USA, 25–26 April 2015; pp. 1–5.
- Van Gossum, A.; Munoz-Navas, M.; Fernandez-Urien, I.; Carretero, C.; Gay, G.; Delvaux, M.; Lapalus, M.G.; Ponchon, T.; Neuhaus, H.; Philipper, M.; et al. Capsule endoscopy versus colonoscopy for the detection of polyps and cancer. N. Engl. J. Med. 2009, 361, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Spada, C.; Hassan, C.; Marmo, R.; Petruzziello, L.; Riccioni, M.E.; Zullo, A.; Cesaro, P.; Pilz, J.; Costamagna, G. Meta-analysis shows colon capsule endoscopy is effective in detecting colorectal polyps. Clin. Gastroenterol. Hepatol. 2010, 8, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Spada, C.; Hassan, C.; Munoz-Navas, M.; Neuhaus, H.; Deviere, J.; Fockens, P.; Coron, E.; Gay, G.; Toth, E.; Riccioni, M.E.; et al. Second-generation colon capsule endoscopy compared with colonoscopy. Gastrointest. Endosc. 2011, 74, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Spada, C.; De Vincentis, F.; Cesaro, P.; Hassan, C.; Riccioni, M.E.; Grazioli, L.M.; Bolivar, S.; Zurita, A.; Costamagna, G. Accuracy and safety of second-generation PillCam COLON capsule for colorectal polyp detection. Ther. Adv. Gastroenterol. 2012, 5, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Polyp Detection and Segmentation in Video Capsule Endoscopy: A Review. Available online: http://goo.gl/eAUWKJ (accessed on 21 December 2016).
- Prasath, V.B.S.; Figueiredo, I.N.; Figueiredo, P.N.; Palaniappan, K. Mucosal region detection and 3D reconstruction in wireless capsule endoscopy videos using active contours. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4014–4017.
- Kodogiannis, V.; Boulougoura, M. An adaptive neurofuzzy approach for the diagnosis in wireless capsule endoscopy imaging. Int. J. Inf. Technol. 2007, 13, 46–56. [Google Scholar]
- Li, B.; Meng, M.Q.; Xu, L. A comparative study of shape features for polyp detection in wireless capsule endoscopy images. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Piscataway, NJ, USA, 3–6 September 2009; pp. 3731–3734.
- Li, B.; Fan, Y.; Meng, M.Q.; Qi, L. Intestinal polyp recognition in capsule endoscopy images using color and shape features. In Proceedings of the 2009 international conference on Robotics and biomimetics, Guilin, China, 19–23 December 2009; pp. 1490–1494.
- Karargyris, A.; Bourbakis, N. Identification of polyps in Wireless Capsule Endoscopy videos using log Gabor filters. In Proceedings of the 2009 IEEE/NIH Life Science Systems and Applications Workshop, Arlington, TX, USA, 9–10 April 2009; pp. 143–147.
- Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Karargyris, A.; Bourbakis, N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans. Biomed. Eng. 2011, 58, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Celebi, M.E. Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 678–681.
- Nawarathna, R.D.; Oh, J.; Yuan, X.; Lee, J.; Tang, S.J. Abnormal image detection using texton method in wireless capsule endoscopy videos. In Medical Biometrics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 153–162. [Google Scholar]
- Nawarathna, R.; Oh, J.; Muthukudage, J.; Tavanapong, W.; Wong, J.; De Groen, P.C.; Tang, S.J. Abnormal image detection in endoscopy videos using a filter bank and local binary patterns. Neurocomputing 2014, 144, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.N.; Figueiredo, I.N.; Prasath, S.; Tsai, R. Automatic polyp detection in Pillcam colon 2 capsule images and videos: Preliminary feasibility report. Diagn. Ther. Endosc. 2011, 2011, 182435. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, M.Q.H. Polyp detection in wireless capsule endoscopy images using novel color texture features. In Proceedings of the 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan, 21–25 June 2011; pp. 948–952.
- Zhao, Q.; Dassopoulos, T.; Mullin, G.; Hager, G.; Meng, M.Q.; Kumar, R. Towards integrating temporal information in capsule endoscopy image analysis. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6627–6630.
- Zhao, Q.; Dassopoulos, T.; Mullin, G.E.; Meng, M.; Kumar, R. A decision fusion strategy for polyp detection in capsule endoscopy. In Studies in Health Technology and Informatics, Proceedings of the Medicine Meets Virtual Reality conference (MMVR19), Newport Beach, CA, USA, February 2012; Westwood, J., Westwood, S., Fellander-Tsai, L., Haluck, R., Robb, R., Senger, S., Vosburgh, K., Eds.; IOS Press: Hong Kong, China, 2012; Volume 173, pp. 559–565. [Google Scholar]
- Hwang, S. Bag-of-visual-words approach based on SURF features to polyp detection in wireless capsule endoscopy videos. In World Congress in Computer Science, Computer Engineering, and Applied Computing; Department of Computer Science, University of Illinois at Springfield: Springfield, IL, USA, 2011. [Google Scholar]
- Hwang, S. Bag-of-visual-words approach to abnormal image detection in wireless capsule endoscopy videos. In Advances in Visual Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 320–327. [Google Scholar]
- Li, B.; Meng, M.Q.H. Automatic polyp detection for wireless capsule endoscopy images. Expert Syst. Appl. 2012, 39, 10952–10958. [Google Scholar] [CrossRef]
- Condessa, F.; Bioucas-Dias, J. Segmentation and detection of colorectal polyps using local polynomial approximation. In Image Analysis and Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 188–197. [Google Scholar]
- David, E.; Boia, R.; Malaescu, A.; Carnu, M. Automatic colon polyp detection in endoscopic capsule images. In Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2013; pp. 1–4.
- Figueiredo, I.N.; Kumar, S.; Figueiredo, P.N. An intelligent system for polyp detection in wireless capsule endoscopy images. Comput. Vision Med. Image Process. IV VIPIMAGE 2013, 2013, 229–235. [Google Scholar]
- Yuan, Y.; Meng, M.Q.H. Polyp classification based on bag of features and saliency in wireless capsule endoscopy. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May–7 June 2014; pp. 3930–3935.
- Yuan, Y.; Meng, M.Q.H. A novel feature for polyp detection in wireless capsule endoscopy images. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, 14–18 September 2014; pp. 5010–5015.
- Yuan, Y.; Li, B.; Meng, M.Q.H. Improved bag of feature for automatic polyp detection in wireless capsule endoscopy images. IEEE Trans. Autom. Sci. Eng. 2016, 13, 529–535. [Google Scholar] [CrossRef]
- Mamonov, A.V.; Figueiredo, I.N.; Figueiredo, P.N.; Tsai, Y.H.R. Automated polyp detection in colon capsule endoscopy. IEEE Trans. Med. Imaging 2014, 33, 1488–1502. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Sun, S.; Terrence, T.; Wang, P. Accurate and Efficient Polyp Detection in Wireless Capsule Endoscopy Images. U.S. Patent App. 14/471,143, 5 March 2014. [Google Scholar]
- Zhou, M.; Bao, G.; Geng, Y.; Alkandari, B.; Li, X. Polyp detection and radius measurement in small intestine using video capsule endoscopy. In Proceedings of the 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI), Dalian, China, 14–16 October 2014; pp. 237–241.
- Gueye, L.; Yildirim-Yayilgan, S.; Cheikh, F.A.; Balasingham, I. Automatic detection of colonoscopic anomalies using capsule endoscopy. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 1061–1064.
- Yuan, Y.; Meng, M.Q.H. A novel global and local saliency coding method for polyp recognition in WCE videos. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2394–2399.
- Yuan, Y.; Li, B.; Meng, M.Q.H. WCE abnormality detection based on saliency and adaptive locality-constrained linear coding. IEEE Trans. Autom. Sci. Eng. 2016, 1–11. [Google Scholar] [CrossRef]
- Prasath, V.B.S.; Kawanaka, H. Vascularization features for polyp localization in capsule endoscopy. In Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, 9–12 November 2015; pp. 1740–1742.
- Jia, Y. Polyps auto-detection in wireless capsule endoscopy images using improved method based on image segmentation. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1631–1636.
- Meziou, L.; Histace, A.; Dray, X.; Romain, O.; Granado, B. Segmentation of video capsule endoscopic images using alpha-divergence based active contour method. In Computer Assisted Radiology and Surgery; Springer: Pisa, Italy, 2012; pp. S325–S326. [Google Scholar]
- Meziou, L.; Histace, A.; Precioso, F.; Romain, O.; Dray, X.; Granado, B.; Matuszewski, B.J. Computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection. J. Biomed. Imaging 2014, 2014, 428583. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, H.; Talebpour, A.; Alizadeh, M.; Soltanian-Zadeh, H. Polyp detection in Wireless Capsule Endoscopy images by using region-based active contour model. In Proceedings of the 2012 19th Iranian Conference of Biomedical Engineering (ICBME), Ehran, Iran, 20–21 December 2012; pp. 305–308.
- Alizadeh, M.; Zadeh, H.S.; Maghsoudi, O.H. Segmentation of small bowel tumors in wireless capsule endoscopy using level set method. In Proceedings of the 2014 IEEE 27th International Symposium on Computer-Based Medical Systems (CBMS), New York, NY, USA, 27–29 May 2014; pp. 562–563.
- Prasath, V.B.S.; Figueiredo, I.N.; Figueiredo, P.N. Colonic Mucosa Detection in Wireless Capsule Endoscopic Images and Videos. In Proceedings of the Congress on Numerical Methods in Engineering (CMNE 2011), Coimbra, Portugal, 14–17 June 2011.
- Prasath, V.B.S.; Delhibabu, R. Automatic image segmentation for video capsule endoscopy. In Computational Intelligence in Medical Informatics; Muppalaneni, N.B., Gunjan, V.K., Eds.; Briefs in Applied Sciences and Technology; Springer: Visakhapatnam, India, 2015; pp. 73–80. [Google Scholar]
- Prasath, V.B.S.; Delhibabu, R. Automatic mucosa detection in video capsule endoscopy with adaptive thresholding. In Computational Intelligence in Data Mining; Springer: Bhubaneswar, India, 2016; Volume 1, pp. 95–102. [Google Scholar]
- Romain, O.; Histace, A.; Silva, J.; Ayoub, J.; Granado, B.; Pinna, A.; Dray, X.; Marteau, P. Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer. In Proceedings of the 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), Chania, Greece, 10–13 November 2013; pp. 1–6.
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B.; Pinna, A. Towards real-time in situ polyp detection in WCE images using a boosting-based approach. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5711–5714.
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, R.; Xue, D. Lesion detection of endoscopy images based on convolutional neural network features. In Proceedings of the 8th International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015.
- Bae, S.H.; Yoon, K.J. Polyp detection via imbalanced learning and discriminative feature learning. IEEE Trans. Med. Imaging 2015, 34, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Integrating online and offline 3D deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Inform. 2016. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Wang, S.; Liu, J.; Cao, J.; Yang, Y.; Luo, J. Deep sparse feature selection for computer aided endoscopy diagnosis. Pattern Recognit. 2015, 48, 907–917. [Google Scholar] [CrossRef]
- Hatogai, K.; Hosoe, N.; Imaeda, H.; Rey, J.F.; Okada, S.; Ishibashi, Y.; Kimura, K.; Yoneno, K.; Usui, S.; Ida, Y.; et al. Role of enhanced visibility in evaluating polyposis syndromes using a newly developed contrast image capsule endoscope. Gut Liv. 2012, 6, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Filip, D.; Yadid-Pecht, O.; Andrews, C.N.; Mintchev, M.P. Self-stabilizing colonic capsule endoscopy: Pilot study of acute canine models. IEEE Trans. Med. Imaging 2011, 30, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Angermann, Q.; Histace, A.; Romain, O.; Dray, X.; Pinna, A.; Granado, B. Smart videocapsule for early diagnosis of colorectal cancer: Toward embedded image analysis. In Computational Intelligence in Digital and Network Designs and Applications; Springer: Cham, Switzerland, 2015; pp. 325–350. [Google Scholar]
- Iakovidis, D.K.; Koulaouzidis, A. Software for enhanced video capsule endoscopy: Challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 172–186. [Google Scholar] [CrossRef] [PubMed]
Reference | Features/Technique | Classifier(s) | Total Number (Polyps) |
---|---|---|---|
[31] | Texture spectrum from RGB, HSV | Neurofuzzy | 140 (70) |
[32] | ART descriptor + Zernike moments | MLP | 300 (150) |
[33] | Chromaticity histogram + Zernike moments | MLP, SVM | 300 (150) |
[34] | Log–Gabor filter + SUSAN edge detector | × | 50 (10) |
[37] | Gabor filters + Watershed segmentation | × | 128 (64) |
[38] | Filter banks based texton histogram | K-NN, SVM | 400 (25) |
[40] | Protrusion measure via curvatures | × | 1700 (10) |
[36] | Log–Gabor filter + SUSAN edge detector | SVM | 50 (10) |
[41] | Opponent color moments + LBP + LLE | SVM | 2 videos |
[42] | Color + edge + texture + HMM | weak k-NN | 400 (200), 1120 (560) |
[44] | SURF features + BoW + K-means | SVM | 120 (60) |
[45] | Color + Gabor filters + BoW + K-means | SVM | 250 (50) |
[43] | Color + edge + texture + HMM | Boosted SVM | 1200 (600) |
[46] | Uniform LBP + wavelet transform | SVM | 1200 (600) |
[47] | Local polynomial approximation + geometry | SVM | 3 videos (40) |
[48] | Geometry + color + HoG | MLP | 30,540 (540) |
[49] | Geometry + color + Monogenic LBP | SVM | 400 (200) |
[50] | SIFT + Saliency + BoF | SVM | 872 (436) |
[51] | Gabor filter + Monogenic LBP + LDA | SVM | 872 (436) |
[53] | Texture + midpass filtering + ellipse fitting | Binary | 18,968 (230) |
[39] | Texton histogram + LBP | K-NN | 400 (25) |
[54] | Geometry + LBP + HoG | Regression | 27,984 (12,984) |
[55] | RGB + Variance + radius | SVM | 359 |
[56] | SIFT + BoF + K-means | SVM | 800 (400) |
[52] | SIFT + complete LBP + BoF | SVM | 2500 (500) |
[57] | SIFT + saliency coding | SVM | 1080 (540) |
[58] | SIFT + saliency coding | SVM | 17 videos (500) |
Reference | Technique |
---|---|
[34] | Log–Gabor filter |
[59] | Vascularization + Frangi vesselness |
[37] | Curvature center ratio + K-means clustering |
[40] | Protrusion measure via curvatures |
[60] | K-means clustering + localizing active contour |
[61] | Alpha divergence based active contours |
[62] | Alpha divergence based active contours |
[30] | Active contours + Shape from shading |
[63] | Active contours |
[64] | Active contours |
Reference | Technique | Classifier(s) | Total Number (Polyps) |
---|---|---|---|
[68] | Geometry + Texture | Boosting | 1000 (200) |
[69] | circular Hough + co-occurrence matrix | Boosting | 1500 (300) |
[70] | Hough transform + co-occurrence matrix | Boosting | 1500 (300) |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasath, V.B.S. Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review. J. Imaging 2017, 3, 1. https://doi.org/10.3390/jimaging3010001
Prasath VBS. Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review. Journal of Imaging. 2017; 3(1):1. https://doi.org/10.3390/jimaging3010001
Chicago/Turabian StylePrasath, V. B. Surya. 2017. "Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review" Journal of Imaging 3, no. 1: 1. https://doi.org/10.3390/jimaging3010001
APA StylePrasath, V. B. S. (2017). Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review. Journal of Imaging, 3(1), 1. https://doi.org/10.3390/jimaging3010001