Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Culture Conditions
2.2. Bioinformatics
3. Results and Discussion
3.1. Dose Response of Uninfected Mosquito Cells to Trimethoprim
3.2. Wolbachia DHFR Contains Amino Acids Associated with Trimethoprim Resistance
3.3. Some Wolbachia Genomes Do Not Encode DHFR Proteins
3.4. An FAD-Dependent Thymidylate Synthase Is Encoded by thyX in the Rickettsiales
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhabha, G.; Ekiert, D.C.; Jennewein, M.; Masek, C.M.; Tuttle, L.M.; Kroom, G.; Dyson, H.J.; Godzik, A.; Wilson, I.A.; Wright, P.E. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat. Struct. Mol. Biol. 2013, 20, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Beddell, C.R.; Champness, J.N.; Goodford, P.J.; Norrington, F.E.; Smith, D.R.; Stammers, D.K. The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 1981, 126, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol. 2006, 71, 941–948. [Google Scholar] [CrossRef]
- Manna, M.S.; Tamer, Y.T.; Gaszek, I.; Poulides, N.; Ahmed, A.; Wang, X.; Toprak, F.C.R.; Woodard, D.R.; Koh, A.Y.; Williams, N.S.; et al. A trimethoprim derivative impedes antibiotic resistance evolution. Nat. Commun. 2021, 12, 2949. [Google Scholar] [CrossRef]
- Baldridge, G.D.; Baldridge, A.S.; Witthuhn, B.A.; Higgins, L.; Markowski, T.W.; Fallon, A.M. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line. Mol. Microbiol. 2014, 94, 537–556. [Google Scholar] [CrossRef]
- Myllykallio, H.; Skouloubris, S.; Grosjean, H.; Liebl, U. Folate-Dependent Thymidylate-Forming Enzymes: Parallels between DNA and RNA Metabolic Enzymes and Evolutionary Implications. In DNA and RNA Modification Enzymes: Comparative Structure, Mechanism, Functions, Cellular Interactions and Evolution; Grosjean, H., Ed.; Landes Bioscience: Austin, TX, USA, 2009. [Google Scholar]
- Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxymethyl transferase: Successful targets against some infectious diseases. Mol. Biol. Rep. 2022, 49, 66596691. [Google Scholar] [CrossRef]
- Murzin, A.G. DNA building block reinvented. Science 2002, 29, 6162. [Google Scholar] [CrossRef]
- Mathews, I.I. Flavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design. J. Bioterr. Biodef. 2013, S12, 4. [Google Scholar] [CrossRef]
- Fallon, A.M.; Kurtti, T.J. Cultured cells as a tool for analysis of gene expression. In Biology of Disease Vectors; Marquardt, W.C., Ed.; Elsevier: New York, NY, USA, 2005; Volume 2, pp. 539–549. [Google Scholar]
- Fallon, A.M.; Baldridge, G.D.; Higgins, L.-A.; Witthuhn, B.A. Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells. In Vitro Cell. Dev. Biol. Anim. 2013, 49, 66–73. [Google Scholar] [CrossRef]
- Shih, K.M.; Gerenday, A.; Fallon, A.M. Culture of mosquito cells in Eagle’s medium. In Vitro Cell. Dev. Biol. Anim. 1998, 34, 629–630. [Google Scholar] [CrossRef]
- Fallon, A.M. Flow cytometric evaluation of the intracellular bacterium, Wolbachia pipientis, in mosquito cells. J. Microbiol. Methods 2014, 107, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Fallon, A.M. Preparation of infectious Wolbachia from a mosquito cell line. In Methods in Molecular Biology 2739: Wolbachia Methods and Protocols; Fallon, A.M., Ed.; Humana Press: Totowa, NJ, USA, 2024; Chapter 10; pp. 157–171. [Google Scholar] [CrossRef]
- Dereeper, A.; Audic, S.; Claverie, J.M.; Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 2010, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Anisimova, M.; Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef]
- Chevenet, F.; Brun, C.; Bañuls, A.L.; Jacq, B.; Christen, R. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinform. 2006, 7, 439. [Google Scholar] [CrossRef]
- AlRabiah, H.; Allwood, J.W.; Correa, E.; Xu, Y.; Goodacre, R. pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLoS ONE 2018, 13, e0200272. [Google Scholar] [CrossRef]
- Fivian-Hughes, A.S.; Houghton, J.; Davis, E.O. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology 2012, 158 Pt 2, 308–318, Erratum in Microbiology 2012, 158 Pt 5, 1388. [Google Scholar] [CrossRef]
- Schön, M.E.; Martijn, J.; Vosseberg, J.; Kostelbacher, S.; Ettma, T.J.G. The evolutionary origin of host association in the Rickettsiales. Nat. Microbiol. 2022, 7, 1189–1199. [Google Scholar] [CrossRef]
- Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 2021, 19, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Appaji Rao, N.; Ambili, M.; Jala, V.R.; Subramanya, H.S.; Savithri, H.S. Structure-function relationship in serine hydroxymethyltransferase. Biochim. Et Biophys. Acta 2003, 1647, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Oe, C.; Iwama, K.; Suzuki, S.; Nishiyama, A.; Hasegawa, K.; Okiuda, H.; Hirata, K.; Ueno, M.; Kawaji, K.; et al. Serine hydroxymethyltransferase as a potential target of antibacterial agents acting synergistically with one-carbon metabolism-related inhibitors. Commun. Biol. 2022, 5, 619. [Google Scholar] [CrossRef] [PubMed]
- Fenollar, F.; Maurin, M.; Raoult, D. Wolbachia pipientis growth kinetics and susceptibilities to 13 antibiotics determined by immunofluorescence staining and real-time PCR. Antimicrob. Agents Chemother. 2003, 47, 1665–1671. [Google Scholar] [CrossRef]
Taxon | Rickettsiales | Anaplasma | Ehrlichia | Neorickettsia | Orientia | Rickettsia | Wolbachia | Sum |
---|---|---|---|---|---|---|---|---|
NCBI taxid | 766 | 768 | 943 | 33,993 | 69474 | 775 | 953 | |
gene, query | accessions | |||||||
folA, WP_063630725.1 | 149 | 0 | 0 | 0 | 0 | 42 | 106 | 148 |
thyX, WP_063630792.1 | 285 | 17 | 10 | 5 | 14 | 84 | 134 | 264 |
glyA, WP_063630832.1 | 341 | 21 | 14 | 5 | 16 | 96 | 169 | 321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallon, A.M. Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales. Insects 2025, 16, 18. https://doi.org/10.3390/insects16010018
Fallon AM. Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales. Insects. 2025; 16(1):18. https://doi.org/10.3390/insects16010018
Chicago/Turabian StyleFallon, Ann M. 2025. "Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales" Insects 16, no. 1: 18. https://doi.org/10.3390/insects16010018
APA StyleFallon, A. M. (2025). Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales. Insects, 16(1), 18. https://doi.org/10.3390/insects16010018